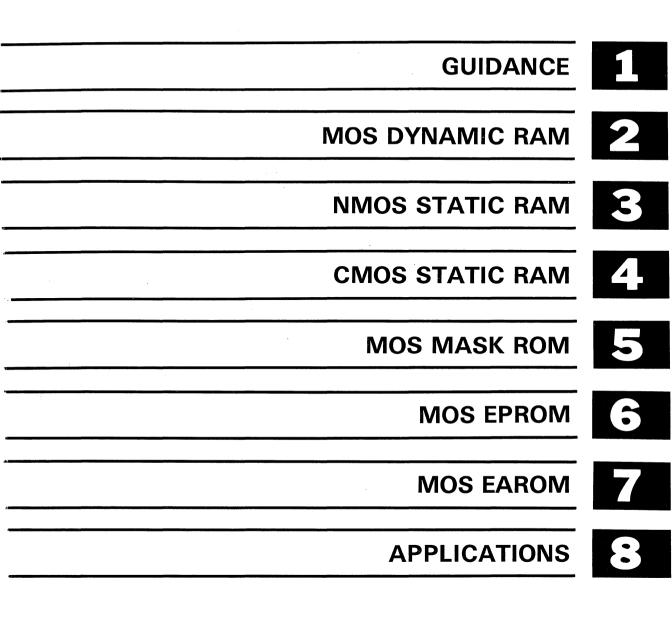


DISTRIBUTED BY:

.R. 186

MERIT ELECTRONICS, INC 2362 Oume Drive San Jose, GA 95131

108)434-08


IC MEMORIES

All values shown in this catalogue are subject to change for product improvement.

The information, diagrams and all other data included herein are believed to be correct and reliable. However, no responsibility is assumed by Mitsubishi Electric Corporation for their use, nor for any infringements of patents or other rights belonging to third parties which may result from their use.

1

GUIDANCE	Page
Guide to Selection of IC Memories	1—2
Index by Function	18
Guide to Interchangeability	
Ordering Information	1—18
Package Outlines	
Letter Symbols for The Dynamic Parameters	
Symbology	
Quality Assurance and Reliability Testing	
Precautions in Handling MOS IC/LSIs	1—37

2 MOS DYNAMIC RAM

M5K4164AP-12, -15	65536-Bit (65536-Word by 1-Bit) Dynamic RAM23
M5K4164ANP-12, -15	65536-Bit (65536-Word by 1-Bit) Dynamic RAM
M5K4164ANP-20	65536-Bit (65536-Word by 1-Bit) Dynamic RAM2-24
M5K4164AL-12, 15	65536-Bit (65536-Word by 1-Bit) Dynamic RAM234
M5K4164ANL-12, -15	65536-Bit (65536-Word by 1-Bit) Dynamic RAM245
M5K4164AND-12, -15	65536-Bit (65536-Word by 1-Bit) Dynamic RAM22
M5M4416P-12, -15	65536-Bit (16384-Word by 4-Bit) Dynamic RAM
M5M4256P-12, -15, -20	262144-Bit (262144-Word by 1-Bit) Dynamic RAM 2-80
M5M4257P-12, -15, -20	262144-Bit (262144-Word by 1-Bit) Dynamic RAM 2-95
M5M4256S-12, -15, -20	262144-Bit (262144-Word by 1-Bit) Dynamic RAM
M5M4257S-12, -15, -20	262144-Bit (262144-Word by 1-Bit) Dynamic RAM
M5M4256L-12, -15, -20	262144-Bit (262144-Word by 1-Bit) Dynamic RAM
M5M4257L-12, -15, -20	262144-Bit (262144-Word by 1-Bit) Dynamic RAM2155
M5M4464P-12, -15	262144-Bit (65536-Word by 4-Bit) Dynamic RAM······ 2-170
MH6404AD1-15	262144-Bit (65536-Word by 4-Bit) Dynamic RAM
MH6404AND1-15	262144-Bit (65536-Word by 4-Bit) Dynamic RAM
MH6408AD-15	524288-Bit (65536-Word by 8-Bit) Dynamic RAM2-206
MH6408AND-15	524288-Bit (65536-Word by 8-Bit) Dynamic RAM222222

3 NMOS STATIC RAM

M58725P, -15	16384-Bit (2048-Word by 8-Bit) Static RAM
M5M2167P-55, -70	16384-Bit (16384-Word by 1-Bit) Static RAM
M5M2168P-55, -70	16384-Bit (4096-Word by 4-Bit) Static RAM

4 CMOS STATIC RAM

M5M5116P, -15	16384-Bit (2048-Word by 8-Bit) CMOS Static RAM······ 4-3
M5M5116FP, -15	16384-Bit (2048-Word by 8-Bit) CMOS Static RAM·······4-8
M5M5117P, -15	16384-Bit (2048-Word by 8-Bit) CMOS Static RAM
M5M5117FP, -15	16384-Bit (2048-Word by 8-Bit) CMOS Static RAM 4-18
M5M5118P, -15	16384-Bit (2048-Word by 8-Bit) CMOS Static RAM
M5M5118FP, -15	16384-Bit (2048-Word by 8-Bit) CMOS Static RAM
M5M5165P-70, -10, -12	, -15, -70L, -10L, -12L, -15L
	65536-Bit (8192-Word by 8-Bit) CMOS Static RAM

Page

5 MOS MASK ROM

M5M2364-XXXP	65536-Bit (8192-Word by 8-Bit) Mask-Programmable ROM5-3
M5M2365-XXXP	65536-Bit (8192-Word by 8-Bit) Mask-Programmable ROM5-7
M5M23C64-XXXP	65536-Bit (8192-Word by 8-Bit) Mask-Programmable ROM······5-10
M5M23C65-XXXP	65536-Bit (8192-Word by 8-Bit) Mask-Programmable ROM5-13
M5M23128-XXXP	131072-Bit (16384-Word by 8-Bit) Mask-Programmable ROM516
M5M23256-XXXP	262144-Bit (32768-Word by 8-Bit) Mask-Programmable ROM5-19
M5M231000-XXXP	1048576-Bit (131072-Word by 8-Bit) Mask-Programmable ROM5-22

6 MOS EPROM

M5L2764K, -2	65536-Bit (8192-Word by 8-Bit) Erasable and Electrically
	Reprogrammable ROM······6—3
M5L27128K, -2	131072-Bit (16384-Word by 8-Bit) Erasable and Electrically
	Reprogrammable ROM······6—10
M5M27C128K, -2, -3	3 131072-Bit (16384-Word by 8-Bit) CMOS Erasable and Electrically
	Reprogrammable ROM······6—19

Z MOS EAROM

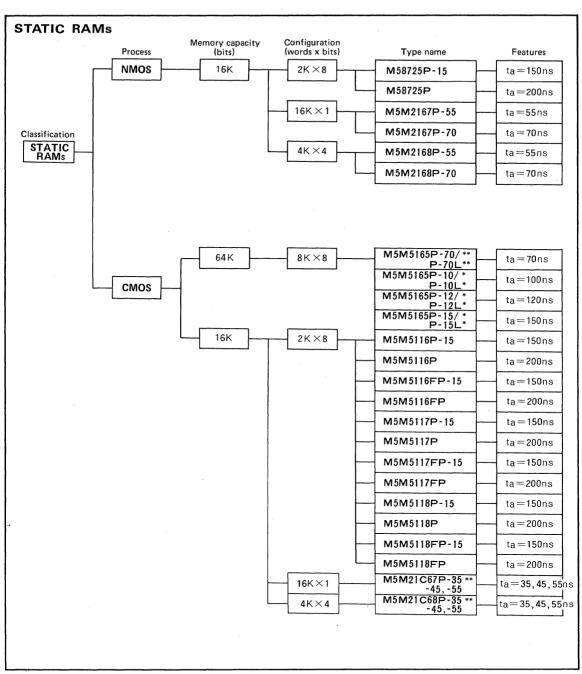
M58653P	700-Bit (50-Word by 14-Bit) Electrically Alterable ROM
M58657P	1400-Bit (100-Word by 14-Bit) Electrically Alterable ROM·······
M58658P	320-Bit (20-Word by 16-Bit) Electrically Alterable ROM7-15
M5G1400P	1400-Bit (100-Word by 14-Bit) Electrically Alterable ROM

8 APPLICATIONS

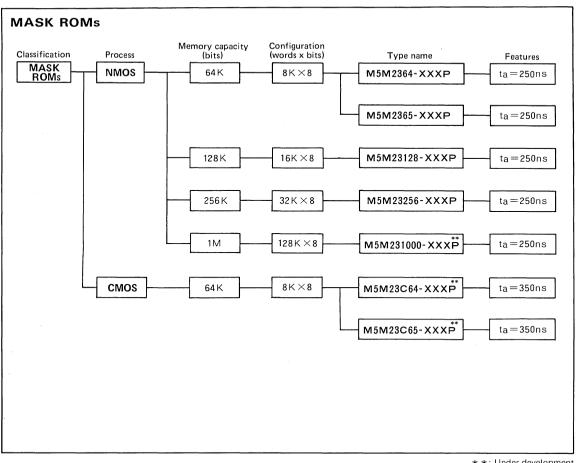

64K-BIT DYNAMIC RAM
STATIC RAM
EPROM8-51

Contact Addresses for Further Information

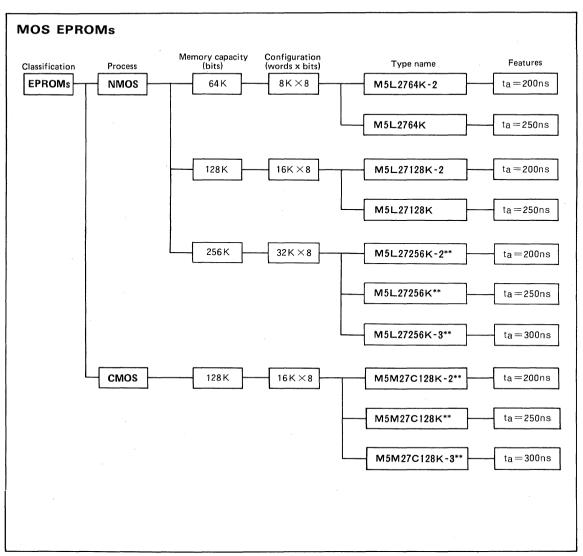
GUIDANCE


GUIDE TO SELECTION OF IC MEMORIES

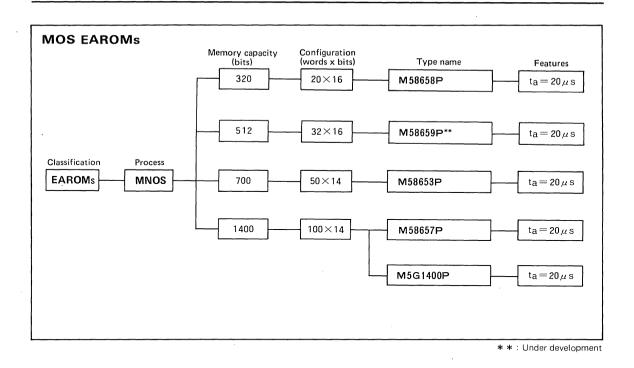
* : New product * * : Under development


MITSUBISHI LSIS

* : New product * * : Under development


MITSUBISHI LSIs GUIDE TO SELECTION OF IC MEMORIES

* *: Under development


MITSUBISHI LSIS GUIDE TO SELECTION OF IC MEMORIES

* * : Under development

MITSUBISHI LSIS GUIDE TO SELECTION OF IC MEMORIES

MITSUBISHI LSIS

■64K-Bit DYNAMIC RAM

DIL

Туре	Structure	Memory capacity (configu- ration)	Refresh pin	Access time Max (ns)	Cycle time Min (ns)	Power dis- sipation Typ (mW)	Low power dissipation Max(mW) Operating time	Specifications	Package outlines	Inter- changeable products	Page							
M5K4164AP-12		64K (64K×1) 64K (16K×4)			Yes	120	220	175	275	 128 refresh cycles every 2 ms 1-pin automatic and self-refreshing capability 	16P4	See	2—3					
M5K4164AP-15					150	260	150	250	 CAS input allows hidden refresh, hidden automatic refresh, and hidden self- refresh operation. 	16P4	page1-12	2—3						
M5K4164ANP-12	NMOS			(64K×1)	(64K×1)		os			120	220	175	275	● 128 refresh cycles every 2ms. ● CAS input allows hidden refresh		See page 1-12		
M5K4164ANP-15									No	No	150	260	150	250	operation 16P4		2—14	
M5K4164ANP-20					200	330	125	225				2—24						
M5M4416P-12					120	220	175	275	• 128 refresh cycles	1054		2-65						
M5M4416P-15				(16K×4)	(16K×4)	(16K×4)	(16K×4)	(16K×4)	(16K×4)	(16K×4)	(16K×4)	<×4)	150	260	150	250	every 2ms • 4-bit configuration	18P4

ZIL ,

Туре	Structure	Memory capacity (configu- ration	Refresh pin	Access time Max(ns)	Specifications	Package outlines	Inter- changeable products	Page
M5K4164AL-12			Yes	120	 Same electrical characteristics as the M5K4164AP and ANP series. Package 16pin zig zag in-line 	—16P5A	_	2—34
M5K4164AL-15	NMOS	64K	165	150	 5-pin automatic and self-refresh capability 			
M5K4164ANL-12		(64K×1)	No	120	 Same electrical characteristics as the M5K4164AP and ANP series. Package: 16-pin zig-zag in-line 			2-45
M5K4164ANL-15			INU	150				

Chip carrier

Туре	Structure	Memory capacity (configu- ration)	Refresh pin	Access time Max(ns)	Specifications	Package outlines	Inter- changeable products	Page
M5K4164AND-12	NMOS	64K	No	120	 Same electrical characteristics as the M5K4164AP and ANP series Package: 18-pin of which two are open 	1000	See	0 55
M5K4164AND-15		(64K×1)		150	●Lead pitch: 1.27mm ●External dimensions: 7.2×10.8×1.9mm	18D0	page 1-12	2—55

SIL MODULE

Туре	Structure	Memory capacity (configu- ration)	Refresh pin	Access time Max(ns)	Number of chip carrier	Specifications	Package outlines	Inter- changeable products	Page
MH6404AD1-15		256K (64K×4)	Yes	- 150 -	Four units (64K×4-bit)	 Package: 22-pin SIL configuration External measurements: 7.6×56×3.5mm 	2255		2—185
MH6408AD-15	NMOS	512K (64K×8)			Eight units (64K×8-bit)	 Package: 30-pin SIL configuration External measurements: 8.4×76×7mm 	3055		2—206
MH6404AND1-15		256 K (64K×4)	No		Four units (64K×4-bit)	 Package: 22-pin SIL configuration External measurements: 7.6×56×3.5mm 	2255		2—196
MH6408AND-15		512K (64K×8)	UVI		Eight units (64K×8-bit)	 Package: 30-pin configuration External measurements: 8.4×76×7mm 	30\$5	_	2—217

■256K-Bit DYNAMIC RAM

DIL

Туре	Structure	Memory capacity (configu- ration)	Function mode	Access time Max(ns)	Cycle time Min(ns)	Power dissipation Typ (mW)	Low power dissipation Max(mW) Operating time	Specifications	Package outlines	Inter- changeable products	Page
M5M4256P-12*				100			360	●256 refresh cycles every 4ms ●CAS before BAS	16P4		2—80
M5M4256S-12				120	230	260	413	ecAS before RAS refresh operation capability CAS input allows	1651		2—110
M5M4256P-15*			mode	150	200		330	hidden refresh operation.	16P4		2—80
M5M4256S-15			Page I	150	260	230	385		16S1		2—110
M5M4256P-20*		256K		200	222	100	275		16P4	Coo	2—80
M5M4256S-20		256K (256K × 1)		200	330	190	303		16S1	See page1-12	2—110
M5M4257P-12*		256K (256K×1)				260	360	●256 refresh cycles every 4ms. ●CAS before RAS	16P4	2—95	
M5M4257S-12	NMOS		mode	120	230	260	413	•CAS before HAS refresh operation capability. •CAS input allows	1651		2—125
M5M4257P-15*				450	260		330	hidden refresh operation	16P4	16P4	2—95
M5M4257S-15			Nibble mode	150	260	230	385	-	1651		2—125
M5M4257P-20*			2	200	330	100	275		16P4		2—95
M5M4257S-20				200	330	190	303		16S1		2—125
M5M4464P-12**		256 K	mode	120	230 260	360	 256 refresh cycles every 4ms. CAS before RAS refresh operation capability 	18P4		2-170	
M5 M4464P-15**		256K (64K×4)	Page	150	260	230	330	•CAS input allows hidden refresh ope- ration •4-bit configuration	1824		2 170

* : New product • ** : Under development

.

MITSUBISHI LSIS

ZIL

Туре	Structure	Memory capacity (configu- ration)	Function mode	Access time Max(ns)	Cycle time Min(ns)	Power dissipation Typ (mW)	Low power dissipation Max(mW) Operating time	Specifications	Package outlines	inter- changeable products	Page											
M5M4256L-12**			0.0	120	230	260	360	Same electrical														
M5M4256L-15**		256K	Page mode	150	260	230	330	characteristics as the M5M4256P and			2—140											
M5M4256L-20**	NMOS		256 K	256 K	αE	200	330	190	275	M5M4257P series.												
M5M4257L-12**	NIVIO5				(256K×1)	(256K×1)	(256K×1)	(256K×1)	(256K×1)	(256K×1)	(256K×1)	(256K×1)	(256K×1)				<u>e</u> e	120	230	260	360	Package 16-pin zig-zag in line.
M5M4257L-15**					260	230	330	ziy-zay in line.			2											
M5M4257L-20**		Nibt		200	330	190	275	1														

■16K-Bit STATIC RAM

Туре	Structure	Memory capacity	Memory configuration (Word×Bit)	Supply voltage (V)	Typical power dissipation Typ(mW)	Access time Max(ns)	Cycle time Min(ns)	Package outlines	Inter- changeable products	Page
M58725P-15			2K×8		250	150	150	24.04		3—3
M58725P			21/~0		250	200	200	24P4	See	3-3
M5M2167P-55	NMOS		16K×1		400	55	55	20P4	page1-14	3—9
M5M2167P-70	111000		TURXT		400	70	70	201-4	pager 14	5 5
M5M2168P-55			4K×4		500	55	55	20P4		3—13
M5M2168P-70			41(7,4		500	70	70	201-4		5 15
M5M5116P-15						150	150	24P4	See	4-3
M5M5116P						200	200	24174	page1-14	4 3
M5M5116FP-15		16K			% 150	150	150	24P2W	_	4—8
M5M5116FP				5±10%		200	200	2472 1		4-0
M5M5117P-15						150	150	24 P4	, See	4-13
M5M5117P			2K×8			200	200	24174		413
M5M5117FP-15			LIXXO			150	150	24P2W		4-18
M5M5117FP						200	200	24-2 1	page1-14	4,10
M5M5118P-15	смоз					150	150	24P4		4-23
M5M5118P						200	200	24174		4 23
M5M5118FP-15						150	150	24P2W		4-28
M5M5118FP						200	200	24 - 2 11		4 20
M5M21C67P-35**			ſ			35	35			
M5M21C67P-45**			16K×1			45	45	20P4		-
M5M21C67P-55**					200	55	55			
M5M21C68P-35**					200	35	35			
M5M21C68P-45**			4K×4			45	45	20P4	P4	-
M5M21C68P-55**						55	55			

■64K-Bit STATIC RAM

			Memory	Supply	Power d	issipation	Access	Cycle	age nes	Inter-	
Туре	Structure	Memory capacity	configuration	voltage	Operating	Standby	time	time	Packa	changeable	Page
			(Word×Bit)	(v)	Typ(mW)	Max(mW)	Max(ns)	Max(ns)	Pa	products	
M5M5165P-70**							70	70			
M5M5165P-10*						11	100	100		0	
M5M5165P-12*				5±10%		11	120	120		See	
M5M5165P-15*	смоз	64K	8K×8		150		150	150		page1-14	
M5M5165P-70L**	01103	041	01 ~ 0	5±10%	150		70	70	28P4		4—33
M5M5165P-10L*						0.55	100	100 ·		-	
M5M5165P-12L*						0.55	120	120		See	
M5M5165P-15L*							150	150		page1-14	

*: New product **: Under development

MASK ROM

Туре .	Structure	Memory capacity	Memory configuration (Word×Bit)	Supply voltage (V)	Typical power dissipation Typ(mW)	Access time Max(ns)	Cycle time Min(ns)	Package outlines	Inter- changeable products	Page
M5M2364-XXXP		64K	8K×8		200	250		28P4	MK37000	5-3
M5M2365-XXXP	1	04K			150		_	24P4	MK36000	5-7
M5M23128-XXXP	NMOS	128K	16K×8		200	250	-		μPD23128	5-16
M5M23256-XXXP	1	256K	32K×8	5±10%			_	28P4	MK38000	5-19
M5M231000-XXXP**		1M	128K×8	5±1070			-	281-4		522
M5M23C64-XXXP**	смоз	CAK			100	350	-			5-10
M5M23C65-XXXP**	00005	64K	8K×8		100	350		24P4		5-13

EPROM

Туре	Structure	Memory capacity	Memory configuration (Word×Bit)	Supply voltage (V)	Typical power dissipation (mW)	Access time Max(ns)	Type of output	Package outlines	Inter- changeable products	Page
M5L2764K-2		64K	8K×8		300	200	_	- 28K1	See	6-3
M5L2764K	NMOS	041	01 0		300	250	-	2011	page1-16	0-3
M5L27128K-2					350	200				6-10
M5L27128K	7	1		,	350	250]		0-10
M5M27C128K-2**		128K	16K×8	51500		200]	See	
M5M27C128K**	CMOS			5±5%	160	250	-	28K4	page1-16	6—19
M5M27C128K-3**	7					300	-	2014		
M5L27256K-2**						200	—]		
M5L27256K**	NMOS	256K	32K×8		300	250	-		i27256	_
M5L27256K-3**						300	_		i27256-3	

EAROM

Туре	Structure	Memory capacity	Memory configuration (Word×Bit)	Supply voltage (V)	Typical power dissipation (mW)	Access time Max(ns)	Cycle time Min(ns)	Package outlines		Page								
M58658P		320	20×16	% 1			-		—	7—15								
M58659P**	MNOS	MNOS	MNOS	MNOS	MNOS	MNOS	MNOS	MNOS	MNOS	512	32×16	※ 1			_		—	—
M58653P										MNOS	MNOS	MNOS	MNOS	MNOS	MNOS	MNOS	700	50×14
M58657P		1400	1400 100 14	※ 1	-		—			7—9								
M5G1400P		1400	1400 100×14 -	% 2	-		_		ER1400	7-23								

 $%1 V_{GG} - V_{SS} = -35V \pm 8\%$ Vss-

 $2 V_{GG} - V_{SS} = -35V \pm 8\%$

$$-V_{GND} = 5V_{-5\%}^{+20\%}$$

** : Under development

MITSUBISHI LSIs

GUIDE TO INTERCHANGEABILITY

	Mitsubishi Electric	AMD Advanced Micro Devices	G I General Instrument	FSC Fairchild Semiconductor	Fujitsu	Hitachi	INTEL Intel	INTERSII Intersil
	M5K4116P-2	Am9016F			MB8116H	HM4716A-2	2117-2	
	M5K4116P-3	Am9016E			MB8116E	HM4716A-3	2117-3	
	M5K4164AP-12				MB8265A-12	HM4865AP-12		
	M5K4164AL-12							
1	M5K4164AP-15	1			MB8265A-15	HM4865AP-15		
	M5K4164AL-15				-			
	M5K4164ANP-12				MB8264A-12	HM4864AP-12		
	M5K4164ANP-15				MB8264A-15	HM4864AP-15		
	M5K4164ANP-20							
	M5K4164ANL-12							
	M5K4164ANL-15							
	M5K4164AND-12							
	M5K4164AND-15					HM4864CC-2		
	MH6404AD1-15							
	MH6408AD-15							
-	MH6404AND1-15							
A	MH6408AND-15			· ·				
L C	M5M4416P-12				MB81416-12			
š	M5M4416P-15				MB81416-15			
N N	M5M4256S-12				MB81256-12	HM50256-12		
DYNAMIC RAM	M5M4256S-15				MB81256-15	HM50256-15		
	M5M4256S-20					HM50256-20		
	M5M4257S-12				MB81257-12	HM50257-12		
	M5M4257S-15				MB81257-15	HM50257-15		
	M5M4257S-20					HM50257-20		
	M5M4256P-12				MB81256-12	HM50256-12		
	M5M4256P-15				MB81256-15	HM50256-15		
	M5M4256P-20					HM50256-20		
	M5M4257P-12				MB81257-12	HM50257-12		
	M5M4257P-15				MB81257-15	HM50257-15		
	M5M4257P-20					HM50257-20		
	M5M4256L-12							
	M5M4256L-15		•					
1	M5M4256L-20							
	M5M4257L-12							
	M5M4257L-15				4			
	M5M4257L-20							
	M5M4464P-12							
	M5M4464P-15							

MOSTEK Mostek	MOTOROLA Motorola Semiconductor products	NSC National Semiconductor	Nippon Electric	Oki	TI Texas Instruments	Toshiba	Remarks
MK4116-2	MCM4116-15	MM5290-2	μPD416-3		TMS4116-15	TMM416P-2	
MK4116-3	MCM4116-20	MM5290-3	μPD416-2		TMS4116-20	TMM416P-3	
MK4164N-15							
			μPD4164C-12				
MK4564N-15			μPD4164C-15		TMS4164-15NLJ	TMM4164P-3	
					TMS4416-15		
MK4556-12				MSM41256-12	1110441010	TMM41256C-12	
MK4556-15			μPD41256C/D-15			TMM41256C-15	
MK4556-20			μPD41256C/D-20				
	MCM6257-12			MSM41257-12			
	MCM6257-15		μPD41257C/D-15	MSM41257-15			
			μPD41257C/D-20	MSM41257-20			
MK4556-12				MSM41256-12		TMM41256C-12	
MK4556-15			μPD41256C/D-15			TMM41256C-15	
			.μPD41256C/D-20				
	MCM6257-12			MSM41257-12			
	MCM6257-15		μPD41257C/D-15				
			μPD41257C/D-20	MSM41257-20			
					· · · · · · · · · · · · · · · · · · ·		
				· · · · · · · · · · · · · · · · · · ·			
	×						
	· · · ·						

MITSUBISHI LSIs

GUIDE TO INTERCHANGEABILITY

	Mitsubishi Electric	AMD Advanced Micro Devices	AMI American Microsystems	FSC Fairchild Semiconductor	Fujitsu	Hitachi	INTEL Intel	INTERSIL Intersil
	M58725P-15				MB8128-15			
	M58725P							
	M5M2167P-55	Am2167-55			MB8167A-55	HM6167H-55	i2167-55	
	M5M2167P-70	Am2167-70			MB8167A-70	HM6167H-70	i2167-70	
	M5M2168P-55				MB8168-55	HM6168H-55		
	M5M2168P-70				MB8168-70	HM6168H-70		
	M5M5116P-15				MB8417-15			
	M5M5116P				MB8417-20			
	M5M5116FP-15							
	M5M5116FP				-			
5	M5M5117P-15				MB8416-15	HM6116L-3		
RAM	M5M5117P				MB8416-20	HM6116L-4		
	M5M5117FP-15					HM6116LFP-3		
STATIC	M5M5117FP					HM6116LFP-4		
E.	M5M5118P-15					HM6117LP-3		
S.	M5M5118P				MB8418-20	HM6117LP-4		
	M5M5118FP-15					HM6117LFP-3		
	M5M5118FP					HM6117LFP-4		
	M5M5165P-70 /P-70L							
	M5M5165P-10					HM6264P-10		
	/P-10L					/LP-10		
	M5M5165P-12				MB8464-12	HM6264P-12		
	/P-12L				/-12L	/LP-12		
	M5M5165P-15				MB8464-15	HM6264P-15		
	/P-15L				/-15L	/LP-15		

AMD AMI FSC Mitsubishi Advanced INTEL INTERSIL Hitachi Fujitsu American Fairchild Electric Micro Intel Intersil Microsystems Semiconductor Devices M5M2364-XXXP ROM M5M23C64-XXXP M5M2365-XXXP MASK M5M23C65-XXXP M5M23128-XXXP M5M23256-XXXP M5M231000-XXXP

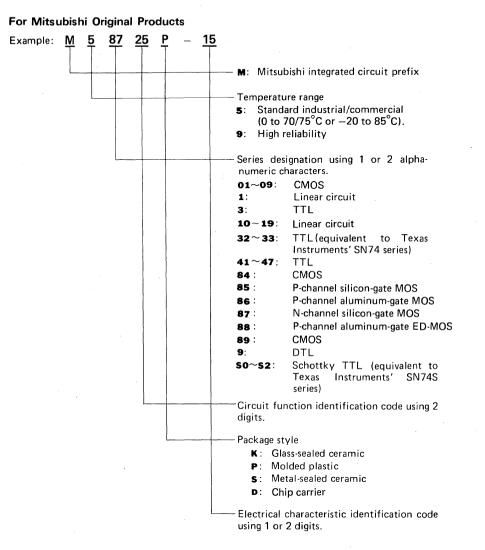
MOSTEK Mostek	MOTOROLA Motorola Semiconductor products	NSC National Semiconductor	Nippon Electric	Oki	TI Texas Instruments	Toshiba	Remarks
			μPD4016C-3	MSM2128-15		TMM2016P	
			μPD4016C-2	MSM2128-20		TMM2016P-2	
			μPD2167D-3				
			μPD2167D-2				
•					×		
			μΡD447C-3 μΡD447C-2	MSM5127-15RS MSM5127-20RS		TC5516AP	-
						TC5516AFP	
			μPD446C-3	MSM5128-15RS			
			μPD446C-2	MSM5128-20RS		TC5517AP	
						TC5517AFP	
			μPD449C-3	MSM5129-15RS			
-touch and			μPD449C-2	MSM5129-20RS		TC5518BP	
						TC5518BF	
				MSM5165-12RS		TC5565P-12 /PL-12	
			μPD4364C-15/ C-15L(150ns) μPD4364C-20/ C-20L(200ns)	MSM5165-15RS		TC5565P-15 /PL-15	

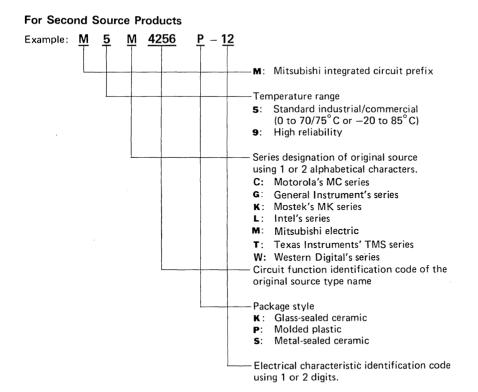
MOSTEK Mostek	MOTOROLA Motorola Semiconductor products	NSC National Semiconductor	Nippon Electric	Oki	TI Texas Instruments	Toshiba	Remarks
MK37000							
MK36000							24pin
			μPD23128				
MK38000							
							28pin

	Mitsubishi Electric	AMD Advanced Micro Devices	AMI American Microsystems	FSC Fairchild Semiconductor	Fujitsu	Hitachi	INTEL Intel	INTERSIL Intersil
	M5L2764K-2				MBM2764-20		D2764-2	
	M5L2764K				MBM2764-25	HN482764G	D2764	
	M5L27128K-2					· · · · · · · · · · · · · · · · · · ·		
-	M5L27128K	Am27128-25			MBM27128-25	HN4827128-25	D27128	
PROM	M5M27C128K-2					``		
L H	M5M27C128K				MBM27C128-25		D27128	
ш	M5M27C128K-3				MBM27C128-30			
	M5L27256K-2							
	M5L27256K						D27256	
	M5L27256K-3						D27256-3	

	Mitsubishi Electric	AMD Advanced Micro Devices	AMI American Microsystems	FSC Fairchild Semiconductor	Fujitsu	Hitachi	INTEL	INTERSIL Intersil
EAROM	M58653P							
	M58657P							
	M5G1400P							
	M58658P							
	M58659P							

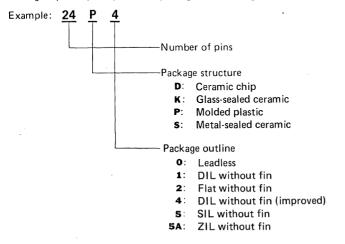
MOSTEK Mostek	MOTOROLA Motorola Semiconductor products	NSC National Semiconductor	Nippon Electric	Oki	TI Texas Instruments	Toshiba	Remarks
				ŀ		TMM2764D-2	
MK2764-8			μPD2764D	MSM2764AS		TMM2764D	
			µPD27128D-2			TMM27128D-20	
			μPD27128D			TMM27128D-25	


MOSTEK Mostek	MOTOROLA Motorola Semiconductor products	NSC National Semiconductor	Nippon Electric	Oki	TI Texas Instruments	Toshiba	GI General Instrument
							ER1400

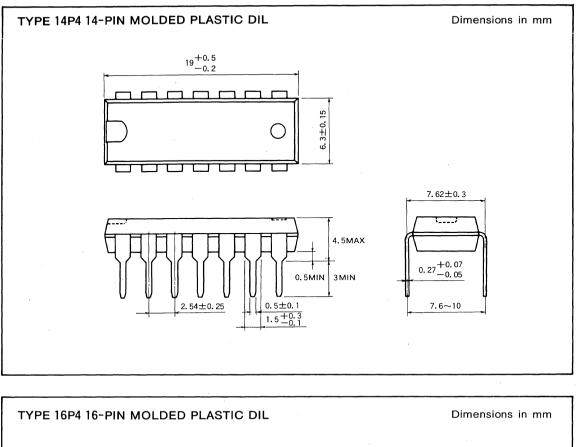

ORDERING INFORMATION

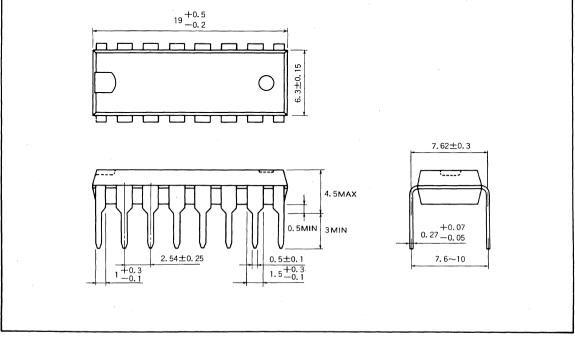
FUNCTION CODE

Mitsubishi integrated circuits may be ordered using the following simplified alphanumeric type-codes which define the function of the ICs and the package style.

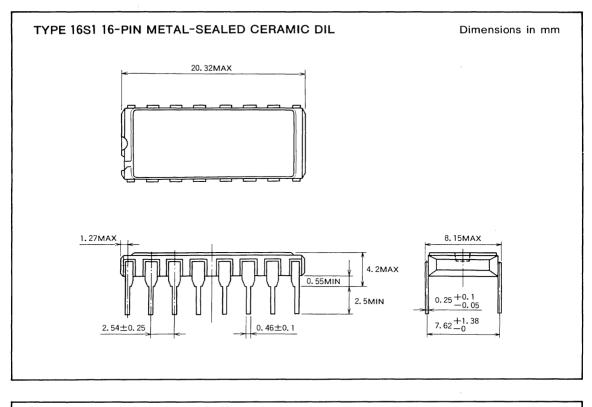


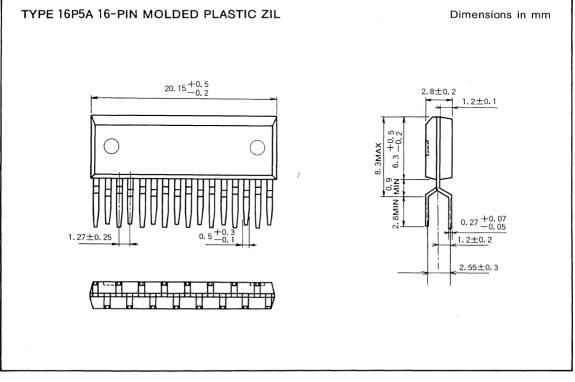
ORDERING INFORMATION

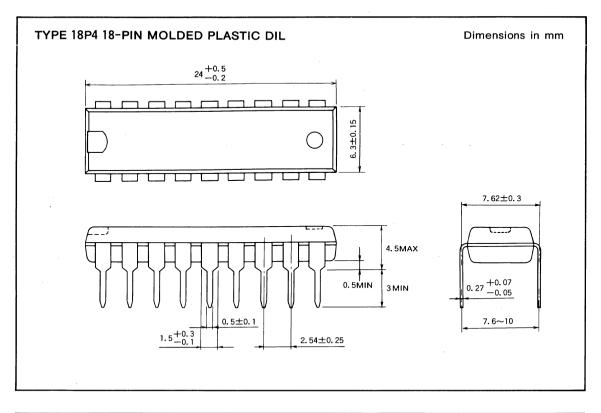


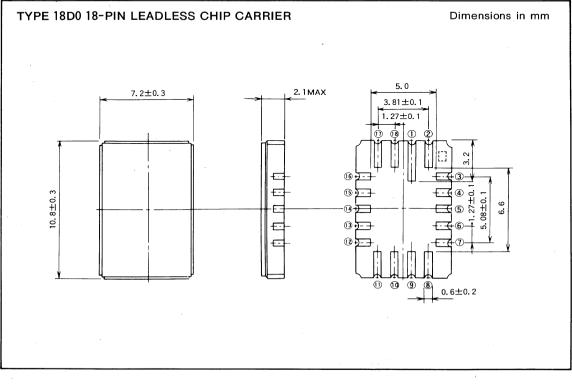

PACKAGE CODE

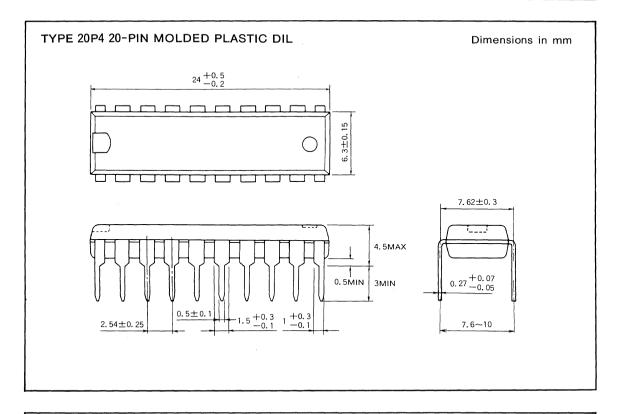
Package style may be specified by using the following simplified alphanumeric code.

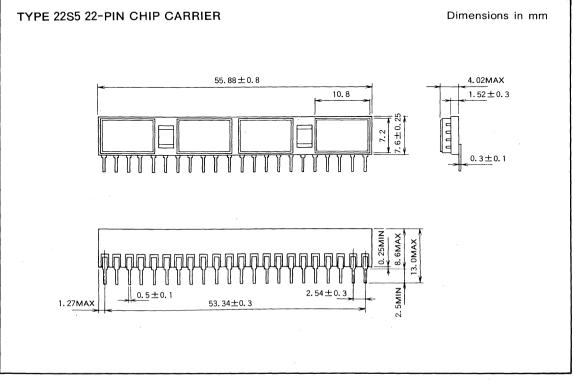


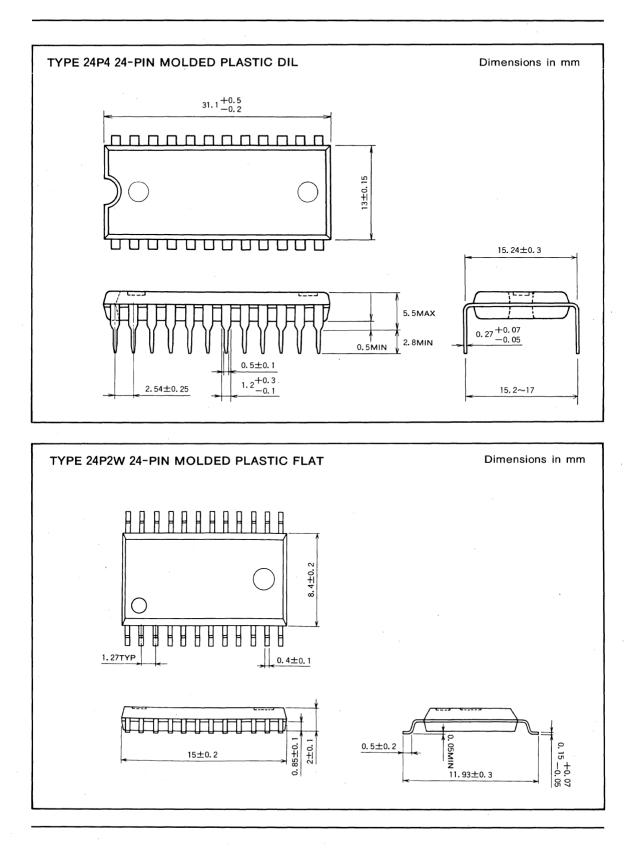




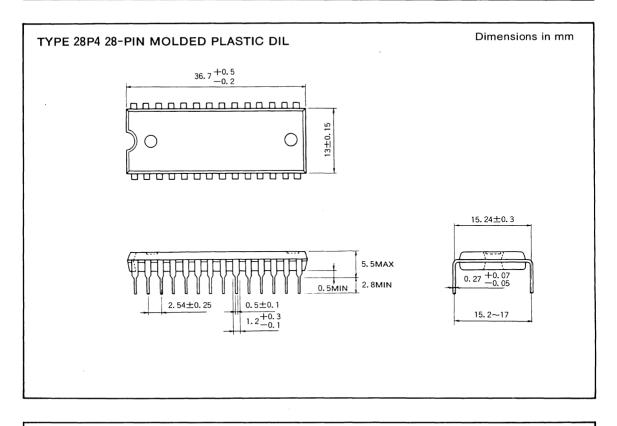


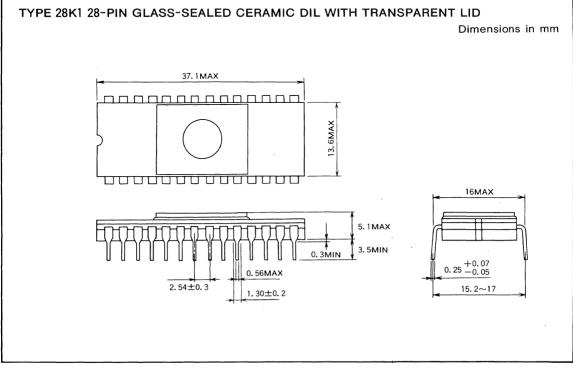


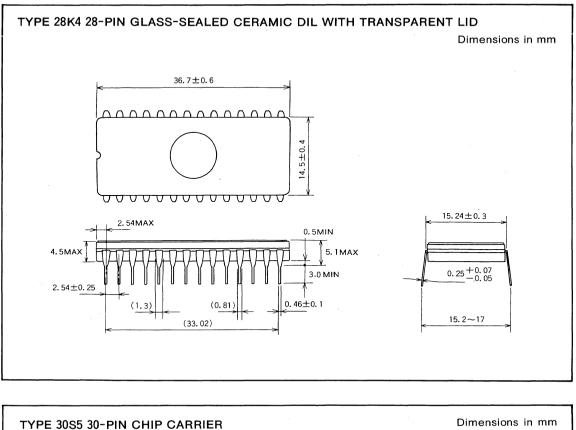


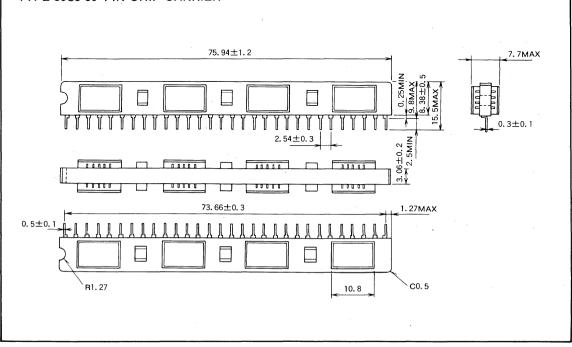


MITSUBISHI LSIS









LETTER SYMBOLS FOR THE DYNAMIC PARAMETERS

1. INTRODUCTION

A system of letter symbols to be used to represent the dynamic parameters of intergrated circuit memories and other sequential circuits especially for single-chip microcomputers, microprocessors and LSIs for peripheral circuits has been discussed internationally in the TC47 of the International Electrotechnical Committee (IEC). Finally the IEC has decided on the meeting of TC47 in February 1980 that this system of letter symbols will be a Central Office document and circulated to all countries to vote which means this system of letter symbols will be a international standard.

The system is applied in this LSI data book for the new products only. Future editions of this data book will be applied this system. The IEC document which describes "Letter symbols for dynamic parameters of sequential integrated circuits, including memories" is introduced below. In this data book, the dynamic parameters in the IEC document are applied to timing requirements and switching characteristics.

2. LETTER SYMBOLS

The system of letter symbols outlined in this document enables symbols to be generated for the dynamic parameters of complex sequential circuits, including memories, and also allows these symbols to be abbreviated to simple mnemonic symbols when no ambiguity is likely to arise.

2.1. General Form

The dynamic parameters are represented by a general symbol of the form:-

t_{A(BC-DC)}F(1)

where :

- Subscript A indicates the type of dynamic parameter being represented, for example; cycle time, setup time, enable time, etc.
- Subscript B indicates the name of the signal or terminal for which a change of state or level (or establishment of a state or level) constitutes a signal event assumed to occur first, that is, at the beginning of the time interval. If this event actually occurs last, that is, at the end of the time interval, the value of the time interval is negative.
- Subscript C indicates the direction of the transition and/or the final state or level of the signal represented by B. When two letters are used, the initial state or level is also indicated.

Subscript D indicates the name of the signal or terminal for which a change of state or level (or establishment of a state or level) constitutes a signal event assumed to occur last, that is, at the end of the time interval. If this event actually occurs first, that is, at the beginning of the time interval, the value of the time interval is negative.

MITSUBISHI LSIS

- Subscript E indicates the direction of the transition and/or the final state or level of the signal represented by D. When two letters are used, the initial state or level is also indicated.
- **Subscript F** indicates additional information such as mode of operation, test conditions, etc.
- Note 1: Subscripts A to F may each consists of one or more letters.
 - 2: Subscripts D and E are not used for transition times.
 - 3: The "-" in the symbol (1) above is used to indicate "to"; hence the symbol represents the time interval from signal event B occuring to signal event D occuring, and it is important to note that this convention is used for all dynamic parameters including hold times. Where no misunder-standing can occur the hyphen may be omitted.

2.2. Abbreviated Form

The general symbol given above may be abbreviated when no misunderstanding is likely to arise. For example to :

- t_{A(B-D)}
- or t_{A(B)}
- or $t_{A(D)}$ often used for hold times
- or t_{AF} no brackets are used in this case
- or t_A
- or t_{BC-DE} often used for unclassified time intervals

2.3. Allocation of Subscripts

In allocating letter symbols for the subscripts, the most commonly used subscripts are given single letters where practicable and those less commonly used are designated by up to three letters. As far as possible, some form of mnemonic representation is used. Longer letter symbols may be used for specialised signals or terminals if this aids understanding.

3. SUBSCRIPT A (For Type of Dynamic Parameter)

The subscript A represents the type of dynamic parameter to be designated by the symbol and, for memories, the parameters may be divided into two classes :

a) those that are timing requirements for the memory and

LETTER SYMBOLS FOR THE DYNAMIC PARAMETERS

b) those that are characteristics of the memory. The letter symbols so far proposed for memory circuits are listed in sub-clauses 3.1 and 3.2 below. All subscripts A should be in lower-case.

3.1. Timing Requirements

The letter symbols for the timing requirements of semiconductor memories are as follows :

Term	Subscript
Cycle time	с
Time interval between two signal events	d
Fall time	f
Hold time	h
Precharging time	рс
Rise time	r
Recovery time	rec
Refresh time interval	rf
Setup time	su
Transition time	t
Pulse duration (width)	w

3.2. Characteristics

The letter symbols for the dynamic characteristics of semiconductor memories are as follows :

Characteristic	Subscript
Access time	а
Disable time	dis
Enable time	en
Propagation time	р
Recovery time	rec
Transition time	t
Valid time	v

Note: Recovery time for use as a characteristic is limited to sense recovery time.

4. SUBSCRIPTS B AND D (For Signal Name or Terminal Name)

The letter symbols for the signal name or the name of the terminal are as given below.

All subscripts B and D should be in upper-case.

Signal or terminal	Subscript
Address	A
Clock	С
Column address	CA
Column address strobe	CAS
Data input	D
Data input/output	DQ
Chip enable	E

Erasure	ER
Output enable	G
Program	PR
Data output	Q
Read	R
Row address	RA
Row address strobe	RAS
Refresh	RF
Read/Write	RW
Chip select	S
Write (write enable)	W
lass to be also because events to day afree to accord to the control of the	

Note 1: In the letter symbols for time intervals, bars over the subscripts, for example CAS, should not be used.

2: It should be noted, when further letter symbols are chosen, that the subscript should not end with H K, V, X, or Z. (See clause 5)

3: If the same terminal, or signal, can be used for two functions (for example Data input/output, Read/Write) the waveform should be labelled with the dual function, if appropriate, but the symbols for the dynamic parameters should include only that part of the subscript relevant to the parameter.

5. SUBSCRIPTS C AND E (For Transition of Signal)

The following symbols are used to represent the level or state of a signal :

Transition of signal	Subscript
High logic level	Н
Low logic level	L
Valid steady-state level (either low or high)	V
Unknown, changing, or 'don't care' level	Х
High-impedance state of three-state output	Z

The direction of transition is expressed by two letters, the direction being from the state represented by the first letter to that represented by the second letter, with the letters being as given above.

When no misunderstanding can occur, the first letter may be omitted to give an abbreviated symbol for subscripts C and E as indicated below.

All subscripts C and E should be in upper-case.

	5	Subscript
Examples	Full	Abbreviated
Transition from high level to low level	HL	L
Transition from low level to high level	LH	Н
Transition from unknown or changing state to valid state	xv	V
Transition from valid state to unknown or changing state	vx	x
Transition from high-impedance state to valid state	zv	v

Note: Since subscripts C and E may be abbreviated, and since subscripts B and D may contain an indeterminate number of letters, it is necessary to put the restriction on the subscripts B and D that they should not end with H, L, V, X, or Z, so as to avoid possible confusion.

6. SUBSCRIPT F (For Additional Information)

If necessary, subscript F is used to represent any additional qualification of the parameter such as mode of operation, test conditions, etc. The letter symbols for subscript F are given below.

Subscript F should be in upper-case.

Modes of operation	Subscript
Power-down	PD
Page-mode read	PGR
Page-mode write	PGW
Read ·	R
Refresh	RF
Read-modify-write	RMW
Read-write	RW
Write	W

FOR DIGITAL INTEGRATED CIRCUITS

New symbol	Former symbol	Parameter-definition
Ci		Input capacitance
C _o		Output capacitance
Ci/o		Input/output terminal capacitance
C _{i(¢)}		Input capacitance of clock input
1		Frequency
f(φ)		
		Current-the current into an integrated circuit terminal is defined as a positive value and the current out of a terminal is defined as a negative value
I _{BB}		Supply current from V _{BB}
BB(AV)		Average supply current from VBB
l _{cc}		Supply current from Vcc
ICC(AV)		Avarage supply current from Vcc
ICC(PD)		Power-down supply current from Vcc
DD .		Supply current from V _{DD}
DD(AV)		Average supply current from VDD
IGG		Supply current from V _{GG}
GG(AV)		Average supply current from V _{GG}
1)		Input current
Тін		High-level input current-the value of the input current when V _{OH} is applied to the input considered
LIL .		Low-level input current-the value of the input current when VoL is applied to the input considered
I _{OH}		High-level output current-the value of the output current when V _{OH} is applied to the output considered
IOL		Low-level output current—the value of the output current when VoL is applied to the output considered
I _{OZ}		Off-state (high-impedance state) output current—the current into an output having a three-state capability with input condition so applied that
		it will establish according to the product specification, the off (high-impedance) state at the output
OZH		Off-state (high-impedance state) output current, with high-level voltage applied to the output
OZL		Off-state (high-impedance state) output current, with low-level voltage applied to the output
los		Short-circuit output current
Iss		Supply current from V _{SS}
Pd		Power dissipation
NEW		Number of erase/write cycles
N _{RA}		Number of read access unrefreshed
R _i		Input resistance
RL		External load resistance
ROFF		Off-state output resistance
R _{ON}		On-state output resistance
ta		Access time-the time interval between the application of a specified input pulse during a read cycle and the availability of valid data signal at an output
t _{a(A)}	t _{a(AD)}	Address access time-the time interval between the application of an address input pulse and the availability of valid data signals at an output
ta(cAs)		Column address strobe access time
t _{a(E)}	ta(CE)	Chip enable access time
t _{a(G)}	t _{a(OE)}	Output enable access time
t _{a (PR)}		Data access time after program
t _{a(RAS)}		Row address strobe access time
t _{a(S)}	ta(cs)	Chip select access time
t _c		Cycle time
t _{CR}	t _{C(RD)}	Read cycle time-the time interval between the start of a read cylce and the start of the next cycle
torf	t _{C(REF)}	Refresh cycle time-the time interval between successive signals that are intended to restore the level in a dynamic memory cell to its original level
tcpg	t _{C(PG)}	Page-mode cycle time
t _{CRMW}	t _{c(RMR)}	Read-modify-write cycle time-the time interval between teh start of a cycle in which the memory is read and new data is entered, and the start of
		the next cycle
t _{cw}	t _{c(wR)}	Write cycle time-the time interval between the start of a write cycle and the start of the next cycle

	Former symbol	Parameter-definition
ta		Delay time-the time between the specified reference points on two pulses
td t.		
$t_{d(\phi)}$		Delay time between clock pulses-e.g., symbology, delay time, clock 1 to clock 2 or clock 2 to clock 1
td(CAS-RAS)	•	Delay time, column address strobe to row address strobe
td(CAS-W)	td(cas-wr)	Delay time, column address strobe to write
td(RAS-CAS)		Delay time, row address strobe to column address strobe
td(RAS-W)	td(ras-wr)	Delay time, row address strobe to write
tdis(R-Q)	tdis(r-da)	Output disable time after read
t _{dis(s)}	t _{PXZ(CS)}	Output disable time after chip select
t _{dis(W)}	t _{PXZ(WR)}	Output disable time after write
t _{DHL}		High-level to low-level delay time the time interval between specified reference points on the input and on the output pulses, when the
t _{DLH}		Low-level to high-level delay time output is going to the low (high) level and when the device is driven and loaded by specified networks.
t _{en(A-Q)}	tpzv(A-DQ)	Output enable time after address
t _{en(R-Q)}	tpzv(R-DQ)	Output enable time after read
t _{en(S-Q)}	t _{PZX(CS-DQ)}	Output enable time after chip select
tf		Fall time
t _h		Hold time-the interval time during which a signal at a specified input terminal after an active transition occurs at another specified input terminal
t _{h(A)}	th(AD)	Address hold time
t _{h(A-E)}	th(AD-CE)	Chip enable hold time after address
t _{h(A-PR)}	th(AD-PRO)	Program hold time after address
th(CAS-CA)		Column address hold time after column address strobe
t _{h(CAS-D)}	th(CAS-DA)	Data-in hold time after column address strobe
t _{h(CAS-Q)}	th(CAS-OUT)	Data-out hold time after column address strobe
t _{h (CAS-RAS)}		Row address strobe hold time after column address strobe
th(CAS-W)	th(CAS-WR)	Write hold time after column address strobe
t _{h(D)}	th(DA)	Data-in hold time
t _{h(D-PR)}	th(DA-PRO)	Program hold time after data-in
t _{h(E)}	t _{h(CE)}	Chip enable hold time
t _{h(E-D)}	th(CE-DA)	Data-in hold time after chip enable
t _{h(E-G)}	th(CE-OE)	Output enable hold time after chip enable
t _{h(R)}	t _{h(RD)}	Read hold time
th(RAS-CA)		Column address hold time after row address strobe
th(RAS-CAS)		Column address strobe hold time after row address strobe
th(RAS-D)	th(RAS-DA)	Data-in hold time after row address strobe
th(RAS-W)	th(RAS-WR)	Write hold time after row address strobe
t _{h(S)}	th(cs)	Chip select hold time
t _{h(W)}	th(WR)	Write hold time
th(w-cas)	th(WR-CAS)	Column address strobe hold time after write
t _{h(W-D)}	th(WR-DA)	Data-in hold time after write
t _{h(W-RAS)}	t _{h(wr-ras)}	Row address hold time after write
t _{PHL}		High-level to low-level propagation time the time interval between specified reference points on the input and on the output pulses when the
tplh		Low-level to high-level propagation time by typical devices of stated type
tr		Rise time
t _{rec(w)}	twr	Write recovery time-the time interval between the termination of a write pulse and the initiation of a new cycle
trec(PD)	t _{R(PD)}	Power-down recovery time
t _{su}		Setup time-the time interval between the application of a signal which is maintained at a speciifed input terminal and a consecutive active
		tarnsition at another specified input terminal
t _{su(A)}	t _{su(AD)}	Address setup time
t _{su(A-E)}	t _{su(AD-CE)}	Chip enable setup time before address
t _{su(A-W)}	t _{su(AD-WR)}	Write setup time before address
t _{su(CA-RAS)}		Row address strobe setup time before column address

New symbol	Former symbol	Parameter-definition
t _{su(D)}	t _{su(DA)}	Data-in setup time
t _{su(D-E)}	t _{su(da-ce)}	Chip enable setup time before data-in
tsu(D-W)	t _{su(da-wr)}	Write setup time before data-in
t _{su(E)}	t _{su(CE)}	Chip enable setup time
t _{su(E-P)}	t _{su(CE-P)}	Precharge setup time before chip enable
t _{su(G-E})	t _{su(OE-CE)}	Chip enable setup time before output enable
t _{su(P-E)}	t _{su(P-CE)}	Chip enable setup time before precharge
t _{su(PD)}		Power-down setup time
t _{su(R)}	t _{su(RD)}	Read setup time
tsu(r-cas)	t _{su (ra-cas)} '	Column address strobe setup time before read
t _{su (ra-cas)}		Column address strobe setup time before row address
t _{su(s)}	t _{su(CS)}	Chip select setup time
t _{su(s-w)}	t _{su(CS-WR)}	Write setup time before chip select
tsu(w)	t _{su(wR)}	Write setup time
tтн∟		High-level to low-level transition time the time interval between specified reference points on the edge of the output pulse when the output is
t _{TLH}		Low-level- to high-level transition time by going to the low (high) level and when a specified input signal is applied through a specified network and the output is loaded by another specified network
t _{v(A)}	t _{dv (AD)}	Data valid time after address
t _{v(E)}	t _{dv(CE)}	Data valid time after chip enable
t _{v(E)PR}	t _{v(CE)PR}	Data valid time after chip enable in program mode
t _{v(G)}	t _{v(OE)}	Data valid time after output enable
t _{v(PR)}	V(UE)	Data valid time after program
t _{v(s)}	t _{v(CS)}	Data valid time after chip select
t _w	V (CS)	Pulse width (pulse duration) the time interval between specified reference points on the leading and training edges of the waveforms
t _{w(E)}	turcos	Chip enable pulse width
tw(E)	t _{w(CE)}	Chip enable high pulse width
tw(EH)	^t w(CEH)	Chip enable low pulse width
tw(PR)	t _{w(EL)}	Program pulse width
	+	Read pulse width
t _{w(R)}	t _{w(RD)}	Chip select pulse width
t _{w(S)}	t _{w(cs)}	Wrtie pulse width
t _{w(w)}	t _{w(WR})	
t _{w(ø)} Te		Clock pulse width
Та		Ambient temperature
Topr		Operating temperature
Tstg		Storage temperature
V _{BB}		V _{BB} supply voltage
Vcc		V _{CC} supply voltage
V _{DD}		V _{DD} supply voltage
V _{GG}		V _{GG} supply voltage
V1		Input voltage
VIH		High-level input voltage-the value of the permitted high-state voltage at the input
VIL		Low-level input voltage-the value of the permitted low-state voltage at the input
Vo		Output voltage
Vон		High-level output voltage-the value of the guaranteed high-state voltage range at the output
VoL		Low-level output voltage-the value of the guaranteed low-state voltage range at the output
V _{SS}		V _{SS} supply voltage
Note: These	abbreviations	with some exceptions, are excerpted from IEC publication 148.

QUALITY ASSURANCE AND RELIABILITY TESTING

1. PLANNING

In recent years, advances in integrated circuits have been rapid, with increasing density and speed accompanied by decreasing cost. Because of these advances, it is now practical and economically justifiable to use these devices in systems of greater complexity and in which they were previously considered too expensive. All of these advances add up to increased demand.

We at Mitsubishi foresaw this increased demand and organized our production facilities to meet it. We also realized that simply increasing production to meet the demand was not enough and that positive steps would have to be taken to assure the reliability of our products.

This realization resulted in development of our Quality Assurance System. The system has resulted in improved products, and Mitsubishi is able to supply its customers' needs with ICs of high reliability and stable quality. This system is the key to future planning for improved design, production and quality assurance.

2. QUALITY ASSURANCE SYSTEM

The Quality Assurance System imposes quality controls on Mitsubishi products from the initial conception of a new product to the final delivery of the product to the customer. A diagram of the total system is shown in Fig. 1. For ease of understanding, the system is divided into three stages.

2.1 Quality Assurance in the Design Stage

The characteristics of the breadboard devices are carefully checked to assure that all specifications are met. Standard integrated circuits and high-quality discrete components are used. During the design stage, extensive use is made of a sophisticated CAD program, which is updated to always include the latest state-of-the-art techniques.

2.2 Quality Assurance in the Limited-Manufacturing Stage

Rigid controls are maintained on the environment, incoming material and manufacturing equipment such as tools and test equipment. The products and materials used are subjected to stringent tests and inspections as they are manufactured. Wafer production is closely monitored.

Finally, a tough quality assurance test and inspection is made before the product is released for delivery to a customer. This final test includes a complete visual inspection and electrical characteristics tests. A sampling technique is used to conduct tests under severe operating conditions to assure that the products meet reliability specifications.

2.3 Quality Assurance in the Full Production Stage

Full production of a product is not started until it has been confirmed that it can be manufactured to meet quality and reliability specifications. The controls, tests and inspection procedures developed in $\S2.2$ are continued. The closest monitoring assures that they are complied with.

3. RELIABILITY CONTROL

3.1 Reliability Tests

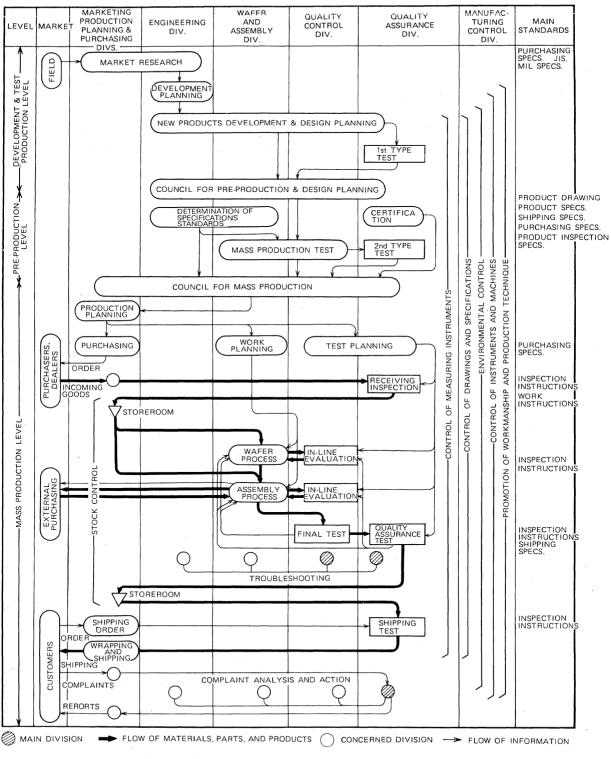
The newly established Reliability Center for Electronic Components of Japan has established a qualification system for electronic components. Reliability test methods and procedures are developed to mainly meet MIL-STD-883 and JIS C .7022 specifications. Details of typical tests used on Mitsubishi ICs are shown in Table 1.

•	Table 1	Typical	reliability	test items	and	conditions
l						the second se

Group	Item	Test condition				
	High temperature operating life	Maximum operating ambient temperature	1000h			
1	High temperature storage life	Maximum storage temperature	1000h			
	Humidity (steady state) life	85°C 85% RH	500h			
	Soldering heat	260°C 10s				
2	Thermal shock	0 ~ 100°C 15 cycles, 10min/cycle				
-	Temperature cycle	Minimum to maximum storage temperature 10 cycles of 1h/cycle				
	Soldering	230°C, 5s, use rosin flux				
	Lead integrity	Tension: 500g 10s Bending stress: 250g, 90°, 2 tme				
3	Vibration 20G, X, Y, Z each direction, 4 times 100 ~ 2000Hz - 4 min/cycle					
	Shock	1500G, 0.5ms in X_1 . Y_1 and Z_1 direction, 5 times.				
	Constant acceleration	20000G, Y, direction, 1 min				

3.2 Failure Analysis

Devices that have failed during reliability or acceleration tests are analyzed to determine the cause of failure. This information is fed back to the process engineering section and manufacturing section so that improvements can be made to increase reliability. A summary of failure analysis procedures is shown in Table 2.


Table 2 Summary of failure analysis procedures

Step ,	Description
1. External examination	 Inspection of leads, plating, soldering and welding Inspection of materials, sealing, package and marking Visual inspection of other items of the specifications Use of stereo microscopes, metallurgical microscopes, X-ray photographic equipment, fine leakage and gross leakage testers in the examination
2. Electrical tests	 O Checking for open circuits, short circuits and parametric degradation by electrical parameter measurement O Dservation of characteristics by a synchroscope or a curve tracer and checking of important physical characteristics by electrical characteristics Stress tests such as environmental or life tests, if required
3. Internal examination	 Removal of the cover of the device, the optical inspection of the internal structure of the device Checking of the silicon chip surface Measurement of electrical characteristics by probes, if applicable Use of SEM, XMA and infrared microscanner if required
4. Chip analysis	 Use of metallurgical analysis techniques to supplement analysis of the internal examination Slicing for cross sectional inspection Analysis of oxide film defects Analysis of diffusion defects

MITSUBISHI LSIS QUALITY ASSURANCE AND RELIABILITY TESTING

Fig.1 Quality assurance system

TYPICAL RESULTS OF RELIABILITY TESTS AND FAILURE ANALYSES

1. Results of Reliability Test

Formerly, sufficient reliability for memory MOS LSIs was obtained by using metal-sealed ceramic packages, but with the development of high-reliability plastic molding technology, production has been shifted to plastic molded memory MOS LSIs.

The following tests are performed:

- Operating life test: Durability is tested at high temperature under operating state conditions by applying clock pulse inputs as shown in Fig. 2.
- (2) DC biased test: Durability is tested at high temperature biasing DC voltage, as shown in Fig. 3.
- (3) High temperature storage: The durability of devices stored at high temperatures is tested.

Typical results of memory MOS LSI life tests are shown in Table 3. The failure rate computed from this reliability data using an appropriate acceleration factor is 100FIT or less ($1FIT = 10^{-9}$ /hour)

Fig. 2 Operating life test procedure for 256K-bit dynamic RAM

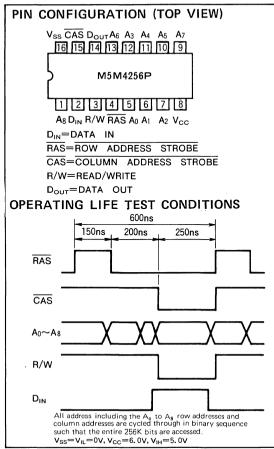
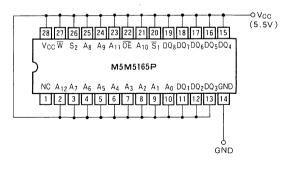



Fig. 3 DC biased test procedure for 64K-bit static RAM (M5M5165P)

Туре	Package	Test catego	ry	Sample size	Component hours	Failures	Remarks
			125°C	200	200000	0	
M5M4256P	16 pin plastic-	Operating life	125 C	5000	480000	2	Functional failures
M5M4257P	molded DIL		150°C	200	200000	1	Functional failure
		High temperature storage	150°C	200	200000	0	
	16 pin metal-	Operating	125°C	240	240000	0	
M5M4256S M5M4257S	sealed	life	1250	5886	235440	3	Functional failures
	DIL	High temperature storage	150°C	80	80000	0	
M5K4164AP	16 pin plastic-	Operating life	125°C	1200	1200000	1	Functional failure
M5K4164ANP	molded DIL	High temperature storage	150°C	300	300000	0	
	28 pin plastic- molded DIL	Operating	125°C	480	480000	0	
M5M5165P		life	1250	5324	212960	2	Functional failures
		High temperature storage	150°C	100	100000	0	
M5M2167P	20 pin plastic-	Operating life	125°C	640	640000	1	Functional failure
M5M2168P	molded DIL	High temperature storage	150°C	320	320000	0	
M5M5116P	24 pin	Operating life	125°C	172	172000	0	
M5M5117P M5M5118P	plastic- molded	DC biased	125°C	160	160000	0	
	DIL	High temperature storage	150°C	160	160000	0	
M5∟2764K	28 pin glass-sealed ceramic	Operating life	125°C	364	364000	1	Functiona failure
	DIL with glass lid	High temperature storage	150°C	144	144000	0	
M5L27128K	28 pin glass-	Operating life	125°C	264	264000	0	
WIJ	sealed ceramic DIL	High temperature storage	150°C	144	144000	0	

Table 3 Examples of Endurance Test Results

Table 4 Examples of Environmental Test Results

Te	st category	Test conditions	Туре	Sample size	Failures	Remarks
Thermal	Soldering heat	260°C,10s	M5M4256P			
environ-	Thermal shock	-55℃~125℃, 10min/cycle, 15 cycles	M5M4257P M5M4256S	1,000	0	
	Temperature cycl	ing —65℃~150℃, 1h/cycle, 100 cycles	M5M4257S			
Mecha-	Shock	1,500G 0.5ms X1, Y1, and Z1 directions, 3 times	M5M4256S M5M4257S	1,000	0	
nical environ- ment	Vibration	20G, 20~2000Hz X, Y, and Z directions				
	Constant	30000G, Y1 direction for 1min	14151414257 3			

CONCLUSION

Mitsubishi Electric's Quality Assurance System is being expanded to provide stronger emphasis on the following points:

- 1. Establishment of quality and reliability levels that satisfy customers' requirements.
- Expansion of the reliability tests of wafers and assembly processes for better evaluation, and standardization of circuit and design rules.
- 3. Establishment of procedures for speeding up the introduction of new technology and improved methods that raise reliability and to improve the accelerated life tests for better failure analysis.
- Establishment of a system for collecting data on failures in the field, which will then be analyzed to develop improved methods for increasing reliability.

We welcome and appreciate the cooperation of our customers in developing design specifications, establishing quality levels, controlling incoming inspections, developing assembly and adjusting processes and collecting field data. Mitsubishi is anxious to work with its customers to develop ICs of increased reliability that meet their requirements.

MITSUBISHI LSIS PRECAUTIONS IN HANDLING MOS ICS/LSIS

A MOS transistor has a very thin oxide insulator under the gate electrode on the silicon substrate. It is operated by altering the conductance (g_{in}) between source and drain to control mobile charges in the channel formed by the applied gate voltage.

If a high voltage were applied to a gate terminal, the insulator-film under the gate electrode could be destroyed, and all Mitsubishi MOS IC/LSIs contain internal protection circuits at each input terminal to prevent this. It is inherently necessary to apply reverse bias to the P-N junctions of a MOS IC/LSI.

Under certain conditions, however, it may be impossible to completely avoid destruction of the thin insulator-film due to the application of unexpectedly high voltage or thermal destruction due to excessive current from a forward biased P-N junction. The following recommendations should be followed in handling MOS devices.

1. KEEPING VOLTAGE AND CURRENT TO EACH TERMINAL BELOW MAXIMUM RATINGS

- 1. The recommended ranges of operating conditions provide adequate safety margins. Operating within these limits will assure maximum equipment performance and quality.
- 2. Forward bias should not be applied to any terminal since excessive current may cause thermal destruction.
- 3. Output terminals should not be connected directly to the power supply. Short-circuiting of a terminal to a power supply having low impedance may cause burn-out of the internal leads or thermal destruction due to excessive current.

2. KEEPING ALL TERMINALS AT THE SAME POTENTIAL DURING TRANSPORT AND STORAGE

When MOS IC/LSIs are not in use, both input and output terminals can be in a very high impedance state so that they are easily subjected to electrostatic induction from AC fields of the surrounding space or from charged objects in their vicinity. For this reason, MOS IC/LSIs should be protected from electrostatic charges while being transported and stored by conductive rubber foam, aluminum foil, shielded boxes or other protective precautions.

3. KEEPING ELECTRICAL EQUIPMENT, WORK TABLES AND OPERATING PERSONNEL AT THE SAME POTENTIAL

1. All electric equipment, work table surfaces and operat-

ing personnel should be grounded. Work tables should be covered with copper or aluminum plates of good conductivity, and grounded. One method of grounding personnel, after making sure that there is no potential difference with electrical equipment, is by the use of a wristwatch metallic ring, etc. attached around the wrist and grounded in series with a 1M Ω resistor. Be sure that the grounding meets national regulations on personnel safety.

 Current leakage from electric equipment must be prevented not only for personnel safety, but also to avert the destruction of MOS IC/LSIs, as described above. Items such as testers, curve-tracers and synchroscopes must be checked for current leakage before being grounded.

4. PRECAUTIONS FOR MOUNTING OF MOS IC/LSIs

- The printed wiring lines to input and output terminals of MOS IC/LSIs should not be close to or parallel to high-voltage or high-power signal lines. Turning power on while the device is short-circuited, either by a solder bridge made during assembly or by a probe during adjusting and testing, may cause maximum ratings to be exceeded, which may result in the destruction of the device.
- 2. When input/output, or input and/or output, terminals of MOS IC/LSIs (now open-circuits) are connected, we must consider the possibility of current leakage and take precautions similar to §2 above. To reduce such undesirable trouble, it is recommended that an interface circuit be inserted at the input or output terminal, or a resistor with a resistance that does not exceed the output driving capability of the MOS IC/LSI be inserted between the power supply and the ground.
- 3. A filter circuit should be inserted in the AC power supply line to absorb surges which can frequently be strong enough to destroy a MOS IC/LSI.
- 4. Terminal connections should be made as described in the catalog while being careful to meet specifications.
- 5. Ungrounded metal plates should not be placed near input or output terminals of any MOS IC/LSIs, since destruction of the insulation may result if they become electrostatically charged.
- 6. Equipment cases should provide shielding from electrostatic charges for more reliable operation. When a plastic case is used, it is desirable to coat the inside of the case with conductive paint and to ground it. This is considered necessary even for battery-operated equipment.

. . .

MOS DYNAMIC RAM

65 536-BIT (65 536-WORD BY 1-BIT) DYNAMIC RAM

ROW ADDRESS

(5V)

ADDRESS INPLITS

An -+ 5

A2-

Aı + 7

Vcc 8

DESCRIPTION

This is a family of 65 536-word by 1-bit dynamic RAMs. fabricated with the high performance N-channel silicongate MOS process, and is ideal for large-capacity memory systems where high speed, low power dissipation, and low costs are essential. The use of double-layer polysilicon process technology and a single-transistor dynamic storage cell privide high circuit density at reduced costs, and the use of dynamic circuitry including sense amplifiers assures low power dissipation. Multiplexed address inputs permit both a reduction in pins to the standard 16-pin package configuration and an increase in system densities. The M5K4164AP operates on a 5V power supply using the on-chip substrate bias generator.

FEATURES

High speed

Type name	Access time (max) (ns)	Cycle time (min) (ns)	Power dissipation (typ) (mW)
M5K4164AP-12	120	220	175
M5K4164AP-15	150	260	150

- Single 5V±10% supply •
- Low standby power dissipation: 22mW (max)
- Low operating power dissipation: 300mW (max)
- Unlatched output enables two-dimensional chip selection and extended page boundary
- Early-write operation gives common I/O capability
- Read-modify-write, RAS-only refresh, and page-mode capabilities
- All input terminals have low input capaciatance and are directly TTL-compatible

PIN CONFIGURATION (TOP VIEW) REERESH INPLIT BEE lie vss Π $(\mathbf{0}\mathbf{V})$ DATA INPUT 1 + CAS COLUMN ADDRESS CONTROL INPUT 14-0 DATA OUTPUT M5K4164AP

13 + A6

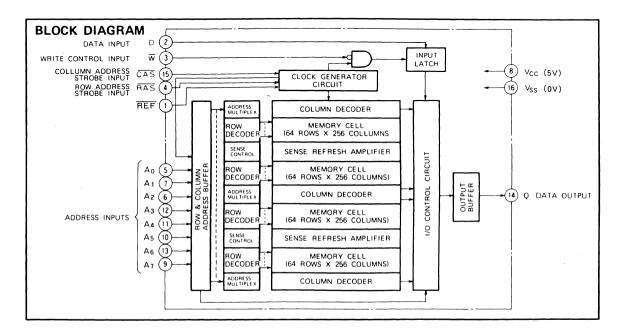
12 + A3

11 + A4

10 + A5

9 + A7

ADDRESS INPUTS


• Output is three-state and directly TTL-compatible

Outline 16P4

- 128 refresh cycles every 2ms (16K dynamic RAMs M5K4116P, S compatible)
- CAS controlled output allows hidden refresh
- Output data can be held infinitely by \overline{CAS}
- Pin 1 controls automatic- and Self-refresh mode.
- Interchangeable with Fujitsu MB8265A and Motorola's MCM6664 in pin configuration

APPLICATION

Main memory unit for computers

65 536-BIT (65 536-WORD BY 1-BIT) DYNAMIC RAM

FUNCTION

The M5K4164AP provides, in addition to normal read, write, and read-modify-write operations, a number of other functions, e.g., page mode, RAS-only refresh, and delayed-write. The input conditions for each are shown in Table 1.

Table 1	Input	conditions	for	each	mode
---------	-------	------------	-----	------	------

				Inputs				Output	Jutput	
Operation	RAS	CAS	w	D	Row address	Column address	REF	Q	Refresh	Remarks
Read	ACT	ACT	NAC	DNC	APD	APD	NAC	VLD	YES	Page mode
Write	ACT	ACT	ACT	VLD	APD	APD	NAC	OPN	YES	identical except
Read-modify-write	ACT	ACT	ACT	VLD	APD	APD	NAC	VLD.	YES	refresh is NO.
RAS-only refresh	ACT	NAC	DNC	DNC	APD	DNC	NAC	OPN	YES	
Hidden refresh	АСТ	ACT	DNC	DNC	APD	DNC	NAC	VLD	YES	
Automatic refresh	NAC	DNC	DNC	DNC	DNC	DNC	ACT	OPN	YES	
Self refresh	NAC	DNC	DNC	DNC	DNC	DNC	ACT	OPN	YES	
Hidden automatic refresh	NAC	ACT	DNC	DNC	DNC	DNC	ACT	VLD	YES	
Hidden self refresh	NAC	ACT	DNC	DNC	DNC	DNC	ACT	VLD	YES	
Standby	NAC	DNC	DNC	DNC	DNC	DNC	NAC	OPN	NO	

Note: ACT : active, NAC : nonactive, DNC : don't care, VLD : valid, APD : applied, OPN : open.

SUMMARY OF OPERATIONS Addressing

To select one of the 65536 memory cells in the M5K4164AP the 16-bit address signal must be multiplexed into 8 address signals, which are then latched into the on-chip latch by two externally-applied clock pulses. First, the negative-going edge of the row-address-strobe pulse (\overline{RAS}) latches the 8 row-address bits; next, the negative-going edge of the column-address-strobe pulse (\overline{CAS}) latches the 8 column-address bits. Timing of the \overline{RAS} and \overline{CAS} clocks can be selected by either of the following two methods:

- 1. The delay time from \overline{RAS} to $\overline{CAS} t_d (_{RAS-CAS})$ is set between the minimum and maximum values of the limits. In this case, the internal \overline{CAS} control signals are inhibited almost until $t_d(_{RAS-CAS}) \max$ ('gated \overline{CAS} ' operation). The external \overline{CAS} signal can be applied with a margin not affecting the on-chip circuit operations, e.g. access time, and the address inputs can be easily changed from row address to column address.
- 2. The delay time $t_{d(RAS-CAS)}$ is set larger than the maximum value of the limits. In this case the internal inhibition of \overline{CAS} has already been released, so that the internal \overline{CAS} control signals are controlled by the externally applied \overline{CAS} , which also controls the access time.

Data Input

Data to be written into a selected cell is strobed by the later of the two negative transistons of \overline{W} input and \overline{CAS} input. Thus when the \overline{W} input makes its negative transition prior to \overline{CAS} input (early write), the data input is strobed by \overline{CAS} , and the negative transition of \overline{CAS} is set as the reference point for set-up and hold times. In the read-write or read-modify-write cycles, however, when the \overline{W} input makes its negative transition after \overline{CAS} , the \overline{W} negative transition is set as the reference point for setup and hold times.

Data Output Control

The output of the M5K4164AP is in the high-impedance state when \overline{CAS} is high. When the memory cycle in progress is a read, read-modify-write, or a delayed-write cycle, the data output will go from the high-impedance state to the active condition, and the data in the selected cell will be read. This data output will have the same polarity as the input data. Once the output has entered the active condition, this condition will be maintained until \overline{CAS} goes high, irrespective of the condition of \overline{RAS} .

The output will remain in the high-impedance state throughout the entire cycle in an early-write cycle.

These output conditions, of the M5K4164AP, which can readily be changed by controlling the timing of the write pulse in a write cycle, and the width of the \overline{CAS} pulse in a read cycle, offer capabilities for a number of applications, as follows.

1. Common I/O Operation

If all write operations are performed in the early-write mode, input and output can be connected directly to give a common I/O data bus.

2 Data Output Hold

The data output can be held between read cycles, without lengthening the cycle time. This enables extremely flexible clock-timing settings for RAS and CAS.

65 536-BIT (65 536-WORD BY 1-BIT) DYNAMIC RAM

3. Two Methods of Chip Selection

Since the output is not latched, \overline{CAS} is not required to keep the outputs of selected chips in the matrix in a highimpedance state. This means that \overline{CAS} and/or \overline{RAS} can both be decoded for chip selection.

4. Extended-Page Boundary

By decoding CAS, the page boundary can be extended beyond the 256 column locations in a single chip. In this case, RAS must be applied to all devices.

Page-Mode Operation

This operation allows for multiple-column addressing at the same row address, and eliminates the power dissipation associated with the negative-going edge of \overline{RAS} , because once the row address has been strobed, \overline{RAS} is maintained. Also, the time required to strobe in the row address for the second and subsequent cycles is eliminated, thereby decreasing the access and cycle times.

Refresh

Each of the 128 rows $(A_0 \sim A_6)$ of the M5K4164AP must be refreshed every 2 ms to maintain data. The methods of refreshing for the M5K4164AP are as follows.

1. Normal Refresh

Read cycle and Write cycle (early write, delayed write or read-modify-write) refresh the selected row as defined by the low order (RAS) addresses. Any write cycle, of course, may change the state of the selected cell. Using a read, write, or read-modify-write cycle for refresh is not recommended for systems which utilize "wire-OR" outputs since output bus contention will occur.

2. RAS Only Refresh

A \overline{RAS} -only refresh cycle is the recommended technique for most applications to provide for data retention. A \overline{RAS} -only refresh cycle maintains the output in the high-impedance state with a typical power reduction of 20% over a read or write cycle.

3. Automatic Refresh

Pin 1 (\overline{REF}) has two special functions. The M5K4164AP has a refresh address counter, refresh address multiplexer and refresh timer for these operations. Automatic refresh is initiated by bringing \overline{REF} low after \overline{RAS} has precharged and is used during standard operation just like \overline{RAS} -only refresh, except that sequential row addresses from an external counter are no longer necessary.

At the end of automatic refresh cycle, the internal refresh address counter will be automatically incremented. The output state of the refresh address counter is initiated by some eight $\overline{\text{REF}}$, $\overline{\text{RAS}}$ or $\overline{\text{RAS}}/\overline{\text{CAS}}$ cycle after power is applied. Therefore, a special operation is not necessary to initiate it.

RAS must remain inactive during REF activated cycles. Likewise, REF must remain inactive during RAS generated cycle.

4. Self-Refresh

The other function of pin 1 ($\overline{\text{REF}}$) is self-refresh. Timing for self-refresh is quite similar to that for automatic refresh. As long as $\overline{\text{RAS}}$ remains high and $\overline{\text{REF}}$ remains low, the M5K4164AP will refresh itself. This internal sequence repeats asynchronously every 12 to 16 μ s. After 2 ms, the on-chip refresh address counter has advanced through all the row addresses and refreshed the entire memory. Selfrefresh is primarily intended for trouble free power-down operation.

For example, when battery backup is used to maintained data integrity in the memory. $\overrightarrow{\mathsf{REF}}$ may be used to place the device in the self-refresh mode with no external timing signals necessary to keep the information alive.

In summary, the pin 1 ($\overline{\text{REF}}$) refresh function gives the user a feature that is free, save him hardware on the board, and in fact, will simplify his battery backup procedures, increase his battery life, and save him overall cost while giving him improved system performance.

There is an internal pullup resister ($\approx 3M\Omega$) on pin 1, so if the pin 1 (REF) function is not used, pin 1 may be left open (not connect) without affecting the normal operations.

5. Hidden Refresh

A features of the M5K4164AP is that refresh cycle may be performed while maintaining valid data at the output pin by extending the \overline{CAS} active time from a previous memory read cycle. This feature is referred to as hidden refresh.

Hidden refresh is performed by holding \overline{CAS} at V_{1L} and taking \overline{RAS} high and after a specified precharge period, executing a \overline{RAS} -only cycling, automatic refresh and self-refresh, but with \overline{CAS} held low.

The advantage of this refresh mode is that data can be held valid at the output data port indefinitely by leaving the \overline{CAS} asserted. In many applications this eliminates the need for off-chip latches.

Power Dissipation

Most of the circuitry in the M5K4164AP is dynamic, and most of the power is dissipated when addresses are strobed. Both \overline{RAS} and \overline{CAS} are decoded and applied to the M5K4164AP as chip-select in the memory system, but if \overline{RAS} is decoded, all unselected devices go into stand-by independent of the \overline{CAS} condition, minimizing system power dissipation.

Power Supplies

The M5K4164AP operates on a single 5V power supply.

A wait of some $500\mu s$ and eight or more dummy cycle is necessary after power is applied to the device before memory operation is achieved.

65 536-BIT (65 536-WORD BY 1-BIT) DYNAMIC RAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Limits	Unit
Vcc	Supply voltage		-1-7	V
V ₁	Input voltage	With respect to VSS	-1-7	V
Vo	Output voltage		-1-7	V
10	Output current		50	mA
Pd	Power dissipation	Ta = 25°C	700	mW
Topr	Operating free-air temperature range		0 ~ 70	°C
Tstg	Storage temperature range		- 65 ~ 150	.c

RECOMMENDED OPERATING CONDITIONS (Ta = 0 ~ 70°C, unless otherwise noted) (Note. 1)

Symbol	Parameter		Limits				
	raiameter	Min	Nom	Max	Unit		
Vcc	Supply voltage	4.5	5	5.5	v		
Vss	Supply voltage	0	0	0	v		
VIH	High-level input voltage, all inputs	2.4		6.5	v		
VIL	Low-level input voltage, all inputs	- 2		0.8	V		

Note 1. All voltage values are with respect to V_{SS}

ELECTRICAL CHARACTERISTICS ($T_a = 0 \sim 70^{\circ}C$, $V_{CC} = 5V \pm 10\%$, $V_{SS} = 0V$, unless otherwise noted) (Note 2)

Symbol	Parameter		Test conditions		Limits		
Symbol	Parameter			Min	Тур	Max	Unit
V _{OH}	High-level output voltage		I _{OH} = - 5mA	2.4		Vcc	V
VOL	Low-level output voltage		I _{OL} = 4.2 mA	0		0.4	V
loz	Off-state output current		Q floating $0V \leq V_{OUT} \leq 5.5V$	- 10		10	μA
l _l	Input current		$0V \leq V_{IN} \leq 6.5V$, All other pins = $0V$	- 10		10	μΑ
1	Average supply current from V _{CC} ,	M5K4164AP-12	RAS, CAS cycling			50	mA
CC1(AV)	operating (Note 3, 4)	M5K4164AP-15	$t_{CR} = t_{CW} = min \text{ output open}$			45	
I CC2	Supply current from V _{CC} , standby	/	RAS = VIH output open			4	mA
1	Average supply current from VCC,	M5K4164AP-12	RAS cycling CAS = VIH			40	mA
CC3(AV)	refreshing (Note 3)	M5K4164AP-15	tc(REF) = min, output open			35	IIIA
1	Average supply current from Vcc.	M5K4164AP-12	RAS = VIL, CAS cycling			40	
CC4(AV)	page mode (Note 3, 4)	M5K4164AP-15	t cpg = min, output open			35	mA
CC5(AV)	Average supply current from V _{CC} ,	M5K4164AP-12	RAS = VIH, REF cycling			40	mΑ
CUS(AV)	automatic refreshing (Note 3)	M5K4164AP-15	tc(REF)=min . output open			35	IIIA
ICC6 (AV)	Average supply current from V_{CC}	self refreshing	$\overline{RAS} = V_{IH}, \overline{REF} = V_{IL}$		'	8	mA
C1(A)	Input capacitance, address inputs					5	pF
C _{1(D)}	Input capacitance, data input		V _I =V _{SS}			5	pF
C1(W)	Input capacitance, write control in	put	f=1MHz			7	pF
CI (RAS)	Input capacitance, RAS input		V ₁ =25mVrms			10	pF
CI (CAS)	Input capacitance, CAS input		1			10	pF
CI(REF)	Input capacitance, REF input		1			10	pF
Co	Output capacitance		$V_0 = V_{SS}$, f = 1MHz, $V_1 = 25mVrms$	1		7	pF '

Note 2: Current flowing into an IC is positive , out is negative.

3: ICC1(AV), ICC3(AV), ICC4(AV) and ICC5(AV) are dependent on cycle rate. Maximum current is measured at the fastest cycle rate.

4: ICC1(AV) and ICC4(AV) are dependent on output loading. Specified values are obtained with the output open.

65 536-BIT (65 536-WORD BY 1-BIT) DYNAMIC RAM

TIMING REQUIREMENTS (For Read, Write, Read-Modify-Write, Refresh, and Page-Mode Cycle)

$(T_a = 0 \sim 70^{\circ}C, V_{CC} = 5V \pm 10\%$	$S, V_{SS} = 0V,$	unless otherwise noted	, See notes 5, 6 and 7)
---	-------------------	------------------------	-------------------------

			M5K41	64AP-12	M5K416	64AP-15	
Symbol	Parameter	Alternative Symbol	Li	mits	Lin	nits	Unit
			Min	Max	Min	Max	1
t _{crf}	Refresh cycle time	t _{REF}		2		2	ms
tw(RASH)	RAS high pulse width	t _{RP}	90		100		ns
tw(RASL)	RAS low pulse width	t _{RAS}	120	10000	150	10000	ns
tw(CASL)	CAS low pulse width	t _{CAS}	60	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	75	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ns
t w (CASH)	CAS high pulse width (Not	e.8) t _{CPN}	30		35		ns
t _h (RAS-CAS)	CAS hold time after RAS	t _{CSH}	120		150		ns
th(CAS-RAS)	RAS hold time after CAS	t _{RSH}	60		75		ns
td (cas ras)	Delay time, CAS to RAS (Not	e 9) t _{CRP}	- 20		- 20		ns
t d(RAS-CAS)	Delay time, RAS to CAS (Note	10) t _{RCD}	25	60	30	75	ns
t _{su(RA-RAS)}	Row address setup time before RAS	t _{ASR}	0		0		ns
t su(CA-CAS)	Column address setup time before CAS	t ASC	0		0		ns
t _{h(RAS-RA)}	Row address hold time after RAS	t _{RAH}	15		20		ns
t _{n(CAS-CA)}	Column address hold time after CAS	t _{CAH}	20		25		ns
t _{h(RAS} .CA)	Column address hold time after RAS	t _{AR}	90		95		ns
t _{THL} t _{TLH}	Transition time	t _T	3	35	3	35	ns

Note 5: An initial pause of 500 //s is required after power-up followed by any eight RAS or RAS/CAS cycles before proper device operation is achieved.

6: The switching characteristics are defined as $t_{THL} = t_{TLH} = 5$ ns.

7: Reference levels of input signals are VIH min and VIL max. Reference levels for transition time are also between VIH and VIL. 8: Except for page-mode.

b) Education by periode.
 b) Ed (CAS-RAS) requirement is only applicable for RAS/CAS cycles preceeded by a CAS only cycle (i.e., For systems where CAS has not been decoded with RAS.)
 10: Operation within the td (RAS-CAS) max limit insures that ta (RAS) max can be met. td (RAS-CAS) max is specified reference point only; if td (RAS-CAS) is greater than the specified td (RAS-CAS) max limit, then access time is controlled exclusively by ta (CAS).
 td (RAS-CAS) min = th (RAS-RA)min + 2t THL(t_TLH) + tsu (CA-CAS)min.

SWITCHING CHARACTERISTICS (τ_a =0 \sim 70°C , v_{CC} = 5v \pm 10% , v_{SS} =0v , unless otherwise noted) Read Cycle

				M5K41	64AP-12	M5K41	64AP-15	Unit
Symbol	Parameter		Alternative Symbol	Lir	mits	Lii		
				Min	Max	Min	Max	
t _c R	Read cycle time		t _{RC}	220		260		ns
tsu (R-CAS)	Read setup time before CAS		t _{RCS}	0		0		ns
th(CAS-R)	Read hold time after CAS	(Note 11)	t _{RCH}	0		0		ns
thi RAS-RI	Read hold time after RAS	(Note 11)	t _{RRH}	10		20		ns
tdis(cas)	Output disable time	(Note 12)	toff	0	35	0	40	ns
ta (CAS)	CAS access time	(Note 13)	t _{CAC}		60		75	ns
ta (RAS)	RAS access time	(Note 14)	t _{RAC}		120		150	ns

Note 11: Either th (RAS-R) or th (CAS-R) must be satisfied for a read cycle.

Note 12: tdis(CAS) max defines the time at which the output achieves the open circuit condition and is not reference to VOH or VOL

Note 13: This is the value when $td(RAS-CAS) \ge td(RAS-CAS)max$. Test conditions;Load=2T TL, CL=100pF

Note 14: This is the value when td (RAS-CAS) < td (RAS-CAS) max. When td (RAS-CAS) $\ge td$ (RAS-CAS) max, ta (RAS) will increase by the amount that td (RAS-CAS) exceeds the value shown. Test conditions:Load=2T TL, C_L =100pF

Write Cycle

	Parameter		Alternative Symbol	M5K	(4164AP-12	M5K416	4AP-15	
Symbol				Limits		Limits		Unit
				Min	Max	Min	Max	
t _{cw}	Write cycle time	· · · · ·	t _{RC}	220		260		ns
tsu(w-CAS)	Write setup time before CAS	(Note 17)	twcs	-5		-10		ns
th (CAS-W)	Write hold time after CAS		t wch	40		45	······································	ns
th(RAS-W)	Write hold time after RAS		t _{WCR}	90		95		ns
th(w-RAS)	RAS hold time after write		tRWL	40		45		ns
th (w-CAS)	CAS hold time after write		t _{CWL}	40		45		ns
tw _(W)	Write pulse width		twp	40		45		ns
tsu (D-CAS)	Data-in setup time before CAS		t _{DS}	0		0		ns
th (CAS-D)	Data-in hold time after CAS		t _{DH}	40		45		ns
th (RAS-D)	Data-in hold time after RAS		t _{DHR}	90		95		ns

65 536-BIT (65 536-WORD BY 1-BIT) DYNAMIC RAM

				M5K41	64AP-12	M5K41	64AP-15	
Symbol	Parameter		Alternative Symbol	Limits		Limits		Unit
			S, moor	Min	Max	Min	Max	1
t _{CRW}	Read-write cycle time	(Note 15)	t _{RWC}	245		295		ns
t _{CRMW}	Read-modify-write cycle time	(Note 16)	t _{RMWC}	265		310		ns
th (w-RAS)	RAS hold time after write		t _{RWL}	40		45		ns
th (w-CAS)	CAS hold time after write		tcwL	40		45		ns
tw(w)	Write pulse width		twp	40		45		ns
tsu (R-CAS)	Read setup time before CAS		t _{RCS}	0		0		ns
td (RAS-W)	Delay time, RAS to write	(Note 17)	t _{RWD}	100		120		ns
td (CAS-W)	Delay time, CAS to write	(Note 17)	t _{CWD}	40		60		ns
tsu(D-w)	Data-in setup time before write		t _{DS}	0		0		ns
th (w-D)	Data-in hold time after write		t _{DH}	40		45		ns
tdis (CAS)	Output disable time		toff	0	35	0	40	ns
ta (CAS)	ČAS access time	(Note 13)	t _{CAC}		60		75	ns
ta (RAS)	RAS access time	(Note 14)	t RAC		120		150	ns

Read-Write and Read-Modify-Write Cycles

Note 15: t CRWmin is defined as t CRWmin = td (RAS-W) + th (W-RAS) + tw (RASH) + 3t TLH(tTHL)

16: t CRMW min is defined as t CRMW min = ta (RAS)max + th (W-RAS) + tw (RAS H) + 3t TLH(tTHL)

17: tsu (w-cas), td (RAS-w), and td (cas-w) do not define the limits of operation, but are included as electrical characteristics only.

When tsu (w-cas) ≥ tsu (w-cas)min, an early write cycle is performed, and the data output keeps the high-impedance state

When td (RAS-w)≥td (RAS-w)min, and td (CAS-w)≥tsu (w-CAS)min, a read-write cycle is performed, and the data of the selected address will be read-out on the data output.

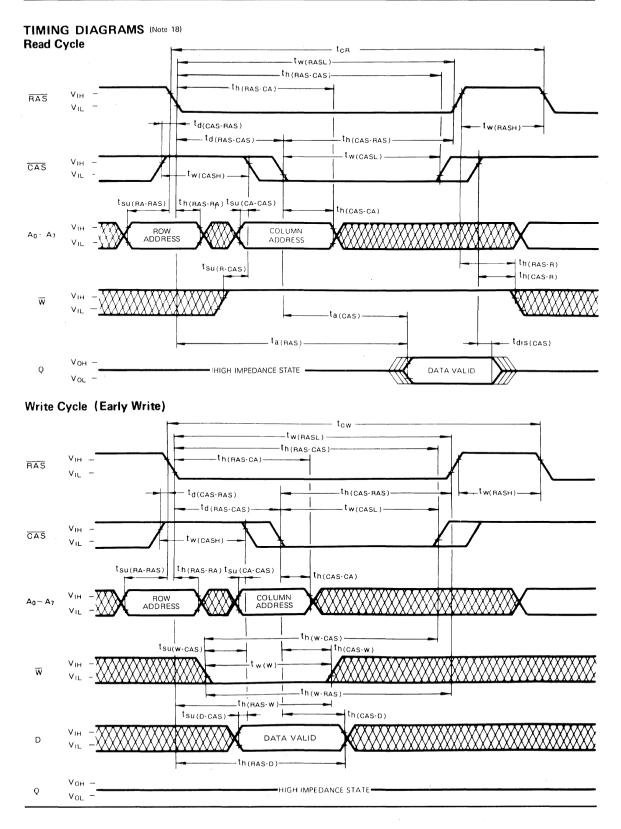
For all conditions other than those described above, the condition of data output (at access time and until CAS goes back to VIH) is not defined.

Page-Mode Cycle

Symbol			M5K41	64AP-12	M5K41		
	Parameter	Alternative Symbol	Li	mits	Limits		Unit
		Symbol -	Min	Max	Min	Max	7
t _{c PGR}	Page-mode read cycle time	t _{PC}	140		145		ns
t _{c PGW}	Page-Mode write cycle time	t _{PC}	140		145		ns
t _{c PGRW}	Page-Mode read-write cycle time	-	150		180		ns
t CPGRMW	Page-Mode read-modify-write cycle time	_	170		195		ns
tw(CASH)	CAS high pulse width	t _{CP}	55		60		ns

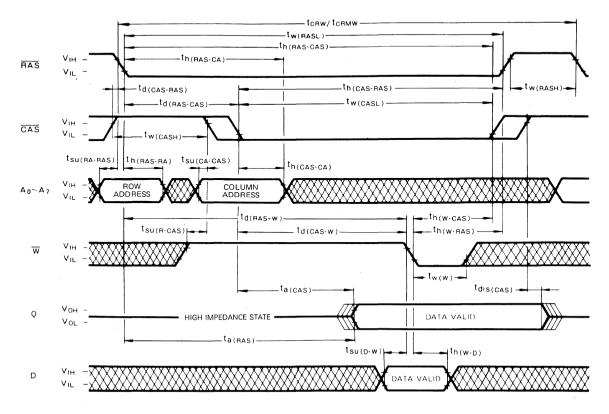
.

Automatic Refresh Cycle

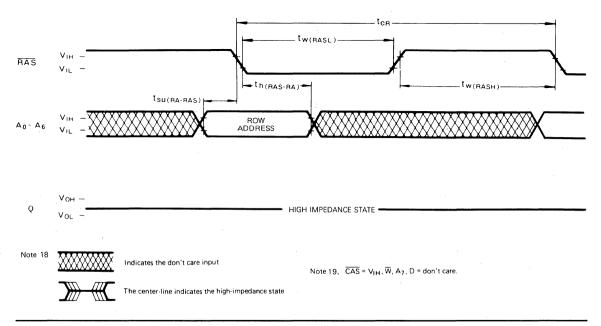

Symbol	Parameter		M5K41	64AP-12	M5K41	64AP-15	
		Alternative Symbol	Li	mits	Lii	Unit	
		Symbol .	Min	Max	Min	Max ·	
tc(REF)	Automatic Refresh cycle time	t _{FC}	220		260		ns
td (RAS-REF)	Delay time, RAS to REF	t _{RFD}	9 0		100		ns
tw(REFL)	REF low pulse width	t _{FP}	60	8000	60	8000	ns
tw(REFH)	REF high pulse width	t _{FI}	30		30		ns
td (REF-RAS)	Delay time, REF to RAS	t _{FSR}	30		30		ns
tsu (REF-RAS)	REF pulse setup time before RAS	t _{FRD}	250		295		ns

Self-Refresh Cycle

Symbol	Parameter		M5K41	64AP-12	M5K41		
		Alternative Symbol	Limits		Limits		Unit
			Min	Max	Min	Max	1
td (RAS-REF)	Delay time, RAS to REF	t _{RFD}	90		100		ns
tw(REFL)	REF low pulse width	t _{FBP}	8000	∞	8000	∞	ns
td (REF-RAS)	Delay time, REF to RAS	t _{FBR}	310		345		ns

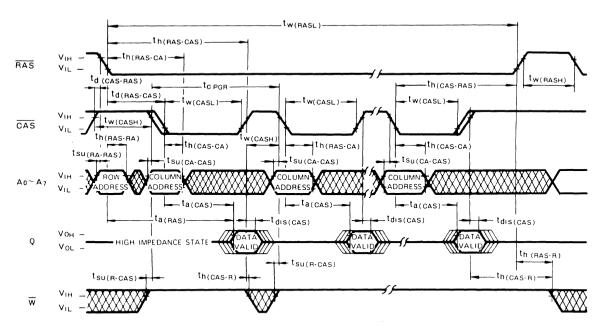


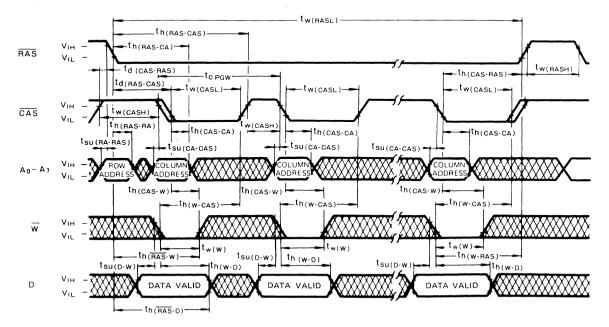
65 536-BIT (65 536-WORD BY 1-BIT) DYNAMIC RAM



65 536-BIT (65 536-WORD BY 1-BIT) DYNAMIC RAM

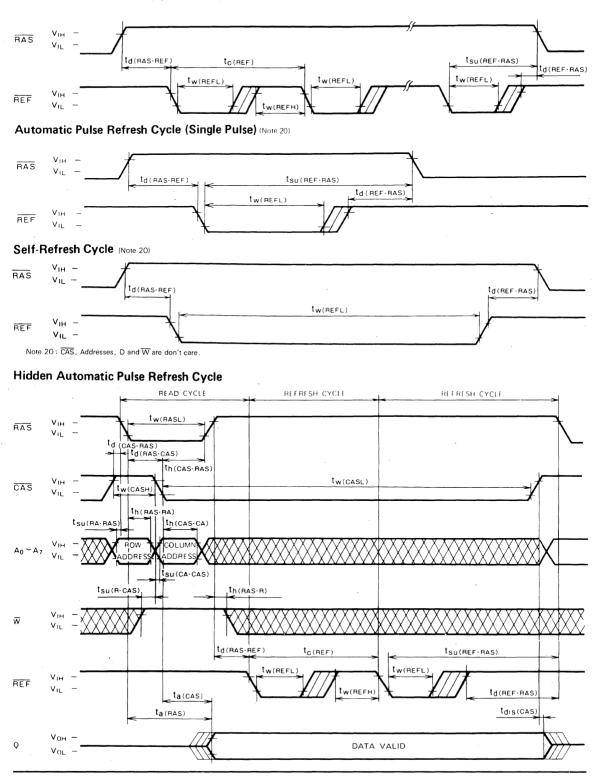
Read-Write and Read-Modify-Write Cycles

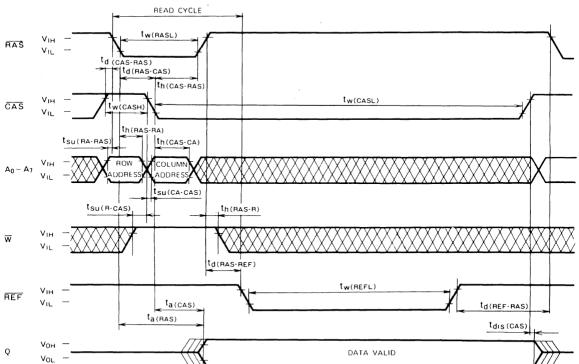




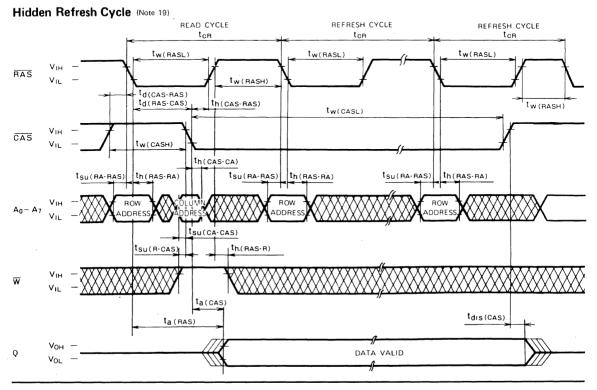
65 536-BIT (65 536-WORD BY 1-BIT) DYNAMIC RAM

Page-Mode Read Cycle


Page-Mode Write Cycle


65 536-BIT (65 536-WORD BY 1-BIT) DYNAMIC RAM

Automatic Pulse Refresh Cycle (Multiple Pulse) (Note 20)



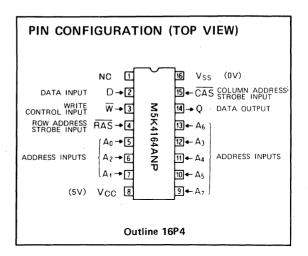
65 536-BIT (65 536-WORD BY 1-BIT) DYNAMIC RAM

Hidden Self-Refresh Cycle (Note 21)

Note 21: If the pin 1 (REF) function is not used, pin 1 may be left open (not connect).

65 536-BIT (65 536-WORD BY 1-BIT) DYNAMIC RAM

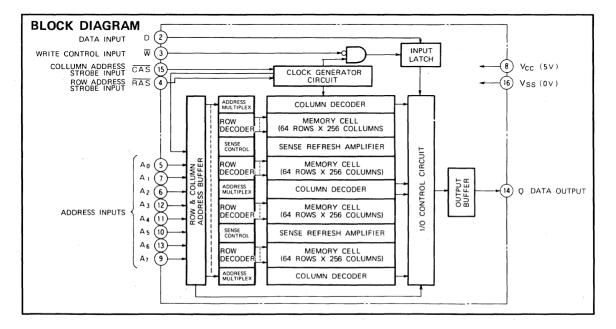
DESCRIPTION


This is a family of 65 536-word by 1-bit dynamic RAMs, fabricated with the high performance N-channel silicongate MOS process, and is ideal for large-capacity memory systems where high speed, low power dissipation, and low costs are essential. The use of double-layer polysilicon process technology and a single-transistor dynamic storage cell privide high circuit density at reduced costs, and the use of dynamic circuitry including sense amplifiers assures low power dissipation. Multiplexed address inputs permit both a reduction in pins to the standard 16-pin package configuration and an increase in system densities. The M5K4164ANP operates on a 5V power supply using the on-chip substrate bias generator.

FEATURES

• High speed

Type name	Access time (max) (ns)	Cycle time (min) (ns)	Power dissipation (typ) (mW)
M5K4164ANP-12	120	220	175
M5K4164ANP-15	150	260	150


- Single 5V±10% supply
- Low standby power dissipation: 22mW (max)
- Low operating power dissipation: 300mW (max)
- Unlatched output enables two-dimensional chip selection and extended page boundary
- Early-write operation gives common I/O capability
- Read-modify-write, RAS-only refresh, and page-mode capabilities
- All input terminals have low input capaciatance and are directly TTL-compatible

- Output is three-state and directly TTL-compatible
- 128 refresh cycles every 2ms (16K dynamic RAMs M5K4116P, S compatible)
- CAS controlled output allows hidden refresh
- Output data can be held infinitely by CAS
- Interchangeable with Mostek's MK4564 and Motorola's MCM6665 in pin configuration

APPLICATION

Main memory unit for computers

65 536-BIT (65 536-WORD BY 1-BIT) DYNAMIC RAM

FUNCTION

The M5K4164ANP provides, in addition to normal read, write, and read-modify-write operations, a number of other functions, e.g., page mode, RAS-only refresh, and delayed-write. The input conditions for each are shown in Table 1.

Table 1 Input conditions for each mode

			Ing	outs			Output		
Operation	RAS	CAS	w	D	Row address	Column address	0	Refresh	Remarks
Read	ACT	ACT	NAC	DNC	APD	APD	VLD	YES	Page mode
Write	ACT	ACT	ACT	VLD	APD	APD	OPN	YES	identical except
Read-modify-write	ACT	ACT	ACT	VLD	APD	APD	VLD	YES	refresh is NO.
RAS-only refresh	ACT	NAC	DNC	DNC	APD	DNC	OPN	YES	
Hidden refresh	ACT	ACT	DNC	DNC	APD	DNC	VLD	YES	
Standby	NAC	DNC	DNC	DNC	DNC	DNC	OPN.	NO	

Note: ACT : active, NAC : nonactive, DNC : don't care, VLD : valid, APD : applied, OPN : open.

SUMMARY OF OPERATIONS

Addressing

To select one of the 65536 memory cells in the M5K4164ANP the 16-bit address signal must be multiplexed into 8 address signals, which are then latched into the on-chip latch by two externally-applied clock pulses. First, the negative-going edge of the row-address-strobe pulse (\overline{RAS}) latches the 8 row-address bits; next, the negative-going edge of the column-address-strobe pulse (\overline{CAS}) latches the 8 column-address bits. Timing of the \overline{RAS} and \overline{CAS} clocks can be selected by either of the following two methods:

- 1. The delay time from \overline{RAS} to \overline{CAS} t_{d (RAS-CAS)} is set between the minimum and maximum values of the limits. In this case, the internal \overline{CAS} control signals are inhibited almost until t_{d(RAS-CAS)} max ('gated $\overline{CAS'}$ operation). The external \overline{CAS} signal can be applied with a margin not affecting the on-chip circuit operations, e.g. access time, and the address inputs can be easily changed from row address to column address.
- 2. The delay time $t_{d(RAS-CAS)}$ is set larger than the maximum value of the limits. In this case the internal inhibition of \overline{CAS} has already been released, so that the internal \overline{CAS} control signals are controlled by the externally applied \overline{CAS} , which also controls the access time.

Data Input

Data to be written into a selected cell is strobed by the later of the two negative transistons of \overline{W} input and \overline{CAS} input. Thus when the \overline{W} input makes its negative transition prior to \overline{CAS} input (early write), the data input is strobed by \overline{CAS} , and the negative transition of \overline{CAS} is set as the

reference point for set-up and hold times. In the read-write or read-modify-write cycles, however, when the \overline{W} input makes its negative transition after \overline{CAS} , the \overline{W} negative transition is set as the reference point for setup and hold times.

Data Output Control

The output of the M5K4164ANP is in the high-impedance state when \overline{CAS} is high. When the memory cycle in progress is a read, read-modify-write, or a delayed-write cycle, the data output will go from the high-impedance state to the active condition, and the data in the selected cell will be read. This data output will have the same polarity as the input data. Once the output has entered the active condition, this condition will be maintained until \overline{CAS} goes high, irrespective of the condition of \overline{RAS} .

The output will remain in the high-impedance state throughout the entire cycle in an early-write cycle.

These output conditions, of the M5K4164ANP, which can readily be changed by controlling the timing of the write pulse in a write cycle, and the width of the \overline{CAS} pulse in a read cycle, offer capabilities for a number of applications, as follows.

1. Common I/O Operation

If all write operations are performed in the early-write mode, input and output can be connected directly to give a common I/O data bus.

2 Data Output Hold

The data output can be held between read cycles, without lengthening the cycle time. This enables extremely flexible clock-timing settings for $\overline{\text{RAS}}$ and $\overline{\text{CAS}}$.

65 536-BIT (65 536-WORD BY 1-BIT) DYNAMIC RAM

3. Two Methods of Chip Selection

Since the output is not latched, \overline{CAS} is not required to keep the outputs of selected chips in the matrix in a highimpedance state. This means that \overline{CAS} and/or \overline{RAS} can both be decoded for chip selection.

4. Extended-Page Boundary

By decoding \overline{CAS} , the page boundary can be extended beyond the 256 column locations in a single chip. In this case, \overline{RAS} must be applied to all devices.

Page-Mode Operation

This operation allows for multiple-column addressing at the same row address, and eliminates the power dissipation associated with the negative-going edge of \overline{RAS} , because once the row address has been strobed, \overline{RAS} is maintained. Also, the time required to strobe in the row address for the second and subsequent cycles is eliminated, thereby decreasing the access and cycle times.

Refresh

Each of the 128 rows ($A_0 \sim A_6$) of the M5K4164ANP must be refreshed every 2 ms to maintain data. The methods of refreshing for the M5K4164ANP are as follows.

1. Normal Refresh

Read cycle and Write cycle (early write, delayed write or read-modify-write) refresh the selected row as defined by the low order (\overline{RAS}) addresses. Any write cycle, of course, may change the state of the selected cell. Using a read, write, or read-modify-write cycle for refresh is not recommended for systems which utilize "write-OR" outputs since output bus contention will occur.

2. RAS Only Refresh

A \overline{RAS} -only refresh cycle is the recommended technique for most applications to provide for data retention. A \overline{RAS} -only refresh cycle maintains the output in the high-impedance state with a typical power reduction of 20% over a read or write cycle.

3. Hidden Refresh

A feature of the M5K4164ANP is that refresh cycles may be performed while maintaining valid data at the output pin by extending the \overline{CAS} active time from a previous memory read cycle. This feature is referred to as hidden refresh.

Hidden refresh is performed by holding \overline{CAS} at V_{1L} and taking \overline{RAS} high and after a specified precharge period, executing a \overline{RAS} -only cycling, but with \overline{CAS} held low.

The advantage of this refresh mode is that data can be held valid at the output data port indefinitely by leaving the \overline{CAS} asserted. In many applications this eliminates the need for off-chip latches.

Power Dissipation

Most of the circuitry in the M5K4164ANP is dynamic, and most of the power is dissipated when addresses are strobed. Both \overrightarrow{RAS} and \overrightarrow{CAS} are decoded and applied to the M5K4164ANP as chip-select in the memory system, but if \overrightarrow{RAS} is decoded, all unselected devices go into stand-by independent of the \overrightarrow{CAS} condition, minimizing system power dissipation.

Power Supplies

The M5K4164ANP operates on a single 5V power supply.

A wait of some 500µs and eight or more dummy cycles is necessary after power is applied to the device before memory operation is achieved.

65 536-BIT (65 536-WORD BY 1-BIT) DYNAMIC RAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Paramater	Conditions	Limits	Unit
Vcc	Supply voltage		-1~7	V
VI	Input voltage	With respect to V _{SS}	-1~7	V
Vo	Output voltage		-1-7	V
10	Output current		50	mA
Pd	Power dissipation	Ta = 25°C	700	mW
Topr	Operating free-air temperature range		0~70	°C
Tstg	Storage temperature range		- 65 - 150	°C

RECOMMENDED OPERATING CONDITIONS (Ta = 0 ~ 70°C, unless otherwise noted) (Note. 1)

Construct	Parameter		Limits			
Symbol	Parameter	Min	Nom	Max	Unit	
Vcc	Supply voltage	4.5	5	5.5	V	
Vss	Supply voltage	0	0	0	V	
VIH	High-level input voltage, all inputs	2.4		6.5	V	
VIL	Low-level input voltage, all inputs	- 2		0.8	V	

Note 1: All voltage values are with respect to VSS

ELECTRICAL CHARACTERISTICS ($Ta = 0 - 70^{\circ}C$, $V_{CC} = 5V \pm 10\%$, $V_{SS} = 0V$, unless otherwise noted) (Note. 2)

Cumhal			Test conditions		Limits		
Symbol	Parameter		lest conditions	Min	Тур	Max	Unit
Vон	High-level output voltage		$I_{OH} = -5mA$	2.4		Vcc	V
VOL	Low-level output voltage		I _{OL} =4.2mA	0		0.4	V
loz	Off-state output current		Q floating $0V \leq V_{OUT} \leq 5.5V$	- 10		10	μΑ
1	Input current		$0V \leq V_{IN} \leq 6.5V$, All other pins = $0V$	- 10		10	μА
100.000	Average supply current from V _{CC} , M5K4164ANP-12		RAS, CAS cycling			50	mA
Operating (Note 3, 4)		M5K4164ANP-15	$t_{CR} = t_{CW} = min$ output open			45	
I _{CC2}	Supply current from V _{CC} , standby		RAS = VIH output open			4	mA
1	Average supply current from Vcc.	M5K4164ANP-12	RAS cycling CAS = VIH			40	mA
CC3(AV)	refreshing (Note 3)	M5K4164ANP-15	$t_{C(\overline{REF})} = min, output open$			35	
1	Average supply current from V _{CC} ,	M5K4164ANP-12	RAS = VIL, CAS cycling			40	mA
CC4(AV)	page mode (Note 3, 4)	M5K4164ANP-15	t CPG = min, output open	3!		35	1
C1 (A)	Input capacitance, address inputs	······				5	pF
C1 (D)	Input capacitance, data input		V _I =V _{SS}			5	pF
C1(W)	Input capacitance, write control in	put	f=1MHz			7	pF
CI (RAS)	Input capacitance, RAS input		V ₁ =25mVrms			10	pF
CI (CAS)	Input capacitance, CAS input		1			10	pF
Co	Output capacitance		$V_0 = V_{SS}, f = 1MHz, V_1 = 25mVrms$	1		7	pF

Note 2: Current flowing into an IC is positive ; out is negative.

3 ICC1(AV), ICC3(AV), and ICC4(AV) are dependent on cycle rate. Maximum current is measured at the fastest cycle rate.

4: ICC1(AV) and ICC4(AV) are dependent on output loading. Specified values are obtained with the output open.

65 536-BIT (65 536-WORD BY 1-BIT) DYNAMIC RAM

TIMING REQUIREMENTS (For Read, Write, Read-Modify-Write, Refresh, and Page-Mode Cycle)

 $(Ta = 0 \sim 70^{\circ}C, V_{CC} = 5V + 10\%, V_{SS} = 0V$ unless otherwise noted. See notes 5. 6 and 7.)

				M5K4164	IANP-12	M5K4164	ANP-15	
Symbol	Parameter	1	ternative	Lin	nits	Lim	iits	Unit
			Symbol	Min	Max	Min	Max	
t _{CRF}	Refresh cycle time		t _{REF}		2		2	ms
tw(RASH)	RAS high pulse width		t _{RP}	90		100		ns
tw(RASL)	RAS low pulse width		t _{RAS}	120	10000	150	10000	ns
tw(CASL)	CAS low pulse width		t _{CAS}	60	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	75	~	ns
tw(CASH)	CAS high pulse width (1	Note 8)	t _{CPN}	30		35		ns
th(RAS-CAS)	CAS hold time after RAS		t _{CSH}	120		150		ns
t _{h (CAS-RAS)}	RAS hold time after CAS		t _{RSH}	60		75		ns
td (CAS-RAS)	Delay time, CAS to RAS (I	Note 9)	t _{CRP}	- 20		-20		ns
t _{d(RAS-CAS)}	Delay time, RAS to CAS (N	Note 10)	t _{RCD}	25	60	30	75	ns
t _{su(RA-RAS)}	Row address setup time before RAS		t _{ASR}	. 0		0		ns
t _{su(CA-CAS)}	Column address setup time before \overline{CAS}		tASC	0		0		ns
t _{h (RAS-RA)}	Row address hold time after RAS		t _{RAH}	15		20		ns
t _{h(CAS-CA)}	Column address hold time after \overline{CAS}		t _{CAH}	20		25		ns
t _{h (RAS-CA)}	Column address hold time after RAS		t _{AR}	90		95		ns
t _{THL}	Transition time		+	3	35	3	35	
t _{TLH}	Hansidon une		t _T	3	35	3	35	ns

Note 5: An initial pause of 500 µs is required after power-up followed by any eight RAS or RAS/CAS cycles before proper device operation is achieved.

6: The switching characteristics are defined as $t_{THL} = t_{TLH} = 5$ ns.

7: Reference levels of input signals are VIH min. and VIL max. Reference levels for transition time are also between VIH and VIL.

8: Except for page-mode.

9: td(CAS-RAS) requirement is only applicable for RAS/CAS cycles preceeded by a CAS only cycle (i.e., For systems where CAS has not been decoded with RAS.) 10: Operation within the td (RAS-CAS) max limit insures that ta (RAS) max can be met. td (RAS-CAS) max is specified reference point only; if

td (BAS-CAS) is greater than the specified td (BAS-CAS) max limit, then access time is controlled exclusively by ta(CAS).

td (RAS-CAS)min = th (RAS-RA)min + 2t THL(t TLH) + t su(CA-CAS)min.

SWITCHING CHARACTERISTICS (Ta = 0~70°C, Vcc = 5V ± 10%, Vss = 0V, unless otherwise noted) **Read Cycle**

				M5K4164ANP-12		M5K416	IANP-15	Unit
Symbol	Parameter		Alternative	Lir	nits	Limits		
			Symbol	Min	Max	Min	Ma×	
t _{CR}	Read cycle time		t _{RC}	220		260		ns
tsu (R-CAS)	Read setup time before CAS		t _{RCS}	0		0		ns
th (CAS-R)	Read hold time after CAS	(Note 11)	t _{RCH}	0		0		ns
th(RAS-R)	Read hold time after RAS	(Note 11)	t _{RRH}	10		20		ns
tdis (CAS)	Output disable time	(Note 12)	t _{OFF}	0	35	0	40	ns
ta (CAS)	CAS access time	(Note 13)	t _{CAC}		60		75	ns
ta (RAS)	RAS access time	(Note 14)	t _{RAC}		120		150	ns

Note 11: Either th (RAS-R) or th (CAS-R) must be satisfied for a read cycle.

Note 12: tdis (CAS) max defines the time at which the output achieves the open circuit condition and is not reference to VOH or VOL.

Note 13:

This is the value when $td(_{RAS-CAS}) \ge td(_{RAS-CAS}) = td(_{RAS-CAS}) = td(_{RAS-CAS}) = td(_{RAS-CAS}) \ge td(_{RAS-CAS}) = td(_{RAS-CAS})$ Note 14: td (RAS-CAS) exceeds the value shown. Test conditions ; Load = 2T TL, CL = 100pF

Write Cycle

		Alternative Symbol	M5K	4164ANP-12	M5K416	M5K4164ANP-15	
Symbol	Parameter		Limits		Limits		Unit
			, Min	Max	Min	Max	
t _{cw}	Write cycle time	t _{RC}	220		260		ns
tsu(w-CAS)	Write setup time before CAS (Note 17)	twcs	-5		-10		ns
th(CAS-W)	Write hold time after CAS	t wch	40		45		ns
th (RAS-W)	Write hold time after RAS	twcR	90		95		ns
th(w-RAS)	RAS hold time after write	t _{RWL}	40		45		ns
th (w-CAS)	CAS hold time after write	towL	40		45		ns
tw(w)	Write pulse width	twp	40		45		ns
tsu (D-CAS)	Data-in setup time before CAS	t _{DS}	0		0		ns
th (CAS-D)	Data in hold time after CAS	t _{DH}	40		45	1	ns
th (RAS-D)	Data-in hold time after RAS	t _{DHR}	90		95		ns

65 536-BIT (65 536-WORD BY 1-BIT) DYNAMIC RAM

Read-Write and Read-Modify-Write Cycles

				M5K416	64ANP-12	M5K4164	ANP-15	
Symbol	Parameter		Alternative Symbol	Li	imits	Limits		Unit
				Min	Max	Min	Max	
t _{cRW}	Read-write cycle time	(Note 15)	t _{RWC}	245		295		
t _{cRMW}	Read-modify-write cycle time	(Note 16)	t _{RMWC}	265		310		
th (w-RAS)	RAS hold time after write		t _{RWL}	40		45		ns
th (w-CAS)	CAS hold time after write		t _{CWL}	40		45		
tw(w)	Write pulse width		t _{WP}	40		45		ns
tsu (R-CAS)	Read setup time before CAS		t _{RCS}	0		0		ns
td (RAS-W)	Delay time, RAS to write	(Note 17)	t _{RWD}	100		120		ns
td (CAS-W)	Delay time, CAS to write	(Note 17)	t _{CWD}	40		. 60		ns
tsu(D-W)	Data-in setup time before write		t _{DS}	0		0		
th (w-D)	Data-in hold time after write		t _{DH}	40		45		ns
tdis (CAS)	Output disable time		toff	0	35	0	40	ns
ta (CAS)	CAS access time	(Note 13)	t _{CAC}		60		75	ns
ta (RAS)	RAS access time	(Note 14)	t _{RAC}		120		100	ns

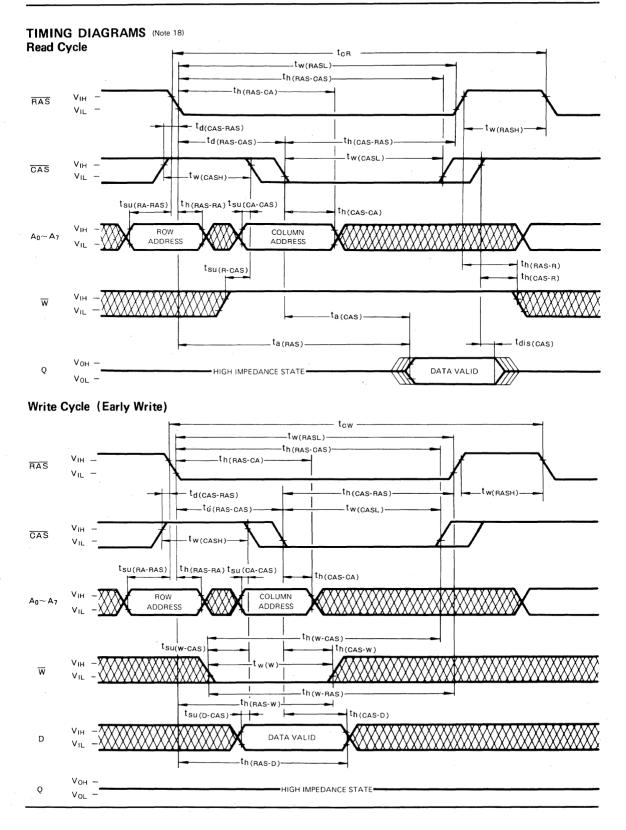
Note 15: t_{CRW}min is defined as t_{CRW}min = td (RAS-W) + th (W-RAS) + tw (RASH) + 3t_{TLH}(t_{THL})

16: $t_{CBM,W}$ min is defined as $t_{CBM,W}$ min = t_{a} (RAS)max + t_{h} (W-RAS) + t_{W} (RAS H) + $3t_{TLH}$ (t_{THL})

17: tsu (w-CAS), td (RAS-w), and td (CAS-w) do not define the limits of operation, but are included as electrical characteristics only.

When tsu (w-cas)≧tsu (w-cas)min, an early-write cycle is performed, and the data output keeps the high-impedance state.

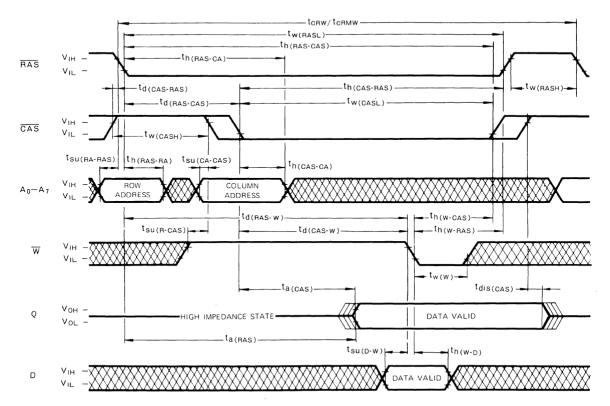
When $td(RAS-w) \ge td(RAS-w)min$, and $td(CAS-w) \ge tsu(w-CAS)min$ a read-write cycle is performed, and the data of the selected address will be read out on the data output.


For all conditions other than those described above, the condition of data output (at access time and until CAS goes back to VIH) is not defined.

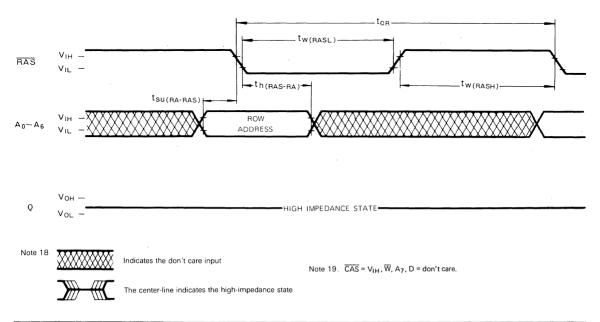
Page-Mode Cycle

Symbol	Parameter		M5K4164ANP-12 Limits		M5K4164ANP-15 Limits		Unit
		Alternative					
		Symbol	Min	Max	Min	Max	1
t _{c PGR}	Page-mode read cycle time	t _{PC}	140		145		ns
t _{c PGW}	Page-Mode write cycle time	t _{PC}	140		145		ns
t _{c PGRW}	Page-Mode read-write cycle time	- 1	150		180		ns
t _{c pgrmw}	Page-Mode read-modify-write cycle time]	170		195		ns
tw (CASH)	CAS high pulse width	t _{CP}	55		60		ns

65 536-BIT (65 536-WORD BY 1-BIT) DYNAMIC RAM



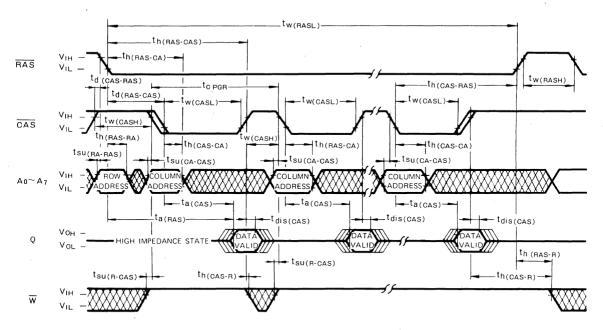
MITSUBISHI LSIs


M5K4164ANP-12, -15

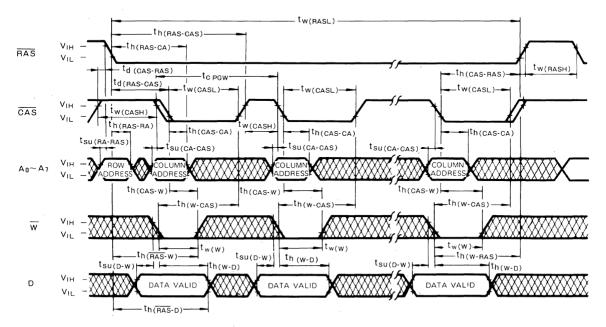
65 536-BIT (65 536-WORD BY 1-BIT) DYNAMIC RAM

Read-Write and Read-Modify-Write Cycles

RAS-Only Refresh Cycle (Note 19)

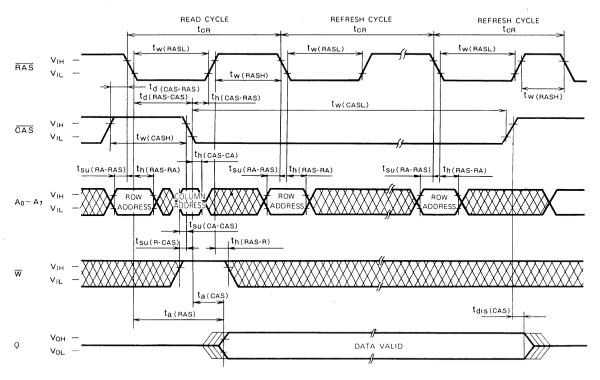


MITSUBISHI LSIs


M5K4164ANP-12, -15

65 536-BIT (65 536-WORD BY 1-BIT) DYNAMIC RAM

Page-Mode Write Cycle



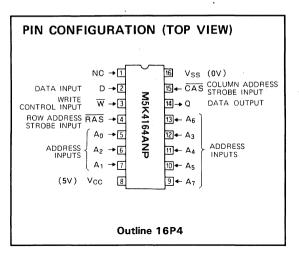
MITSUBISHI LSIs

M5K4164ANP-12, -15

65 536-BIT (65 536-WORD BY 1-BIT) DYNAMIC RAM

MITSUBISHI LSIS M5K4164ANP-20

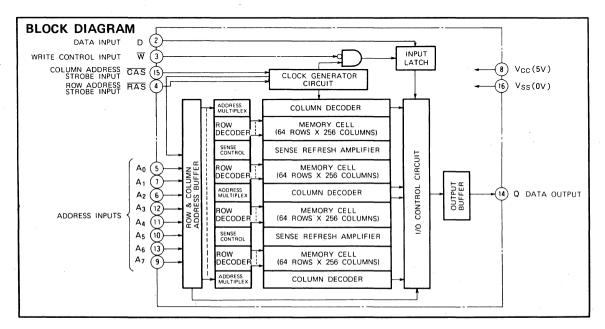
65536-BIT (65536-WORD BY 1-BIT) DYNAMIC RAM


DESCRIPTION

This is a family of 65536-word by 1-bit dynamic RAMs, fabricated with the high performance N-channel silicongate MOS process, and is ideal for large-capacity memory systems where high speed, low power dissipation, and low costs are essential. The use of double-layer polysilicon process technology and a single-transistor dynamic storage cell privide high circuit density at reduced costs, and the use of dynamic circuitry including sense amplifiers assures low power dissipation. Multiplexed address inputs permit both a reduction in pins to the standard 16-pin package configuration and an increase in system densities. The M5K4164ANP operates on a 5V power supply using the on-chip substrate bias generator.

FEATURES

Type name	Access time	Cycle time	Power dissipation
	(max)	(min)	(typ)
	(ns)	(ns)	(mW)
M5K4164ANP-20	200	330	125


- Single 5V±20/ supply.
- Low standby power dissipation: 22.0 mW (max)
- Low operating power dissipation: 225 mW (max)
- Unlatched output enables two-dimensional chip selection and extended page boundary
- Early-write operation gives common I/O capability
- Read-modify-write, RAS-only refresh, and page-mode capabilities
- All input terminals have low input capacitance and are directly TTL-compatible
- Output is three-stage and directly TTL-compatible
- 128 refresh cycles every 2ms (16K dynamic RAMs M5K4116P, S compatible)

- CAS controlled output allows hidden refresh.
- Output data can be held infinitely by CAS.
- Interchangeable with intel's 2164 and Motorola's MCM 6665 in pin configuration.

APPLICATION

• Main memory unit for computers.

65536-BIT (65536-WORD BY 1-BIT) DYNAMIC RAM

FUNCTION

The M5K4164ANP provides, in addition to normal read, write, and read-modify-write operations, a number of other functions, e.g., page mode, RAS-only refresh, and delayed-write. The input conditions for each are shown in Table 1.

Table 1 Input conditions for each mode

			Ing	outs			Output		
Operation	RAS	CAS	w	D	Row address	Column address	Q	Refresh	Remarks
Read	ACT	ACT	NAC	DNC	APD	APD	VLD	YES	Page mode
Write	ACT	ACT	ACT	VLD	APD	APD	OPN	YES	identical except
Read-modify-write	ACT	ACT	ACT	VLD	APD	APD	VLD	YES	refresh is NO.
RAS-only refresh	ACT	NAC	DNC	DNC	APD	DNC	OPN	YES	
Hidden refresh	ACT	ACT	DNC	DNC	APD	DNC	VLD	YES	
Standby	NAC	DNC	DNC	DNC	DNC	DNC	OPN	NO	

Note: ACT : active, NAC : nonactive, DNC : don't care, VLD : valid, APD : applied, OPN : open.

SUMMARY OF OPERATIONS

Addressing

To select one of the 65536 memory cells in the M5K4164ANP the 16-bit address signal must be multiplexed into 8 address signals, which are then latched into the on-chip latch by two externally-applied clock pulses. First, the negative-going edge of the row-address-strobe pulse (RAS) latches the 8 row-address bits; next, the negative-going edge of the column-address-strobe pulse (CAS) latches the 8 column-address bits. Timing of the RAS and CAS clocks can be selected by either of the following two methods:

- The delay time from RAS to CAS t_{d(RAS-CAS)} is set between the minimum and maximum values of the limits. In this case, the internal CAS control signals are inhibited almost until t_{d(RAS-CAS)max} ('gated CAS' operation). The external CAS signal can be applied with a margin not affecting the on-chip circuit operations, e.g. access time, and the address inputs can be easily changed from row address to column address.
- 2. The delay time $t_{d(RAS-CAS)}$ is set larger than the maximum value of the limits. In this case the internal inhibition of \overline{CAS} has already been released, so that the internal \overline{CAS} control signals are controlled by the externally applied \overline{CAS} , which also controls the access time.

Data Input

Data to be written into a selected cell is strobed by the later of the two negative transitions of W input and \overline{CAS} input. Thus when the \overline{W} input makes its negative transition prior to \overline{CAS} input (early write), the data input is strobed by \overline{CAS} , and the negative transition of \overline{CAS} is set as the reference point for set-up and hold times. In the read-write or read-modify-write cycles, however, when the \overline{W} input makes its negative transition after \overline{CAS} , the \overline{W} negative transition is set as the reference point for setup and hold times.

Data Output Control

The output of the M5K4164ANP is in the high-impedance state when \overrightarrow{CAS} is high. When the memory cycle in progress is a read, read-modify-write, or a delayed-write cycle, the data output will go from the high-impedance state to the active condition, and the data in the selected cell will be read. This data output will have the same polarity as the input data. Once the output has entered the active condition, this condition will be maintained until \overrightarrow{CAS} goes high, irrespective of the condition of \overrightarrow{RAS} .

The output will remain in the high-impedance state throughout the entire cycle in an early-write cycle.

These output conditions, of the M5K4164ANP which can readily be changed by controlling the timing of the write pulse in a write cycle, and the width of the \overline{CAS} pulse in a read cycle, offer capabilities for a number of applications, as follows.

1. Common I/O Operation

If all write operations are performed in the early-write mode, input and output can be connected directly to give a common I/O data bus.

2. Data Output Hold

The data output can be held between read cycles, without lengthening the cycle time. This enables extremely flexible clock-timing settings for \overline{RAS} and \overline{CAS} .

MITSUBISHI LSIS M5K4164ANP-20

65536-BIT (65536-WORD BY 1-BIT) DYNAMIC RAM

3. Two Methods of Chip Selection

Since the output is not latched, \overline{CAS} is not required to keep the outputs of selected chips in the matrix in a highimpedance state. This means that \overline{CAS} and/or \overline{RAS} can both be decoded for chip selection.

4. Extended-Page Boundary

By decoding \overline{CAS} , the page boundary can be extended beyond the 256 column locations in a single chip. In this case, \overline{RAS} must be applied to all devices.

Page-Mode Operation

This operation allows for multiple-column addressing at the same row address, and eliminates the power dissipation associated with the negative-going edge of \overline{RAS} , because once the row address has been strobed, \overline{RAS} is maintained. Also, the time required to strobe in the row address for the second and subsequent cycles is eliminated, thereby decreasing the access and cycle times.

Refresh

Each of the 128 rows ($A_0 \sim A_6$) of the M5K4164ANP must be refreshed every 2 ms to maintain data. The methods of refreshing for the M5K4164ANP are as follows.

1. Normal Refresh

Read cycle and Write cycle (early write, delayed write or read-modify-write) refresh the selected row as defined by the low order (RAS) addresses. Any write cycle, of course, may change the state of the selected cell. Using a read, write, or read-modify-write cycle for refresh is not recommended for systems which utilize "write-OR" outputs since output bus contention will occur.

2. RAS Only Refresh

A \overline{RAS} -only refresh cycle is the recommended technique for most applications to provide for data retention. A \overline{RAS} -only refresh cycle maintains the output in the highimpedance state with a typical power reduction of 20% over a read or write cycle.

3. Hidden Refresh

A features of the M5K4164ANP is that refresh cycles may be performed while maintaining valid data at the output pin by extending the \overline{CAS} active time from a previous memory read cycle. This feature is referred to as hidden refresh.

Hidden refresh is performed by holding \overline{CAS} at V_{IL} and taking \overline{RAS} high and after a specified precharge period, executing a \overline{RAS} -only cycling, but with \overline{CAS} held low.

The advantage of this refresh mode is that data can be held valid at the output data port indefinitely by leaving the CAS asserted. In many applications this eliminates the need for off-chip latches.

Power Dissipation

Most of the circuitry in the M5K4164ANP is dynamic, and most of the power is dissipated when addresses are strobed. Both \overline{RAS} and \overline{CAS} are decoded and applied to the M5K4164ANP as chip-select in the memory system, but if \overline{RAS} is decoded, all unselected devices go into stand-by independent of the \overline{CAS} condition, minimizing system power dissipation.

Power Supplies

The M5K4164ANP operates on a single 5V power supply. A wait of some $500 \mu s$ and eight or more dummy cycles is necessary after power is applied to the device before memory operation is achieved.

MITSUBISHI LSIS M5K4164ANP-20

65536-BIT (65536-WORD BY 1-BIT) DYNAMIC RAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Paramater	Conditions	Limits	Unit
Vcc	Supply voltage		-1~7	V
VI	Input voltage	With respect to V _{SS}	-1~7	V
Vo	Output voltage		-1~7	V
10	Output current		50	mA
Pd	Power dissipation	Ta = 25°C	700	mW
Topr	Operating free-air temperature range		0~70	°C
Tstg	Storage temperature range		- 65 ~ 150	°C

RECOMMENDED OPERATING CONDITIONS ($Ta = 0 \sim 70^{\circ}C$, unless otherwise noted) (Note 1)

Symbol	Parameter		Limits			
Symbol	rarameter	Min	Nom	Max	Unit	
Vcc	Supply voltage	4.5	5	5.5	V	
V _{SS}	Supply voltage	0	0	0	V	
VIH	High-level input voltage, all inputs	2.4		V _{CC} +1	v	
VIL	Low-level input voltage, all inputs	-2		0.8	V	

Note 1: All voltage values are with respect to V_{SS}

ELECTRICAL CHARACTERISTICS ($Ta = 0 - 70^{\circ}C$, $V_{CC} = 5V \pm 10\%$, $V_{SS} = 0V$, unless otherwise noted) (Note 2)

Symbol	Parameter		Test conditions	Limits			
				Min	Тур	Max	Unit
Vон	High-level output voltage		1 _{OH} = -5mA	2.4		Vcc	V
VOL	Low-level output voltage		I _{OL} =,4.2mA	0		0.4	V
loz	Off-state output current		Q floating $0V \leq V_{OUT} \leq 5.5V$	- 10		10	μA
li -	Input current		$0V \leq V_{IN} \leq 6.5V$, All other pins = $0V$	- 10		10	μA
CC1(AV)	Average supply current from V _{CC} , operating (Note 3, 4)	M5K4164ANP-20	RAS, CAS cycling			40	mA
			$t_{CR} = t_{CW} = min$ output open				
I CC2	Supply current from V _{CC} , standby		RAS = VIH output open			4	mA
CC3(AV)	Average supply current from V _{CC} ,	from V _{CC} , M5K4164ANP-20	RAS cycling CAS = VIH			30	mA
	refreshing (Note 3)		$t_{C(\overline{REF})} = min$, output open				
ICC4(AV)	Average supply current from V _{CC} , page mode (Note 3, 4)	M5K4164ANP-20	$\overline{RAS} = V_{IL}, \overline{CAS}$ cycling			30	mA
			t CPG = min, output open				
C _{1(A)}	Input capacitance, address inputs					5	pF
C1(D)	Input capacitance, data input		VI=VSS			5	pF
C1(W)	Input capacitance, write control input		f=1MHz			7	pF
CI(RAS)	Input capacitance, RAS input		Vi=25mVrms			10	pF
CI (CAS)	Input capacitance, CAS input					10	pF
Ċo	Output capacitance		$V_0 = V_{SS}$, f = 1MHz, Vi=25mVrms	1		7	pF

Note 2: Current flowing into an IC is positive ; out is negative.

3: ICC1(AV), ICC3(AV), and ICC4(AV) are dependent on cycle rate. Maximum current is measured at the fastest cycle rate.

4: I CC1(AV) and I CC4(AV) are dependent on output loading. Specified values are obtained with the output open.

65536-BIT (65536-WORD BY 1-BIT) DYNAMIC RAM

TIMING REQUIREMENTS (For Read, Write, Read-Modify-Write, Refresh, and Page-Mode Cycle)

($Ta = 0 \sim 70^{\circ}C$, $V_{CC} = 5V \pm 10\%$, $V_{SS} = 0V$, unless otherwise noted, See notes 5, 6 and 7)

			Alternative Symbol	M5K416	M5K4164ANP-20			
Symbol	Parameter			Lir	nits	Unit		
			Symbol	Min	Max			
t _{CRF}	Refresh cycle time		t _{REF}		2	ms		
tw(RASH)	RAS high pulse width		t _{RP}	120		ns		
tw(RASL)	RAS low pulse width		t _{RAS}	200	10000	ns		
tw(CASL)	CAS low pulse width		t _{CAS}	100	∞	ns		
tw(CASH)	CAS high pulse width	(Note 8)	t _{CPN}	40		ns		
t _{h(RAS-CAS)}	CAS hold time after RAS		t _{CSH}	200		ns		
t _{h(CAS-RAS})	RAS hold time after CAS		t _{RSH}	100		ns		
td(CAS-RAS)	Delay time, CAS to RAS	(Note 9)	t _{CRP}	-20		ns		
td(RAS-CAS)	Delay time, RAS to CAS	(Note 10)	t _{RCD}	30	100	ns		
t _{su(RA-RAS)}	Row address setup time before RAS		t _{ASR}	0		ns		
t _{su (CA-CAS)}	Column address setup time before CAS		t ASC	0		ns		
t _{h(RAS-RA)}	Row address hold time after RAS		t _{RAH}	. 25		ns		
t _{h(CAS-CA)}	Column address hold time after CAS		t _{CAH}	35		ns		
t _{h(RAS-CA)}	Column address hold time after RAS		t _{AR}	120		ns		
t _{THL}	Transition time		tT	3	50			
t _{TLH} .			· 1	3	50	ns		

Note 5: An initial pause of 500 µs is required after power up followed by any eight TAS or TAS/CAS cycles before proper device operation is achieved.

6: The switching characteristics are defined as $t_{THL} = t_{TLH} = 5$ ns.

Reference levels of input signals are VIH min, and VIL max. Reference levels for transition time are also between VIH and VIL. 7.

8: Except for page-mode,

9: td(CAS-RAS) requirement is only applicable for RAS/CAS cycles preceeded by a CAS only cycle (i.e., For systems where CAS has not been decoded with RAS) Operation within the td (RAS-CAS) max limit insures that ta (RAS) max can be met. td (RAS-CAS)max is specified reference point only; if td (RAS-CAS) is greater than the specified td (RAS-CAS) max limit, then access time is controlled exclusively by ta (CAS).

 $t_d (RAS-CAS)min = t_h (RAS-RA)min + 2t_{THL}(t_{TLH}) + t_{SU}(CA-CAS)min$.

SWITCHING CHARACTERISTICS (Ta = 0~70°C, V_{CC}=5V±10%, V_{SS}=0V, unless otherwise noted) **Read Cycle**

	Parameter		A.I	M5K416		
Symbol			Alternative -	Li	Unit	
		Symbol	Min	Max		
t _{cR}	Read cycle time		t _{RC}	330		ns
t _{su (R-CAS)}	Read setup time before CAS		t _{RCS}	0		ns
th(CAS-R)	Read hold time after CAS	(Note 11)	t _{RCH}	0		ns
th(RAS-R)	Read hold time after RAS	(Note 11)	t RRH	25		ns
tdis (CAS)	Output disable time	(Note 12)	t _{OFF}	0	50	ns
t _{a (CAS)}	CAS access time	(Note 13)	t _{CAC}		100	ns
ta(RAS)	RAS access tirne	(Note 14)	t _{RAC}	al de definition de la companya de la	200	ns

Note 11: Either th (RAS-R) or th (CAS-R) must be satisfied for a read cycle.

Note 12: $t_{dis(Gas)}$ max defines the time at which the output achieves the open circuit condition and is not reference to V_{OH} or V_{OI} .

Note 13:

This is the value when $t_d(RAS-CAS) \ge t_d(RAS-CAS)max$. Test conditions : Load = 2T TL, CL = 100pF This is the value when $t_d(RAS-CAS) \le t_d(RAS-CAS)max$. When $t_d(RAS-CAS) \ge t_d(RAS-CAS)max$, $t_a(RAS)$ will increase by the amount that $t_d(RAS-CAS) = t_d(RAS-CAS) \ge t_d(RAS-CAS)max$. Test conditions : Load = 2T TL, CL = 100pF Note 14:

Write Cycle

		Alternative Symbol	M5K416	1ANP-20	·
Symbol	Parameter		Lir	Unit	
			Min	Max	
t _{cw}	Write cycle time	t _{RC}	330		ns
t _{su(w-CAS)}	Write setup time before CAS (Note 17)	twcs	10		ns
th(CAS-W)	Write hold time after CAS	t wch'	55		ns
th(RAS-W)	Write hold time after RAS	t _{WCR}	120		ns
t _{h (w-RAS})	RAS hold time after write	t _{RWL}	55		ns
t _{h (w-CAS})	CAS hold time after write	t _{CWL}	55		ns
t _{w(w)}	Write pulse width	t _{WP}	55		ns
t _{su(D-CAS)}	Data-in setup time before CAS	t _{DS}	0		ns
t _{h (CAS-D})	Data-in hold time after CAS	t _{DH}	55		ns
th (RAS-D)	Data-in hold time after RAS	t _{DHR}	120		ns

65536-BIT (65536-WORD BY 1-BIT) DYNAMIC RAM

			Alternative	M5K41	64ANP-20	
Symbol	Parameter		Symbol		Unit	
		3ymbol	Min	Max		
torw	Read-write cycle time	(Note 15)	t _{RWC}	340		ns
t _{CRMW}	Read-modify-write cycle time.	(Note 16)	t _{RMWC}	390		ns
th (W-RAS)	RAS hold time after write.		tRWL	55		ns
th (w-CAS)	CAS hold time after write		t _{CWL}	55		ns
tw(w)	Write pulse width		t _{WP}	55		ns
t _{su (R-CAS)}	Read setup time before CAS		t _{RCS}	0		ns
td (RAS-W)	Delay time, RAS to write	(Note 17)	t _{RWD}	150		ns
td (CAS-W)	Delay time, CAS to write	(Note 17)	t _{CWD} .	80		ns
t _{su(D-W)}	Data-in setup time before write		t _{DS}	0		ns
th(W-D)	Data-in hold time after write		t _{DH}	55		ns
tdis (CAS)	Output disable time		t _{OFF}	0	50	ns
ta (CAS)	CAS access time	(Note 13)	t _{CAC}		100	ns
ta (RAS)	RAS access time	(Note 14)	t _{RAC}		200	ns

Read-Write and Read-Modify-Write Cycles

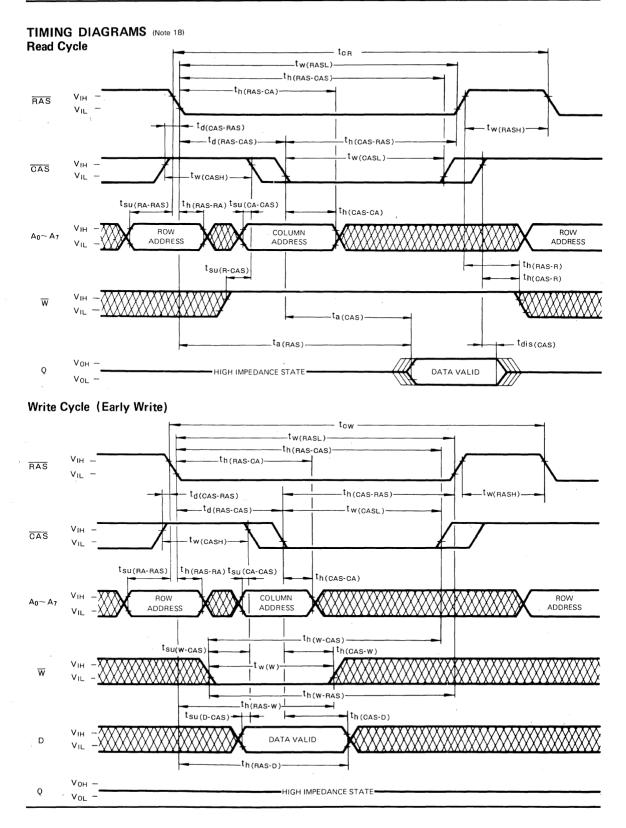
Note 15: t_{CRW} min is defined as t_{CRW} min = t_{d} (RAS-W) + t_{h} (W-RAS) + t_{w} (RASH) + $3t_{TLH}$ (THL)

16: t_{CRMW} min is defined as t_{CRMW} min = t_a (RAS)max + t_h (W-RAS) + t_w (RAS H) + $3t_{TLH}$ (THL)

17: t_{su}(w-cas), t_d(RAS-w), and t_d(CAS-w) do not define the limits of operation, but are included as electrical characteristics only.

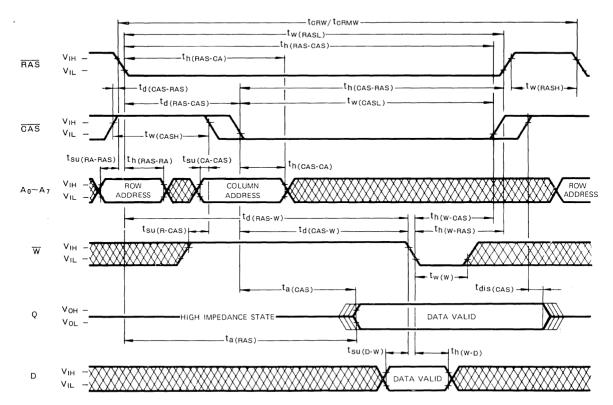
When tsu (w-CAS)≥tsu (w-CAS)min, an early-write cycle is performed, and the data output keeps the high-impedance state.

When $t_d(RAS-w) \ge t_d(RAS-w)$ min and $t_d(CAS-w) \ge t_{SU(w-CAS)}$ min a read-write cycle is performed, and the data of the selected address will be read out on the data output.

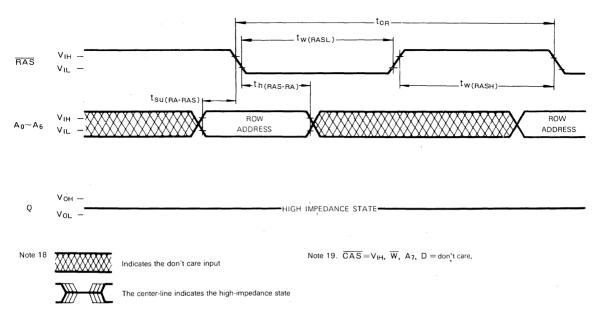

For all conditions other than those described above, the condition of data output (at access time and until CAS goes back to VIH) is not defined.

Page-Mode Cycle

Symbol	Parameter	Alternative	M5K416	Unit	
		Symbol	Min	Max	
t _{c PGR}	Page-mode read cycle time	t _{PC}	190		ns
t _{c PGW}	Page-Mode write cycle time	t _{PC}	190		ns
t _{c PGRW}	Page-Mode read-write cycle time	-	230		ns
t _{c pgrmw}	Page-Mode read-modify-write cycle time		245		ns
tw(CASH)	CAS high pulse width	t _{CP}	80		ns

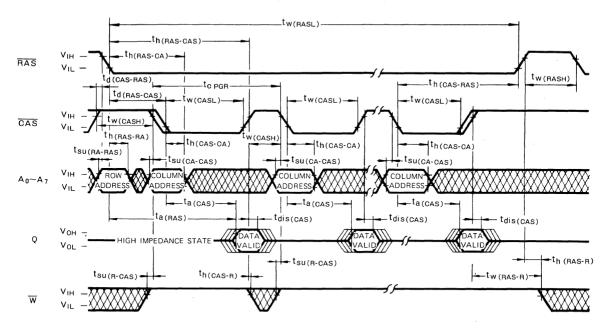


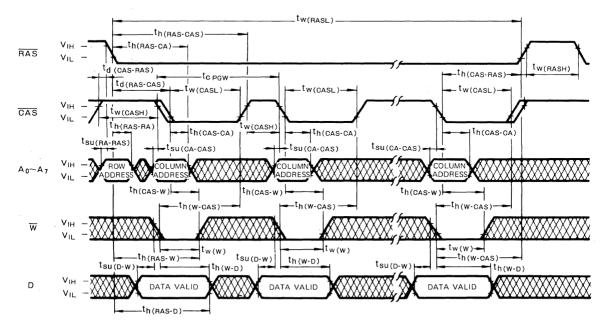
65536-BIT (65536-WORD BY 1-BIT) DYNAMIC RAM



65536-BIT (65536-WORD BY 1-BIT) DYNAMIC RAM

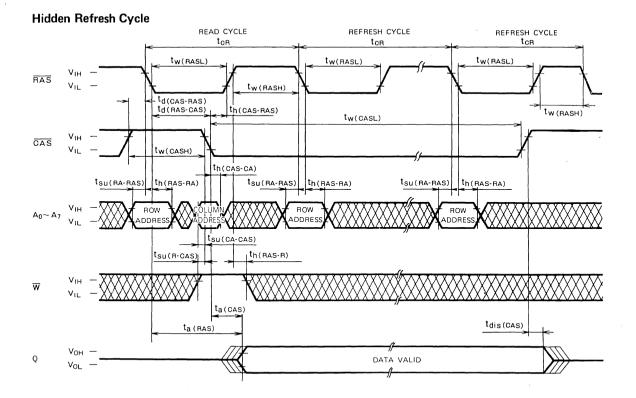
Read-Write and Read-Modify-Write Cycles


RAS-Only Refresh Cycle (Note 19)



65536-BIT (65536-WORD BY 1-BIT) DYNAMIC RAM

Page-Mode Read Cycle



Page-Mode Write Cycle

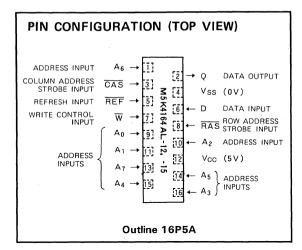
65536-BIT (65536-WORD BY 1-BIT) DYNAMIC RAM

65 536-BIT (65 536-WORD BY 1-BIT) DYNAMIC RAM

DESCRIPTION

This is a family of 65 536-word by 1-bit dynamic RAMs, fabricated with the high performance N-channel silicongate MOS process, and is ideal for large-capacity memory systems where high speed, low power dissipation, and low costs are essential. The use of double-layer polysilicon process technology and a single-transistor dynamic storage cell privide high circuit density at reduced costs, and the use of dynamic circuitry including sense amplifiers assures low power dissipation. Multiplexed address inputs permit both a reduction in pins to the 16-pin zigzag inline package configuration and an increase in system densities. The M5K4164AL operates on a 5V power supply using the on-chip substrate bias generator.

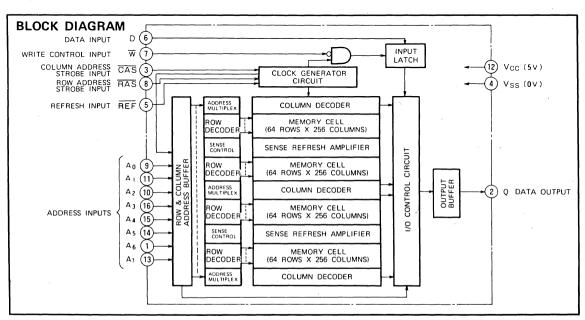
FEATURES


High speed

Type name	Access time (max) (ns)	Cycle time (min) (ns)	Power dissipation (typ) (mW)
M5K4164AL-12	120	220	175
M5K4164AL-15	150	260	150

- 16 pin zigzag inline package
- Single 5V±10% supply
- Low standby power dissipation: 22mW (max)
- Low operating power dissipation:

M5K4164AL-12 275mW (max) M5K4164AL-15 250mW (max)


- Unlatched output enables two-dimensional chip selection and extended page boundary
- Early-write operation gives common I/O capability
- Read-modify-write, RAS-only refresh, and page-mode capabilities

- All input terminals have low input capaciatance and are directly TTL-compatible
- Output is three-state and directly TTL-compatible
- 128 refresh cycles every 2ms (16K dynamic RAMs M5K4116P, S compatible)
- CAS controlled output allows hidden refresh
- Output data can be held infinitely by CAS

APPLICATION

- Main memory unit for computers
- Refresh memory for CRT

65 536-BIT (65 536-WORD BY 1-BIT) DYNAMIC RAM

FUNCTION

The M5K4164AL provides, in addition to normal read, write, and read-modify-write operations, a number of other functions, e.g., page mode, RAS-only refresh, and delayed-write. The input conditions for each are shown in Table 1.

Table 1	Input	conditions	for	each	mode
---------	-------	------------	-----	------	------

				Inputs				Output		Remarks
Operation	RAS	CAS	w	D	Row address	Column address	REF	Q	Refresh	
Read	ACT	ACT	NAC	DNC	APD	APD	NAC	VLD	YES	_
Write (Early write)	ACT	ACT	ACT	VLD	APD	APD	NAC	OPN	YES	Page mode identical.
Read-modify-write	ACT	ACT	ACT	VLD	APD	APD	NAC	VLD	YES	
RAS-only refresh	ACT	NAC	DNC	DNC	APD	DNC	NAC	OPN	YES	
Hidden refresh	ACT	ACT	DNC	DNC	APD	DNC	NAC	VLD	YES	
Automatic refresh	NAC	DNC	DNC	DNC	DNC	DNC	ACT	OPN	YES	
Self refresh	NAC	DNC	DNC	DNC	DNC	DNC	ACT	OPN	YES	
Hidden automatic refresh	NAC	ACT	DNC	DNC	DNC	DNC	ACT	VLD	YES	
Hidden self refresh	NAC	ACT	DNC	DNC	DNC	DNC	ACT	VLD	YES	
Standby	NAC	DNC	DNC	DNC	DNC	DNC	NAC	OPN	NO	

Note: ACT : active, NAC : nonactive, DNC : don't care, VLD : valid, APD : applied, OPN : open.

SUMMARY OF OPERATIONS

Addressing

To select one of the 65 536 memory cells in the M5K4164AL the 16-bit address signal must be multiplexed into 8 address signals, which are then latched into the on-chip latch by two externally-applied clock pulses. First, the negative-going edge of the row-address-strobe pulse (\overline{RAS}) latches the 8 row-address bits; next, the negative-going edge of the column-address-strobe pulse (\overline{CAS}) latches the 8 column-address bits. Timing of the \overline{RAS} and \overline{CAS} clocks can be selected by either of the following two methods:

- 1. The delay time from \overrightarrow{RAS} to $\overrightarrow{CAS} t_{d (RAS-CAS)}$ is set between the minimum and maximum values of the limits. In this case, the internal \overrightarrow{CAS} control signals are inhibited almost until $t_{d (RAS-CAS) max}$ ('gated $\overrightarrow{CAS'}$ operation). The external \overrightarrow{CAS} signal can be applied with a margin not affecting the on-chip circuit operations, e.g. access time, and the address inputs can be easily changed from row address to column address.
- 2. The delay time $t_{d(RAS-CAS)}$ is set larger than the maximum value of the limits. In this case the internal inhibition of \overline{CAS} has already been released, so that the internal \overline{CAS} control signals are controlled by the externally applied \overline{CAS} , which also controls the access time.

Data Input

Date to be written into a selected cell is strobed by the later of the two negative transitions of \overline{W} input and \overline{CAS} input. Thus when the \overline{W} input makes its negative transition prior to \overline{CAS} input (early write), the data input is strobed by \overline{CAS} , and the negative transition of \overline{CAS} is set as the reference point for set-up and hold times. In the read-write or read-modify-write cycles, however, when the \overline{W} input makes its negative transition after \overline{CAS} , the \overline{W} negative transition is set as the reference point for setup and hold times.

Data Output Control

The output of the M5K4164AL is in the high-impedance state when \overline{CAS} is high. When the memory cycle in progress is a read, read-modify-write, or a delayed-write cycle, the data output will go from the high-impedance state to the active condition, and the data in the selected cell will be read. This data output will have the same polarity as the input data. Once the output has entered the active condition, this condition will be maintained until \overline{CAS} goes high, irrespective of the condition of \overline{RAS} .

The output will remain in the high-impedance state throughout the entire cycle in an early-write cycle.

These output conditions, of the M5K4164AL, which can readily be changed by controlling the timing of the write pulse in a write cycle, and the width of the CAS pulse in a read cycle, offer capabilities for a number of applications, as follows.

1. Common I/O Operation

If all write operations are performed in the early-write mode, input and output can be connected directly to give a common I/O data bus.

2. Data Output Hold

The data output can be held between read cycles, without lengthening the cycle time. This enables extremely flexible clock-timing settings for \overline{RAS} and \overline{CAS} .

65 536-BIT (65 536-WORD BY 1-BIT) DYNAMIC RAM

3. Two Methods of Chip Selection

Since the output is not latched, \overline{CAS} is not required to keep the outputs of selected chips in the matrix in a highimpedance state. This means that \overline{CAS} and/or \overline{RAS} can both be decoded for chip selection.

4. Extended-Page Boundary

By decoding \overline{CAS} , the page boundary can be extended beyond the 256 column locations in a single chip. In this case, \overline{RAS} must be applied to all devices,

Page-Mode Operation

This operation allows for multiple-column addressing at the same row address, and eliminates the power dissipation associated with the negative-going edge of \overline{RAS} , because once the row address has been strobed, \overline{RAS} is maintained. Also, the time required to strobe in the row address for the second and subsequent cycles is eliminated, thereby decreasing the access and cycle times.

Refresh

Each of the 128 rows ($A_0 \sim A_6$) of the M5K4164AL must be refreshed every 2 ms to maintain data. The methods of refreshing for the M5K4164AL are as follows.

1. Normal Refresh

Read cycle and Write cycle (early write, delayed write or read-modify-write) refresh the selected row as defined by the low order (\overline{RAS}) addresses. Any write cycle, of course, may change the state of the selected cell. Using a read, write, or read-modify-write cycle for refresh is not recommended for systems which utilize "wire-OR" outputs since output bus contention will occur.

2. RAS Only Refresh

A \overline{RAS} -only refresh cycle is the recommended technique for most applications to provide for data retention. A \overline{RAS} -only refresh cycle maintains the output in the high-impedance state with a typical power reduction of 20% over a read or write cycle.

3. Automatic Refresh

Pin 5 ($\overline{\text{REF}}$) has two special functions. The M5K416AL has a refresh address counter, refresh address multiplexer and refresh timer for these operations. Automatic refresh is initiated by bringing $\overline{\text{REF}}$ low after $\overline{\text{RAS}}$ has precharged and is used during standard operation just like $\overline{\text{RAS}}$ -only refresh, except that sequential row addresses from an external counter are no longer necessary.

At the end of automatic refresh cycle, the internal refresh address counter will be automatically incremented. The output state of the refresh address counter is initiated by some eight $\overline{\text{REF}}$, $\overline{\text{RAS}}$ or $\overline{\text{RAS}}/\overline{\text{CAS}}$ cycle after power is applied. Therefore, a special operation is not necessary to initiate it.

RAS must remain inactive during REF activated cycles. Likewise, REF must remain inactive during RAS generated cycle.

4. Self-Refresh

The other function of pin 5 ($\overline{\text{REF}}$) is self-refresh. Timing for self-refresh is quite similar to that for automatic refresh. As long as $\overline{\text{RAS}}$ remains high and $\overline{\text{REF}}$ remains low, the M5K4164AL will refresh itself. This internal sequence repeats asynchronously every 12 to 16 μ s. After 2 ms, the onchip refresh address counter has advanced through all the row addresses and refreshed the entire memory. Self-refresh is primarily intended for trouble free power-down operation.

For example, when battery backup is used to maintained data integrity in the memory. REF may be used to place the device in the self-refresh mode with no external timing signals necessary to keep the information alive.

In summary, the pin 5 (REF) refresh function gives the user a feature that is free, save him hardware on the board, and in fact, will simplify his battery backup procedures, increase his battery life, and save him overall cost while giving him improved system performance.

There is an internal pullup resister ($\approx 3M\Omega$) on pin 5, so if the pin 5 ($\overline{\text{REF}}$) function is not used, pin 5 may be left open (not connect) without affecting the normal operations. 5. Hidden Refresh

A feature of the M5K4164AL is that refresh cycles may be performed while maintaining valid data at the output pin by extending the \overline{CAS} active time from a previous memory read cycle. This feature is referred to as hidden refresh.

Hidden refresh is performed by holding \overline{CAS} at V_{1L} and taking \overline{RAS} high and after a specified precharge period, executing a \overline{RAS} -only cycling, automatic refresh and self-refresh, but with \overline{CAS} held low.

The advantage of this refresh mode is that data can be held valid at the output data port indefinitely by leaving the \overline{CAS} asserted. In many applications this eliminates the need for off-chip latches.

Power Dissipation

Most of the circuitry in the M5K4164AL is dynamic, and most of the power is dissipated when addresses are strobed. Both \overline{RAS} and \overline{CAS} are decoded and applied to the M5K4164AL as chip-select in the memory system, but if \overline{RAS} is decoded, all unselected devices go into stand-by independent of the \overline{CAS} condition, minimizing system power dissipation.

Power Supplies

The M5K4164AL operates on a single 5V power supply.

A wait of some 500µs and eight or more dummy cycle is necessary after power is applied to the device before memory operation is achieved.

65 536-BIT (65 536-WORD BY 1-BIT) DYNAMIC RAM

ABSOLUTE MAXIMUM BATINGS

Symbol	Paramater	Conditions	Limits	Unit
Vcc	Supply voltage		-1~7	V
VI	Input voltage	With respect to V _{SS}	-1~7	V
Vo	Output voltage		-1~7	V
10	Output current		50	mA
Pd	Power dissipation	Ta = 25°C	700	mW
Topr	Operating free-air temperature range		0~70	°C
Tstg	Storage temperature range	· ·	-65-150	°C

RECOMMENDED OPERATING CONDITIONS (Ta = 0 ~ 70°C, unless otherwise noted) (Note 1)

Symbol	Parameter		Limits				
Symbol	Farameter	Min	Nom	Max	Unit		
Vcc	Supply voltage	4.5	5	5.5	V		
Vss	Supply voltage	0	0	0	v		
VIH	High-level input voltage, all inputs	2.4		6.5	V		
VIL	Low-level input voltage, all inputs	-2		0.8	V		

Note 1: All voltage values are with respect to Ves

ELECTRICAL CHARACTERISTICS ($Ta = 0 \sim 70^{\circ}C$, $V_{CC} = 5V \pm 10\%$, $V_{SS} = 0V$, unless otherwise noted) (Note 2)

			T		Limits		
Symbol	Parameter		Test conditions	Min	Тур	Max	Unit
Voн	High-level output voltage		I _{OH} = -5mA	2.4		Vcc	v
VoL	Low-level output voltage		I _{OL} =4.2mA	0		0.4	v
loz	Off-state output current		Q floating $0V \leq V_{OUT} \leq 5.5V$	- 10		10	μA
11	Input current		$0V \leq V_{IN} \leq 6.5V$, All other pins = $0V$	- 10		10	μA
1	Average supply current from V _{CC} ,	M5K4164AL-12	RAS, CAS cycling			50	mA
CC1(AV)	operating (Note 3, 4)	M5K4164AL-15	$t_{CR} = t_{CW} = min \text{ output open}$			45	mA
I CC2	Supply current from V _{CC} , standby		RAS = VIH output open			4	mA
1	Average supply current from V _{CC} ,	M5K4164AL-12	RAS cycling CAS = VIH			40	mA
CC3(AV)	refreshing (Note 3)	M5K4164AL-15	t c(REF) = min, output open			35	mA
1	Average supply current from V _{CC} ,	M5K4164AL-12	RAS = VIL, CAS cycling			40	mA
CC4(AV)	page mode (Note 3, 4)	M5K4164AL-15	t CPG = min, output open			35	mA
1	Average supply current from V _{CC} ,	M5K4164AL-12	RAS=VIH, REF cycling			40	mA
CC5(AV)	automatic refreshing (Note 3)	M5K4164AL-15	tc(REF)=min. output open			35	mA
ICC6 (AV)	Average supply current from V_{CC} , se	If refreshing	$\overline{RAS} = V_{IH}, \ \overline{REF} = V_{IL}$			8	mA
C _{I (A)}	Input capacitance, address inputs					5	pF
C _{I (D)}	Input capacitance, data input		VI=VSS			5	pF
C1(W)	Input capacitance, write control input	t	f=1MHz			7	pF
CI (RAS)	Input capacitance, RAS input		Vi=25mVrms	-		10	pF
CI (CAS)	Input capacitance, CAS input					10	pF
CI(REF)	Input capacitance, REF input					10	pF
Co	Output capacitance		$V_0 = V_{SS}$, f = 1MHz, $V_i = 25$ mVrms			7	pF

Note 2: Current flowing into an IC is positive; out is negative. 3: ICC1(AV), ICC3(AV), ICC4(AV) and ICC5(AV) are dependent on cycle rate. Maximum current is measured at the fastest cycle rate.

4: I_{CC1(AV)} and I_{CC4(AV)} are dependent on output loading. Specified values are obtained with the output open.

65 536-BIT (65 536-WORD BY 1-BIT) DYNAMIC RAM

TIMING REQUIREMENTS (For Read, Write, Read-Modify-Write, Refresh, and Page-Mode Cvcle)

($Ta = 0 \sim 70^{\circ}C$, $V_{CC} = 5V \pm 10\%$, $V_{SS} = 0V$, unless otherwise noted, See notes 5, 6 and 7)

				M5K41	M5K4164AL-12		64AL-15	
Symbol	Parameter		Alternative Symbol	Limits		Limits		Unit
			Symbol	Min	Max	Min	Max	
t _{CRF}	Refresh cycle time		t _{REF}		2		2	ms
tw(RASH)	RAS high pulse width		t _{RP}	90		100		ns
tw(RASL)	RAS low pulse width		t _{RAS}	120	10000	150	10000	ns
tw(CASL)	CAS low pulse width		t _{CAS}	60	∞	75	œ	ns
tw(CASH)	CAS high pulse width	(Note 8)	t _{CPN}	30		35		ns
th(RAS-CAS)	CAS hold time after RAS		t _{CSH}	120		150		ns
t _h (CAS-RAS)	RAS hold time after CAS		t _{RSH}	60		75		ns
td (CAS-RAS)	Delay time, CAS to RAS	(Note 9)	t _{CRP}	- 20		-20		ns
t _{d(RAS-CAS)}	Delay time, RAS to CAS	(Note 10)	t _{RCD}	25	60	30	75	ns
t _{su(RA-RAS)}	Row address setup time before RAS		t _{ASR}	0		0		ns
t _{su (CA-CAS)}	Column address setup time before CAS		tASC	0		0		ns
t _{h(RAS-RA)}	Row address hold time after RAS		t _{RAH}	15		20		ns
t _{h (CAS-CA)}	Column address hold time after CAS		t _{CAH}	20		25		ns
t _{h(RAS-CA)}	Column address hold time after RAS		t _{AR}	90		95		ns
t _{THL}	Transition time		t _T	3	35	3	50	ns
t _{TLH}							50	.15

Note 5: An initial pause of 500 µs is required after power-up followed by any eight REF, RAS or RAS/CAS cycles before proper device operation is achieved.

The switching characteristics are defined as $t_{THL} = t_{TLH} = 5$ ns. 6.

Reference levels of input signals are $V_{IH min}$ and $V_{IL max}$. Reference levels for transition time are also between V_{IH} and V_{IL} . 7

8: Except for page-mode.

td(CAS.RAS) requirement is only applicable for RAS/CAS cycles preceeded by a CAS only cycle (i.e., For systems where CAS has not been decoded with RAS) ٩· 10: Operation within the td (RAS-CAS) max limit insures that ta (RAS) max can be met. td (RAS-CAS) max is specified reference point only, if

td (RAS-CAS) is greater than the specified td (RAS-CAS) max limit, then access time is controlled exclusively by ta (CAS). td (RAS-CAS)min = th (RAS-RA)min + 2t THL (t TLH) + t SU(CA-CAS)min.

SWITCHING CHARACTERISTICS (Ta = $0 \sim 70^{\circ}$ C, V_{CC} = $5V \pm 10\%$, V_{SS} = 0V, unless otherwise noted) **Read Cycle**

			Alternative	M5K4164AL-12 Limits		M5K41	64AL-15	
Symbol	Parameter	Symbol -	Limits			Unit		
			Min	Max	Min	Max		
t _{CR}	Read cycle time		t _{RC}	220		260		ns
tsu (R-CAS)	Read setup time before CAS		t _{RCS}	0		0		ns
th (CAS-R)	Read hold time after CAS	(Note 11)	t _{RCH}	0		0		ns
th(RAS-R)	Read hold time after RAS	(Note 11)	tяян	10		20		ns
tdis(CAS)	Output disable time	(Note 12)	t _{OFF}	0	35	0	40	ns
ta (CAS)	CAS access time	(Note 13)	t _{CAC}		60		75	ns
ta (RAS)	RAS access time	(Note 14)	t _{RAC}		120		150	ns

Note 11: Either th (RAS-R) or th (CAS-R) must be satisfied for a read cycle.

Note 12: tors (CAS) max defines the time at which the output achieves the open circuit condition and is not reference to VOH or VOL.

Note 13:

This is the value when td (RAS-CAS) \leq td (RAS-CAS)max. Test conditions : Load = 2T TL, C_L = 100 pF. This is the value when td (RAS-CAS) \leq td (RAS-CAS)max. When td (RAS-CAS) \geq td (RAS-CAS)max, ta (RAS) will increase by the amount that Note 14: td (RAS-CAS) exceeds the value shown. Test conditions ; Load = 2T TL, CL = 100pF

Write Cycle

		Alternative - Symbol -	M5K41	M5K4164AL-12		4AL-15	
Symbol	Parameter		Limits		Limits		Unit
			Min	Max	Min	Max	
t _{cw}	Write cycle time	t _{RC}	220		260		ns
tsu(w-CAS)	Write setup time before CAS (Note 17)	twcs	- 5		- 5		ns
th (CAS-W)	Write hold time after CAS	t wch	40		45		ns
th (RAS-W)	Write hold time after RAS	t wcR	90		95		ns
th(W-RAS)	RAS hold time after write	t _{RWL}	40		45		ns
th (w-CAS)	CAS hold time after write	t _{CWL}	40		45		ns
tw(w)	Write pulse width	t _{WP}	40		45		ns
tsu (D-CAS)	Data-in setup time before CAS	t _{DS}	0		0		ns
th (CAS-D)	Data-in hold time after CAS	t _{DH}	40		45		ns
th (RAS-D)	Data-in hold time after RAS	t _{DHR}	90		95		ns

65 536-BIT (65 536-WORD BY 1-BIT) DYNAMIC RAM

			Alternative	M5K41	64AL-12	M5K416	64AL-15	
Symbol	Parameter	Parameter		Limits		Limits		Unit
		Symbol	Min	Max	Min	Max		
t _{cRw}	Read-write cycle time	(Note 15)	t _{RWC}	245		280		ns
t _{cRMW}	Read-modify-write cycle time.	(Note 16)	t _{RMWC}	265		310		ns
th (w-RAS)	RAS hold time after write		t _{RWL}	40		45		ns
th (w-CAS)	CAS hold time after write		t _{CWL}	40		45		ns
tw(w)	Write pulse width		twp	40		45		ns
tsu (R-CAS)	Read setup time before CAS		t _{RCS}	0		0		ns
td (RAS-W)	Delay time, RAS to write	(Note 17)	t _{RWD}	100		120		ns
td (CAS-W)	Delay time, CAS to write	(Note 17)	t _{CWD}	40		60		ns
tsu(D-W)	Data-in setup time before write		t _{DS}	0		0		ns
th (w-D)	Data-in hold time after write		t _{DH}	40		45		ns
tdis (CAS)	Output disable time		t _{OFF}	0	35	0	40	ns
ta (CAS)	CAS access time	(Note 13)	t _{CAC}		60		75	ns
ta (RAS)	RAS access time	(Note 14)	t _{RAC}		120		150	ns

Read-Write and Read-Modify-Write Cycles

Note 15: t_{CRW} min is defined as t_{CRW} min = $t_{d_{(RAS-W)}} + t_{h_{(W-RAS)}} + t_{w_{(RASH)}} + 3t_{TLH(t_{THL})}$

16: t CRMW min is defined as t CRMW min = ta (RAS) max + th (W-RAS) + tw (RAS H) + 3t TLH(tTHL)

17: tsu (w-CAS), td (RAS-w), and td (CAS-w) do not define the limits of operation, but are included as electrical characteristics only.

When tsu (w-cas)≧tsu (w-cas)min, an early-write cycle is performed, and the data output keeps the high-impedance state.

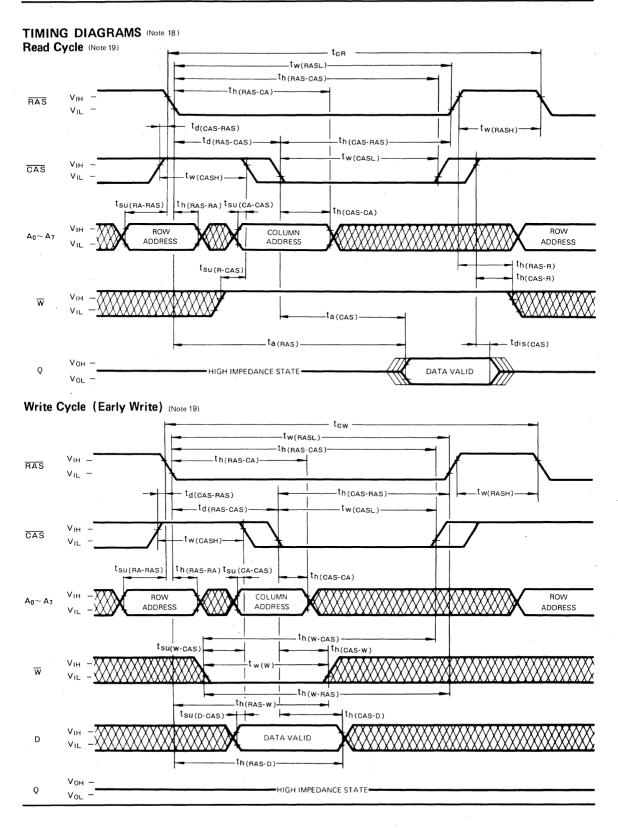
When $td(RAS-w) \ge td(RAS-w)min$, and $td(CAS-w) \ge tsu(w-CAS)min$ a read-write cycle is performed, and the data of the selected address will be read out on the data output.

For all conditions other than those described above, the condition of data output (at access time and until \overline{CAS} goes back to V(H) is not defined.

Page-Mode Cycle

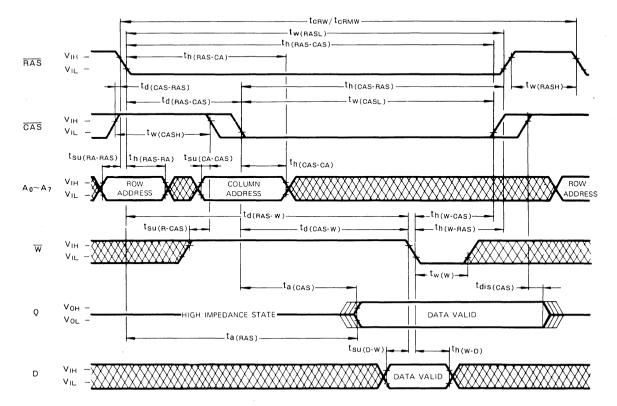
		Alternative	M5K4164AL-12 Limits		M5K4164AL-15 Limits			
Symbol	Parameter	Symbol					Unit	
		Symbol	Min	Max	Min	Max		
t _{c PGR}	Page-mode read cycle time	t _{PC}	140		145		ns	
t _{c PGW}	Page-Mode write cycle time	t _{PC}	140		145		ns	
t _{C PGRW}	Page-Mode read-write cycle time	-	150		180		ns	
t _{.C PGRMW}	Page-Mode read-modify-write cycle time	-	170		195		ns	
tw (CASH)	CAS high pulse width	t _{CP}	55		60		ns	

Automatic Refresh Cycle

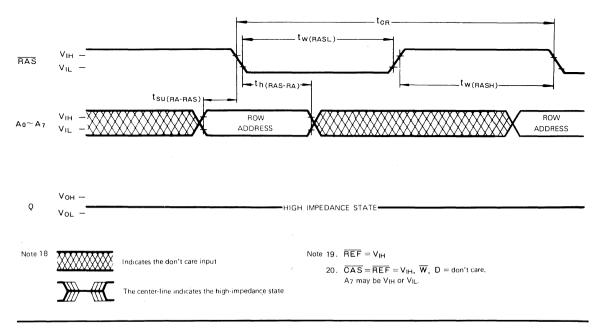

		Alternative	M5K4164AL-12		M5K416	64AL-15		
Symbol	Parameter	Symbol	Lir	nits	Lir	nits	Unit	
		Symbol	Min	Max	Min	Max		
tc (REF)	Automatic Refresh cycle time	t _{FC}	220		260		ns	
td (RAS-REF)	Delay time, RAS to REF	t _{RFD}	90		100		ns	
tw(REFL)	REF low pulse width	t _{FP}	60	8000	60	8000	ns	
tw(REFH)	REF high pulse width	t _{FI}	- 30		30		ns	
td (REF-RAS)	Delay time, REF to RAS	t _{FSR}	30		30		ns	
tsu (REF-RAS)	REF pulse setup time before RAS	t _{FRD}	250		295		ns	

Self-Refresh Cycle

Symbol		Alternative Symbol	M5K4164AL-12 Limits		M5K41		
	Parameter				Limits		Unit
		3711001	Min	Max	Min	Max	
td (RAS-REF)	Delay time, RAS to REF	t _{RFD}	90		100		ns
tw(REFL)	REF low pulse width	t _{FBP}	8000	∞	8000	œ	ns
td (REF-RAS)	Delay time, REF to RAS	t _{FBR}	250		295		ns



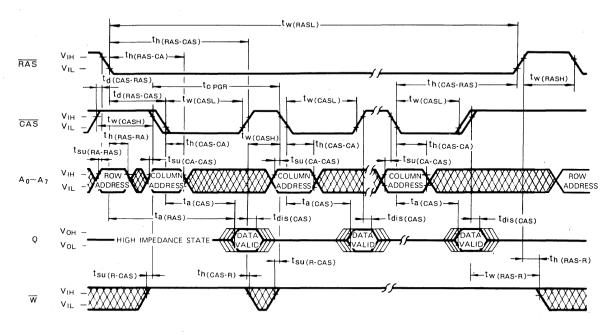
65 536-BIT (65 536-WORD BY 1-BIT) DYNAMIC RAM



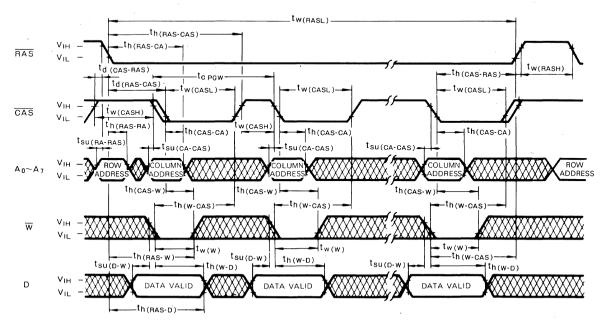
65 536-BIT (65 536-WORD BY 1-BIT) DYNAMIC RAM

Read-Write and Read-Modify-Write Cycles (Note 19)

RAS-Only Refresh Cycle (Note 20)

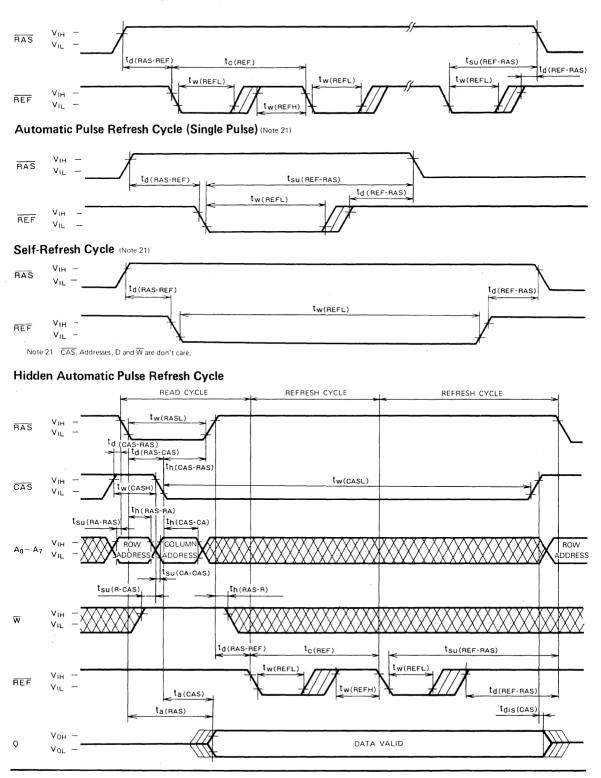


MITSUBISHI LSIs


M5K4164AL-12, -15

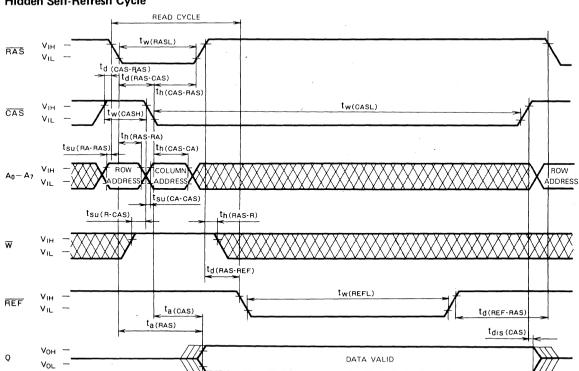
65 536-BIT (65 536-WORD BY 1-BIT) DYNAMIC RAM

Page-Mode Read Cycle (Note 19)

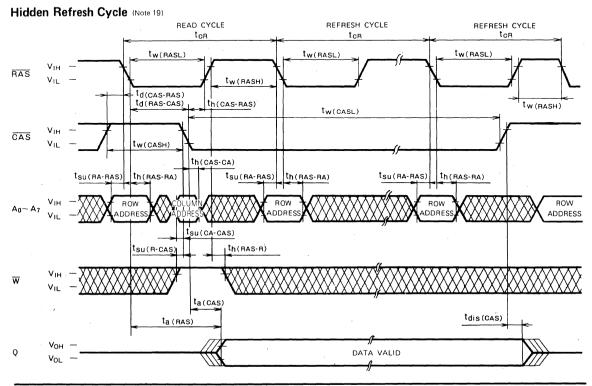

Page-Mode Write Cycle (Note 19)

65 536-BIT (65 536-WORD BY 1-BIT) DYNAMIC RAM

Automatic Pulse Refresh Cycle (Multiple Pulse) (Note 21)



MITSUBISHI LSIS


M5K4164AL-12. -15

65 536-BIT (65 536-WORD BY 1-BIT) DYNAMIC RAM

Hidden Self-Refresh Cycle

Note 22. If the pin 5 (REF) function is not used, pin 5 may be left open (not connect).

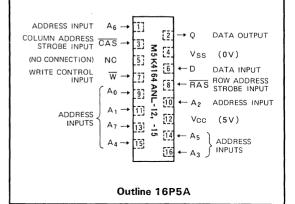
65 536-BIT (65 536-WORD BY 1-BIT) DYNAMIC RAM

DESCRIPTION

This is a family of 65 536-word by 1-bit dynamic RAMs, fabricated with the high performance N-channel silicongate MOS process, and is ideal for large-capacity memory systems where high speed, low power dissipation, and low costs are essential. The use of double-layer polysilicon process technology and a single-transistor dynamic storage cell privide high circuit density at reduced costs, and the use of dynamic circuitry including sense amplifiers assures low power dissipation. Multiplexed address inputs permit both a reduction in pins to the 16-pin zigzag inline package configuration and an increase in system densities. The M5K4164ANL operates on a 5V power supply using the on-chip substrate bias generator.

FEATURES

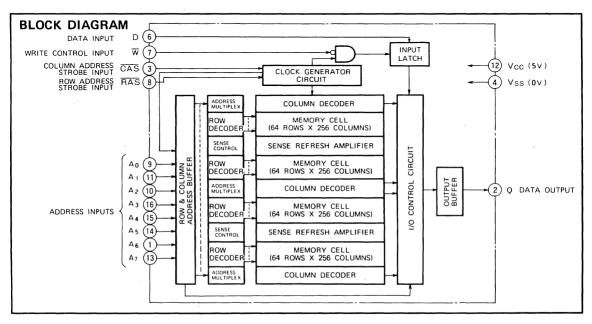
• High speed


Type name	Access time (max) (ns)	Cycle time (min) (ns)	Power dissipation (typ) (mW)
M5K4164ANL-12	120	220	175
M5K4164ANL-15	150	260	150

- 16 pin zigzag inline package
- Single 5V±10% supply
- Low standby power dissipation: 22mW (max)
- Low operating power dissipation:

M5K4164ANL-12 275mW (max) M5K4164ANL-15 250mW (max)

- Unlatched output enables two-dimensional chip selection and extended page boundary
- Early-write operation gives common I/O capability
- Read-modify-write, RAS-only refresh, and page-mode capabilities



- All input terminals have low input capaciatance and are directly TTL-compatible
- Output is three-state and directly TTL-compatible
- 128 refresh cycles every 2ms (16K dynamic RAMs M5K4116P, S compatible)
- CAS controlled output allows hidden refresh
- Output data can be held infinitely by CAS

APPLICATION

- Main memory unit for computers
- Refresh memory for CRT

65 536-BIT (65 536-WORD BY 1-BIT) DYNAMIC RAM

FUNCTION

The M5K4164ANL provides, in addition to normal read, write, and read-modify-write operations, a number of other functions, e.g., page mode, \overline{RAS} -only refresh, and delayed-write. The input conditions for each are shown in Table 1.

Table 1 Input conditions for each mode

:			Ing	outs			Output		
Operation	RAS	CAS	w	D	Row address	Column address	Q	Refresh	Remarks
Read	ACT	ACT	NAC	DNC	APD	APD	VLD	YES	
Write (Early write)	ACT	ACT	ACT	VLD	APD	APD	OPN	YES	Page mode identical.
Read-modify-write	ACT	ACT	ACT	VLD	APD	APD	VLD [.]	YES	
RAS-only refresh	ACT	NAC	DNC	DNC	APD	DNC	OPN	YES	
Hidden refresh	ACT	ACT	DNC	DNC	APD	DNC	VLD	YES	
Standby	NAC	DNC	DNC	DNC .	DNC	DNC	OPN	NO	

Note: ACT : active, NAC : nonactive, DNC : don't care, VLD : valid, APD : applied, OPN : open.

SUMMARY OF OPERATIONS Addressing

To select one of the 65 536 memory cells in the M5K4164ANL the 16-bit address signal must be multiplexed into 8 address signals, which are then latched into the on-chip latch by two externally-applied clock pulses. First, the negative-going edge of the row-address-strobe pulse (\overline{RAS}) latches the 8 row-address bits; next, the negative-going edge of the column-address-strobe pulse (\overline{CAS}) latches the 8 column-address bits. Timing of the \overline{RAS} and \overline{CAS} clocks can be selected by either of the following two methods:

- 1. The delay time from \overline{RAS} to \overline{CAS} t_d (RAS-CAS) is set between the minimum and maximum values of the limits. In this case, the internal \overline{CAS} control signals are inhibited almost until t_d(RAS-CAS) max ('gated \overline{CAS}' operation). The external \overline{CAS} signal can be applied with a margin not affecting the on-chip circuit operations, e.g. access time, and the address inputs can be easily changed from row address to column address.
- 2. The delay time $t_{d(RAS-CAS)}$ is set larger than the maximum value of the limits. In this case the internal inhibition of \overline{CAS} has already been released, so that the internal \overline{CAS} control signals are controlled by the externally applied \overline{CAS} , which also controls the access time.

Data Input

Data to be written into a selected cell is strobed by the later of the two negative transistons of \overline{W} input and \overline{CAS} input. Thus when the \overline{W} input makes its negative transition prior to \overline{CAS} input (early write), the data input is strobed by \overline{CAS} , and the negative transition of \overline{CAS} is set as the reference point for set-up and hold times. In the read-write or read-modify-write cycles, however, when the \overline{W} input makes its negative transition after \overline{CAS} , the \overline{W} negative transition is set as the reference point for setup and hold times.

Data Output Control

The output of the M5K4164ANL is in the high-impedance state when \overline{CAS} is high. When the memory cycle in progress is a read, read-modify-write, or a delayed-write cycle, the data output will go from the high-impedance state to the active condition, and the data in the selected cell will be read. This data output will have the same polarity as the input data. Once the output has entered the active condition, this condition will be maintained until \overline{CAS} goes high, irrespective of the condition of \overline{RAS} .

The output will remain in the high-impedance state throughout the entire cycle in an early-write cycle.

These output conditions, of the M5K4164ANL, which can readily be changed by controlling the timing of the write pulse in a write cycle, and the width of the CAS pulse in a read cycle, offer capabilities for a number of applications, as follows.

1. Common I/O Operation

If all write operations are performed in the early-write mode, input and output can be connected directly to give a common I/O data bus.

2 Data Output Hold

The data output can be held between read cycles, without lengthening the cycle time. This enables extremely flexible clock-timing settings for \overline{RAS} and \overline{CAS} .

65 536-BIT (65 536-WORD BY 1-BIT) DYNAMIC RAM

3. Two Methods of Chip Selection

Since the output is not latched, \overline{CAS} is not required to keep the outputs of selected chips in the matrix in a highimpedance state. This means that \overline{CAS} and/or \overline{RAS} can both be decoded for chip selection.

4. Extended-Page Boundary

By decoding \overline{CAS} , the page boundary can be extended beyond the 256 column locations in a single chip. In this case, \overline{RAS} must be applied to all devices.

Page-Mode Operation

This operation allows for multiple-column addressing at the same row address, and eliminates the power dissipation associated with the negative-going edge of \overline{RAS} , because once the row address has been strobed, \overline{RAS} is maintained. Also, the time required to strobe in the row address for the second and subsequent cycles is eliminated, thereby decreasing the access and cycle times.

Refresh

Each of the 128 rows (A₀ \sim A₆) of the M5K4164ANL must be refreshed every 2 ms to maintain data. The methods of refreshing for the M5K4164ANL are as follows.

1. Normal Refresh

Read cycle and Write cycle (early write, delayed write or read-modify-write) refresh the selected row as defined by the low order (\overline{RAS}) addresses. Any write cycle, of course, may change the state of the selected cell. Using a read, write, or read-modify-write cycle for refresh is not recommended for systems which utilize "write-OR" outputs since output bus contention will occur.

2. RAS Only Refresh

A \overline{RAS} -only refresh cycle is the recommended technique for most applications to provide for data retention. A \overline{RAS} -only refresh cycle maintains the output in the high-impedance state with a typical power reduction of 20% over a read or write cycle.

3. Hidden Refresh

A feature of the M5K4164ANL is that refresh cycles may be performed while maintaining valid data at the output pin by extending the \overline{CAS} active time from a previous memory read cycle. This feature is refered to as hidden refresh.

Hidden refresh is performed by holding \overline{CAS} at V_{1L} and taking \overline{RAS} high and after a specified precharge period, executing a \overline{RAS} -only cycling, but with \overline{CAS} held low.

The advantage of this refresh mode is that data can be held valid at the output data port indefinitely by leaving the CAS asserted. In many applications this eliminates the need for off-chip latches.

Power Dissipation

Most of the circuitry in the M5K4164ANL is dynamic, and most of the power is dissipated when addresses are strobed. Both \overline{RAS} and \overline{CAS} are decoded and applied to the M5K4164ANL as chip-select in the memory system, but if \overline{RAS} is decoded, all unselected devices go into stand-by independent of the \overline{CAS} condition, minimizing system power dissipation.

Power Supplies

The M5K4164ANL operates on a single 5V power supply.

A wait of some 500µs and eight or more dummy cycles is necessary after power is applied to the device before memory operation is achieved.

65 536-BIT (65 536-WORD BY 1-BIT) DYNAMIC RAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Paramater	Conditions	Limits	Unit
Vcc	Supply voltage		-1-7	V
Vi	Input voltage	With respect to V _{SS}	-1-7	v
Vo	Output voltage		-1-7	V
10	Output current		50	mA
Pd	Power dissipation	Ta = 25°C	700	mW
Topr	Operating free-air temperature range	-	0~70	°C
Tstg	Storage temperature range		- 65 ~ 150	°C

RECOMMENDED OPERATING CONDITIONS (Ta = 0 ~ 70°C, unless otherwise noted) (Note 1)

Symbol	Parameter			Unit	
	Farameter	Min	Nom	Max	Unit
Vcc	Supply voltage	4.5	5	5.5	v
Vss	Supply voltage	0	0	0	V
ViH	High-level input voltage, all inputs	2.4		6.5	V
VIL	Low-level input voltage, all inputs	-2		0.8	V

Note 1. All voltage values are with respect to VSS

ELECTRICAL CHARACTERISTICS ($Ta = 0 \sim 70^{\circ}C$, $V_{CC} = 5V \pm 10\%$, $V_{SS} = 0V$, unless otherwise noted) (Note 2)

Symbol	Parameter		Test conditions		Limits		
SYNDO	Parameter		Test conditions	Min	Тур	Max	Unit
Voн	High-level output voltage		$I_{OH} = -5mA$	2.4		Vcc	v
VOL	Low-level output voltage		I _{OL} =4.2mA	0		0.4	v
loz	Off-state output current		Q floating $0V \leq V_{OUT} \leq 5.5V$	- 10		10	μA
lj –	Input current	ξ.	$0V \leq V_{IN} \leq 6.5V$, All other pins = $0V$	- 10		10	μA
loov	Average supply current from V _{CC} ,	M5K4164ANL-12	RAS, CAS cycling			50	mA
CC1(AV)	operating (Note 3, 4)	M5K4164ANL-15	$t_{CR} = t_{CW} = \min$ output open			45	mA
I CC2	Supply current from V _{CC} , standby		RAS = VIH output open			4	mA
lass	Average supply current from V _{CC} ,	M5K4164ANL-12	\overrightarrow{RAS} cycling $\overrightarrow{CAS} = \overrightarrow{V}_{IH}$			40	mA
CC3(AV)	refreshing (Note 3)	M5K4164ANL-15	$t_{C(\overline{REF})} = min$, output open			35	mA
Loov	Average supply current from VCC,	M5K4164ANL-12	$\overline{RAS} = V_{IL}$, \overline{CAS} cycling			40	mA
CC4(AV)	page mode (Note 3, 4)	M5K4164ANL-15	t cpg = min, output open			35	mA
C1 (A)	Input capacitance, address inputs					5	pF
C1 (D)	Input capacitance, data input		VI=VSS			5	pF
C1(w)	Input capacitance, write control inpu	it	f=1MHz			7	pF
CI (RAS)	Input capacitance, RAS input		Vi=25mVrms			10	pF
CI (CAS)	Input capacitance, CAS input					10	pF
Co	Output capacitance		$V_0 = V_{SS}$, f = 1MHz, V _i =25mVrms	<u>† – – – – – – – – – – – – – – – – – – –</u>		7	pF

Note 2: Current flowing into an IC is positive , out is negative.

3: ICC1(AV), ICC3(AV), and ICC4(AV) are dependent on cycle rate. Maximum current is measured at the fastest cycle rate.

4: ICC1(AV) and ICC4(AV) are dependent on output loading. Specified values are obtained with the output open.

65 536-BIT (65 536-WORD BY 1-BIT) DYNAMIC RAM

TIMING REQUIREMENTS (For Read, Write, Read-Modify-Write, Refresh, and Page-Mode Cycle)

 $(Ta = 0 \sim 70^{\circ}C, V_{CC} = 5V \pm 10\%, V_{SS} \approx 0V, unless otherwise noted. See notes 5, 6 and 7)$

				M5K416	4ANL-12	M5K416	4ANL-15	
Symbol	Parameter		Alternative Symbol	Lin	nits	Lir	nits	Unit
		ĺ	Symbol	Min	Max	Min	Max	
t _{CRF}	Refresh cycle time		t _{REF}		2		2	ms
tw(RASH)	RAS high pulse width		t _{RP}	90		100		ns
tw(RASL)	RAS low pulse width		t _{RAS}	120	10000	150	10000	ns
tw(CASL)	CAS low pulse width		t _{CAS}	60	∞	75	∞	ns
tw(CASH)	CAS high pulse width	(Note 8)	t _{CPN}	30		35		ns
t _{h(RAS-CAS)}	CAS hold time after RAS		t _{CSH}	120		150		ns
t _{h(CAS-RAS)}	RAS hold time after CAS		t _{RSH}	60		75		ns
td (CAS-RAS)	Delay time, CAS to RAS	(Note 9)	t _{CRP}	- 20		-20		ns
t _{d(RAS-CAS)}	Delay time, RAS to CAS	(Note 10)	t _{RCD}	25	60	30	75	ns
t _{su(RA-RAS)}	Row address setup time before RAS		t _{ASR}	0		0		ns
t su(ca-cas)	Column address setup time before CAS		t ASC	0		0		ns
t _{h(RAS-RA)}	Row address hold time after RAS		t _{RAH}	15		20		ns
t _{h(CAS-CA)}	Column address hold time after CAS		t _{CAH}	20		25		ns
t _h (RAS-CA)	Column address hold time after RAS		t _{AR}	90		95		ns
t _{THL}	Transition time		t_	3	35	3	50	
t _{TLH}	nansiuon une		t _T	3	35	3	50	ns

Note 5: An initial pause of 500 µs is required after power-up followed by any eight RAS or RAS/CAS cycles before proper device operation is achieved.

6 The switching characteristics are defined as $t_{THL} = t_{TLH} = 5$ ns.

Reference levels of input signals are V_{IH} min, and V_{IL} max. Reference levels for transition time are also between V_{IH} and V_{IL} . 7

8. Except for page-mode.

3. td(CAS.RAS) requirement is only applicable for RAS/CAS cycles preceeded by a CAS only cycle (i.e., For systems where CAS has not been decoded with RAS.)

10: Operation within the td (BAS-CAS) max limit insures that ta (BAS) max can be met. td (BAS-CAS) max is specified reference point only, if td (RAS-CAS) is greater than the specified td (RAS-CAS) max limit, then access time is controlled exclusively by ta(CAS).

td (RAS-CAS)min = th (RAS-RA)min + 2t THL(t TLH) + t su(CA-CAS)min.

SWITCHING CHARACTERISTICS (Ta = $0 \sim 70^{\circ}$ C, V_{CC} = 5V ± 10%, V_{SS} = 0V, unless otherwise noted) **Read Cycle**

			Alternative	M5K4164ANL-12		M5K4164ANL-15		
Symbol	Parameter		Symbol	Lir	nits	Lin	nits	Unit
			Symbol	Min	Max	Min	Max	
t _{CR}	Read cycle time		t _{RC}	220		260		ns
tsu (R-CAS)	Read setup time before CAS		t _{RCS}	0		0		ns
th(CAS-R)	Read hold time after CAS (No	ote 11)	t _{RCH}	0		0		ns
th(RAS-R)	Read hold time after RAS (No	te 11)	t RRH	10		20		ns
tdis(CAS)	Output disable time (No	te 12)	t _{OFF}	0	35	0	40	ns
ta (CAS)	CAS access time (No	te 13)	t _{CAC}		60		75	ns
ta (RAS)	RAS access time (No	te 14)	t _{RAC}		+120		150	ns

Note 11: Either th (BAS-B) or th (CAS-B) must be satisfied for a read cycle.

Note 12: tdis (CAS) max defines the time at which the output achieves the open circuit condition and is not reference to VOH or VOL.

Note 13

This is the value when $td(RAS-CAS) \ge td(RAS-CAS)max$. Test conditions : Load = 2T TL, $C_L = 100 \text{pF}$. This is the value when td(RAS-CAS) < td(RAS-CAS)max. When $td(RAS-CAS) \ge td(RAS-CAS)max$, ta(RAS) will increase by the amount that Note 14: td (RAS-CAS) exceeds the value shown. Test conditions ; Load = 2T TL, CL = 100pF

Write Cycle

Symbol	Parameter	Alternative	M5K4164ANL-12 Limits		M5K4164ANL-15 Limits		Unit	
		Symbol	Min	Max	Min	Max		
t _{cw}	Write cycle time	t _{RC}	220		260		ns	
tsu(w-CAS)	Write setup time before CAS (Note 17)	t wcs	-5	_	- 5		ns	
th (CAS-W)	Write hold time after CAS	t _{WCH}	40		45		ns	
th (RAS-W)	Write hold time after RAS	t _{WCR}	90		95		ns	
th (w-RAS)	RAS hold time after write	t _{RWL}	40		45		ns	
th (w-CAS)	CAS hold time after write	t _{cw∟}	40		45		ns	
tw(w)	Write pulse width	twp	40		45		ns	
tsu(D-CAS)	Data-in setup time before CAS	t _{DS}	0		0		ns	
th (CAS-D)	Data-in hold time after CAS	t _{DH}	40		45		ns	
th (RAS-D)	Data-in hold time after RAS	t _{DHR}	90		95		ns	

MITSUBISHI LSIs

M5K4164ANL-12, -15

65 536-BIT (65 536-WORD BY 1-BIT) DYNAMIC RAM

			Alternative	M5K416	4ANL-12	M5K41	64ANL-15	
Symbol	Parameter		Symbol	Limits		Limits		Unit
			37/11501	Min	Max	Min	Max	1
t _{CRW}	Read-write cycle time	(Note 15)	t _{RWC}	245		280		ns
tormw	Read-modify-write cycle time	(Note 16)	t _{RMWC}	265		310		ns
th (w-RAS)	RAS hold time after write		t _{RWL}	40		45		ns
th (w-CAS)	CAS hold time after write		t _{CWL}	40		45		ns
tw(w)	Write pulse width		t _{WP}	40		45		ns
tsu (R-CAS)	Read setup time before CAS		t _{RCS}	0		0		ns
td (RAS-W)	Delay time, RAS to write	(Note 17)	tRWD	100		120		ns
td (CAS-W)	Delay time, CAS to write	(Note 17)	t _{CWD}	40		60		ns
tsu(D-W)	Data-in setup time before write		t _{DS}	0		0		ns
th _(w-D)	Data-in hold time after write		t _{DH}	40		45		ns
tdis (CAS)	Output disable time		t _{OFF}	0	35	0	40	ns
ta (CAS)	CAS access time	(Note 13)	t _{CAC}		60		75	ns
ta (RAS)	RAS access time	(Note 14)	t _{RAC}		120		150	ns

Read-Write and Read-Modify-Write Cycles

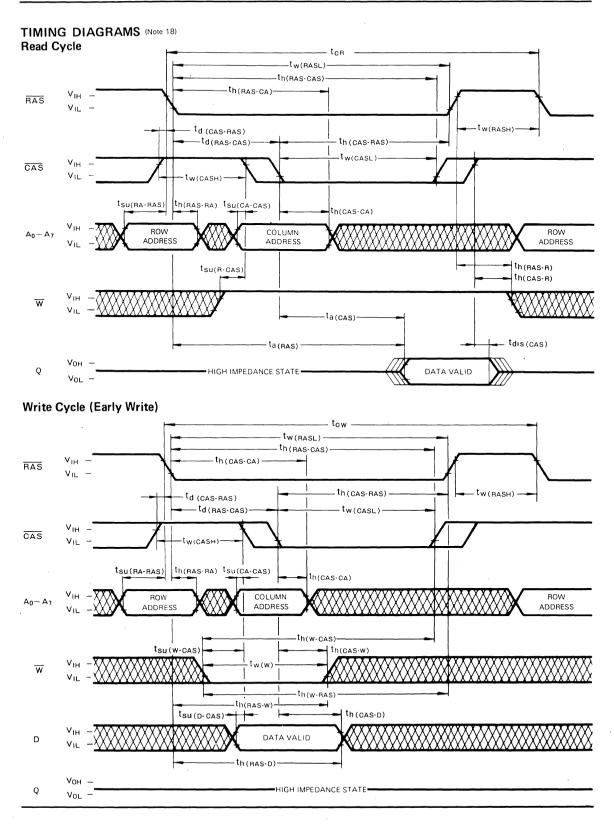
Note 15: t_{CRW} min is defined as t_{CRW} min = $t_{d}(_{RAS-W}) + t_{h}(_{W-RAS}) + t_{w}(_{RASH}) + 3t_{TLH}(_{THL})$

16: t_{CRMW} min is defined as t_{CRMW} min = t_{a} (RAS) max + t_{h} (W-RAS) + t_{W} (RAS H) + $3t_{TLH}$ (t_{THL})

17 tsu (w-CAS), td (RAS-w), and td (CAS-w) do not define the limits of operation, but are included as electrical characteristics only.

When tsu (w-cas) ≥ tsu (w-cas)min, an early-write cycle is performed, and the data output keeps the high-impedance state.

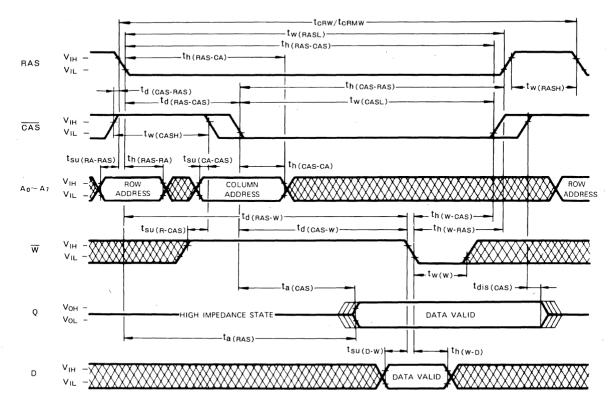
When td (RAS-w) ≥ td (RAS-w)min, and td (CAS-w) ≥ tsu (w-CAS)min a read-write cycle is performed, and the data of the selected address will be read out on the data output,


For all conditions other than those described above, the condition of data output (at access time and until CAS goes back to VIH) is not defined.

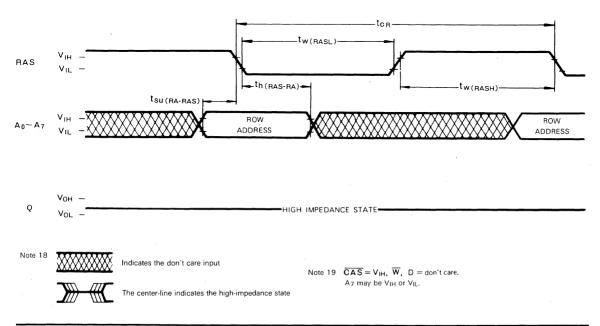
Page-Mode Cycle

		Alternative	M5K4164ANL-12 Limits		M5K4164ANL-15 Limits		Unit
Symbol	Parameter	Symbol					
		3911001	Min	Max	Min	Max	
t _{c PGR}	Page-mode read cycle time	t _{PC}	140		140		ns
t _{c PGW}	Page-Mode write cycle time	t _{PC}	140		145		ns
t _{c PGRW}	Page-Mode read-write cycle time	-	150		180		ns
t _{CPGRMW}	Page-Mode read-modify-write cycle time		170		195		ns
tw(CASH)	CAS high pulse width	t _{CP}	55		60		ns

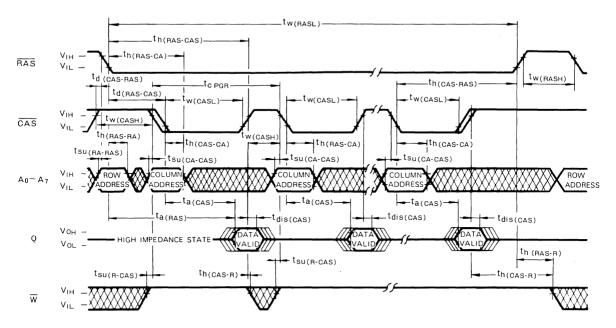
65 536-BIT (65 536-WORD BY 1-BIT) DYNAMIC RAM



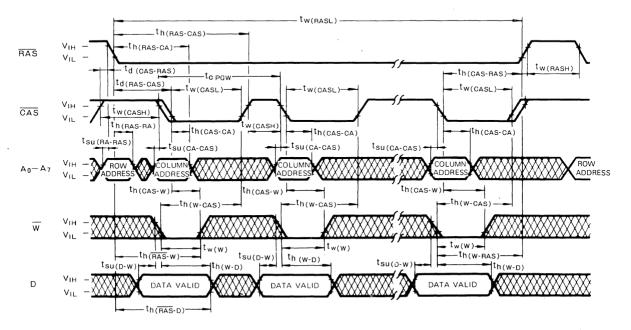
MITSUBISHI LSIs


M5K4164ANL-12, -15

65 536-BIT (65 536-WORD BY 1-BIT) DYNAMIC RAM


Read-Write and Read-Modify-Write Cycles

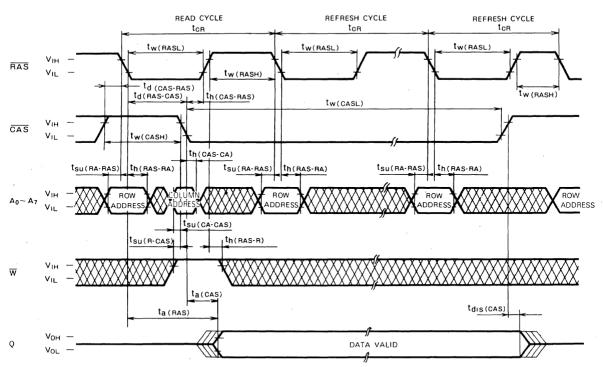
RAS-Only Refresh Cycle (Note 19)



65 536-BIT (65 536-WORD BY 1-BIT) DYNAMIC RAM

Page-Mode Read Cycle

Page-Mode Write Cycle



MITSUBISHI LSIs

M5K4164ANL-12, -15

65 536-BIT (65 536-WORD BY 1-BIT) DYNAMIC RAM

Hidden Refresh Cycle

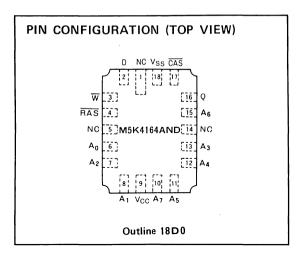
.

65 536-BIT (65 536-WORD BY 1-BIT) DYNAMIC RAM

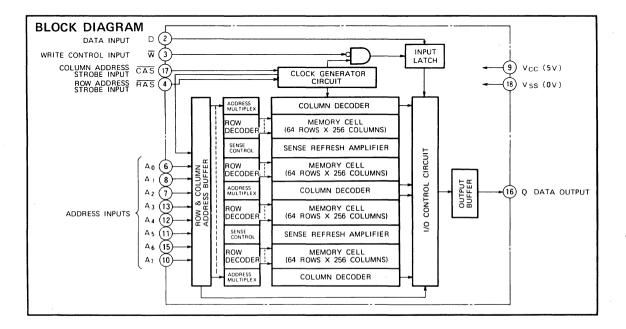
DESCRIPTION

This is a family of 65 536-word by 1-bit dynamic RAMs, fabricated with the high performance N-channel silicongate MOS process, and is ideal for large-capacity memory systems where high speed, low power dissipation, and low costs are essential. The use of double-layer polysilicon process technology and a single-transistor dynamic storage cell privide high circuit density at reduced costs, and the use of dynamic circuitry including sense amplifiers assures low power dissipation. Multiplexed address inputs permit both a reduction in pins to the 18-pin chip carrier package configuration and an increase in system densities. The M5K4164AND operates on a 5V power supply using the on-chip substrate bias generator.

FEATURES


Performance ranges

Туре пате	Access time (max) (ns)	Cycle time (min) (ns)	Power dissipation (typ) (mW)
M5K4164AND-12	120	220	175
M5K4164AND-15	150	260	150


- Single 5V±10% supply
- Low standby power dissipation: 22mW (max)
- Low operating power dissipation:

M5K4164AND-12 275mW (max) M5K4164AND-15 250mW (max)

- Unlatched output enables two-dimensional chip selection and extended page boundary
- Early-write operation gives common I/O capability
- Read-modify-write, RAS-only refresh, and page-mode capabilities

- All input terminals have low input capaciatance and are directly TTL-compatible
- Output is three-state and directly TTL-compatible
- 128 refresh cycles every 2ms (16K dynamic RAMs M5K4116P, S compatible)
- CAS controlled output allows hidden refresh
- Output data can be held infinitely by CAS
- APPLICATION
- Main memory unit for computers

65 536-BIT (65 536-WORD BY 1-BIT) DYNAMIC RAM

FUNCTION

The M5K4164AND provides, in addition to normal read, write, and read-modify-write operations, a number of other functions, e.g., page mode, \overline{RAS} -only refresh, and delayed-write. The input conditions for each are shown in Table 1.

Table 1 Input conditions for each mode

			Ing	outs			Output		
Operation	RAS	CAS	w	D	Row address	Column address	Q	Refresh	Remarks
Read	ACT	ACT	NAC	DNC	APD	APD	VLD	YES	Page mode
Write	ACT	ACT	ACT	VLD	APD	APD	OPN	YES	identical except
Read-modify-write	ACT	ACT	ACT	VLD	APD	APD	VLD	YES	refresh is NO.
RAS only refresh	ACT	NAC	DNC	DNC	APD	DNC	OPN	YES	
Hidden refresh	ACT	ACT	DNC	DNC	APD	DNC	VLD	YES	
Standby	NAC	DNC	DNC	DNC	DNC	DNC	OPN	NO	

Note: ACT: active, NAC: nonactive, DNC: don't care, VLD: valid, APD: applied, OPN: open.

SUMMARY OF OPERATIONS

Addressing

To select one of the 65536 memory cells in the M5K4164AND the 16-bit address signal must be multiplexed into 8 address signals, which are then latched into the on-chip latch by two externally-applied clock pulses. First, the negative-going edge of the row-address-strobe pulse (\overline{CAS}) latches the 8 column-address bits; next, the negative-going edge of the column-address-strobe pulse (\overline{CAS}) latches the 8 column-address bits. Timing of the RAS and \overline{CAS} clocks can be selected by either of the following two methods:

- 1. The delay time from \overrightarrow{RAS} to \overrightarrow{CAS} t_d (RAS-CAS) is set between the minimum and maximum values of the limits. In this case, the internal \overrightarrow{CAS} control signals are inhibited almost until t_d(RAS-CAS) max ('gated \overrightarrow{CAS}' operation). The external \overrightarrow{CAS} signal can be applied with a margin not affecting the on-chip circuit operations, e.g. access time, and the address inputs can be easily changed from row address to column address.
- 2. The delay time $t_{d(RAS-CAS)}$ is set larger than the maximum value of the limits. In this case the internal inhibition of \overline{CAS} has already been released, so that the internal \overline{CAS} control signals are controlled by the externally applied \overline{CAS} , which also controls the access time.

Data Input

Data to be written into a selected cell is strobed by the later of the two negative transistons of \overline{W} input and \overline{CAS} input. Thus when the \overline{W} input makes its negative transition prior to \overline{CAS} input (early write), the data input is strobed by \overline{CAS} , and the negative transition of \overline{CAS} is set as the reference point for set-up and hold times. In the read-write or read-modify-write cycles, however, when the \overline{W} input makes its negative transition after \overline{CAS} , the \overline{W} negative transition is set as the reference point for setup and hold times.

Data Output Control

The outut of the M5K4164AND is in the high-impedance state when \overline{CAS} is high. When the memory cycle in progress is a read, read-modify-write, or a delayed-write cycle, the data output will go from the high-impedance state to the active condition, and the data in the selected cell will be read. This data output will have the same polarity as the input data. Once the output has entered the active condition, this condition will be maintained until \overline{CAS} goes high, irrespective of the condition of \overline{RAS} .

The output will remain in the high-impedance state throughout the entire cycle in an early-write cycle.

These output conditions, of the M5K416AND, which can readily be changed by controlling the timing of the write pulse in a write cycle, and the width of the \overline{CAS} pulse in a read cycle, offer capabilities for a number of applications, as follows.

1. Common I/O Operation

If all write operations are performed in the early-write mode, input and output can be connected directly to give a common I/O data bus.

2 Data Output Hold

The data output can be held between read cycles, without lengthening the cycle time. This enables extremely flexible clock-timing settings for \overline{RAS} and \overline{CAS} .

65 536-BIT (65 536-WORD BY 1-BIT) DYNAMIC RAM

3. Two Methods of Chip Selection

Since the output is not latched, \overline{CAS} is not required to keep the outputs of selected chips in the matrix in a highimpedance state. This means that \overline{CAS} and/or \overline{RAS} can both be decoded for chip selection.

4. Extended-Page Boundary

By decoding \overline{CAS} , the page boundary can be extended beyond the 256 column locations in a single chip. In this case, \overline{RAS} must be applied to all devices.

Page-Mode Operation

This operation allows for multiple-column addressing at the same row address, and eliminates the power dissipation associated with the negative-going edge of \overline{RAS} , because once the row address has been strobed, \overline{RAS} is maintained. Also, the time required to strobe in the row address for the second and subsequent cycles is eliminated, thereby decreasing the access and cycle times.

Refresh

Each of the 128 rows ($A_0 \sim A_6$) of the M5K416AND must be refreshed every 2 ms to maintain data. The methods of refreshing for the M5K4164AND are as follows.

1. Normal Refresh

Read cycle and Write cycle (early write, delayed write or read-modify-write) refresh the selected row as defined by the low order (\overline{RAS}) addresses. Any write cycle, of course, may change the state of the selected cell. Using a read, write, or read-modify-write cycle for refresh is not recommended for systems which utilize "write-OR" outputs since output bus contention will occur.

2. RAS Only Refresh

A \overline{RAS} -only refresh cycle is the recommended technique for most applications to provide for data retention. A \overline{RAS} -only refresh cycle maintains the output in the high-impedance state with a typical power reduction of 20% over a read or write cycle.

3. Hidden Refresh

A features of the M5K4164AND is that refresh cycles may be performed while maintaining valid data at the output pin by extending the \overline{CAS} active time from a previous memory read cycle. This feature is referred to as hidden refresh.

Hidden refresh is performed by holding \overline{CAS} at V_{1L} and taking \overline{RAS} high and after a specified precharge period, executing a \overline{RAS} -only cycling, but with \overline{CAS} held low.

The advantage of this refresh mode is that data can be held valid at the output data port indefinitely by leaving the CAS asserted. In many applications this eliminates the need for off-chip latches.

Power Dissipation

Most of the circuitry in the M5K4164AND is dynamic, and most of the power is dissipated when addresses are strobed. Both \overline{RAS} and \overline{CAS} are decoded and applied to the M5K4164AND as chip-select in the memory system, but if \overline{RAS} is decoded, all unselected devices go into stand-by iindependent of the \overline{CAS} condition, minimizing system power dissipation.

Power Supplies

The M5K4164AND operates on a single 5V power supply. A wait of some 500 us and eight or more dummy cycles

is necessary after power is applied to the device before memory operation is achieved.

65 536-BIT (65 536-WORD BY 1-BIT) DYNAMIC RAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Paramater	Conditions	Limits	Unit
Vcc	Supply voltage		-1~7	V
VI	Input voltage	With respect to V _{SS}	-1-7	V
Vo	Output voltage		-1~7	V
10	Output current		50	mA
Pd	Power dissipation	Ta=25°C	1000	mW
Topr	Operating free-air temperature range		0~70	°C
Tstg	Storage temperature range		- 65 ~ 150	°C

RECOMMENDED OPERATING CONDITIONS (Ta =0 ~70°C, unless otherwise noted) (Note 1)

Symbol	Parameter		Limits				
			Nom	Max	Unit		
Vico	Supply voltage	4.5	5	5.5	v		
Vss	Supply voltage	0	0	0	v		
ViH	High-level input voltage, all inputs	2.4		6.5	. V		
VIL	Low-level input voltage, all inputs	-2		0.8	v		

Note 1. All voltage values are with respect to VSS

ELECTRICAL CHARACTERISTICS (Ta = $0 \sim 70^{\circ}$ C, V_{CC} = $5V \pm 10\%$, V_{SS} = 0V, unless otherwise noted) (Note 2)

Cumbel	D		Test conditions		Limits		
Symbol	Parameter		Test conditions	Min	Тур	Max	Unit
Voн	High-level output voltage		I _{OH} = -5mA	2.4		Vcc	V
VOL	Low-level output voltage		I _{OL} =4.2mA	0		0.4	V
Ioz	Off-state output current		Q floating $0V \leq V_{OUT} \leq 5.5V$	- 10		10	μA
li –	Input current		$0V \leq V_{IN} \leq 6.5V$, All other pins = $0V$	- 10		10	μA
locutory	Average supply current from V _{CC} ,	M5K4164AND-12	RAS, CAS cycling			50	mA
CC1(AV)	operating (Note 3, 4)	M5K4164AND-15	$t_{CR} = t_{CW} = min \text{ output open}$			45	mA
I CC2	Supply current from V _{CC} , standby		RAS = VIH output open			4	mA
lees	Average supply current from V _{CC} ,	M5K4164AND-12	\overline{RAS} cycling $\overline{CAS} = V_{IH}$			40	mA
CC3(AV)	refreshing (Note 3)	M5K4164AND-15	$t_{C(\overline{REF})} = min$, output open			35	mA
المعيديين	Average supply current from V _{CC} ,	M5K4164AND-12	RAS = VIL, CAS cycling			40	mA
CC4(AV)	page mode (Note 3, 4)	M5K4164AND-15	t cpg = min, output open			35	mA
C1(A)	Input capacitance, address inputs					5	pF
C _{1(D)}	Input capacitance, data input		VI=VSS			5	pF
C1(W)	Input capacitance, write control inpu	it	f = 1MHz			7	pF
CI (RAS)	Input capacitance, RAS input		V ₁ =25mVrms			10	pF
CI (CAS)	Input capacitance, CAS input					10	pF
Co	Output capacitance		$V_0 = V_{SS}$, f = 1MHz, $V_1 = 25$ mVrms		-	7	pF

Note 2. Current flowing into an IC is positive , out is negative.

3. ICC1(AV), ICC3(AV), and ICC4(AV) are dependent on cycle rate. Maximum current is measured at the fastest cycle rate.

4. ICC1(AV) and ICC4(AV) are dependent on output loading. Specified values are obtained with the output open.

65 536-BIT (65 536-WORD BY 1-BIT) DYNAMIC RAM

TIMING REQUIREMENTS (For Read, Write, Read-Modify-Write, Refresh, and Page-Mode Cycle)

 $(Ta = 0 \sim 70^{\circ}C, V_{CC} = 5V \pm 10\%, V_{SS} = 0V, unless otherwise noted. See notes 5.6 and 7)$

			Alternative Symbol	M5K416	4AND-12	M5K416	4AND-15	
Symbol	Parameter			Limits		Limits		Unit
				Min	Max	Min	Max	1
t _{CRF}	Refresh cycle time		t _{REF}		2		2	ms
tw(RASH)	RAS high pulse width		t _{RP}	90		100		ns
tw(RASL)	RAS low pulse width		tRAS	120	10000	150	10000	ns
tw(CASL)	CAS low pulse width		t _{CAS}	60	∞	75	∞	ns
t w(CASH)	CAS high pulse width	(Note 8)	t _{CPN}	30		35		ns
t _{h(RAS-CAS)}	CAS hold time after RAS		t _{CSH}	120		150		ns
t _{h(CAS-RAS)}	RAS hold time after CAS		t _{RSH}	60		75		ns
td (CAS-RAS)	Delay time, CAS to RAS	(Note 9)	t _{CRP}	- 20		- 20		ns
t _{d(RAS-CAS)}	Delay time, RAS to CAS	(Note 10)	t _{RCD}	25	60	30	75	ns
t _{su(RA-RAS)}	Row address setup time before RAS		t _{ASR}	0		0		ns
t _{su(CA-CAS)}	Column address setup time before CAS		t ASC	0		0		ns
t _{h(RAS-RA)}	Row address hold time after RAS		t _{RAH}	15		20		ns
t _h (CAS-CA)	Column address hold time after CAS		t _{CAH}	20		25		ns
t _{h(RAS-CA)}	Column address hold time after RAS		t _{AR}	90		95		ns
t _{THL}	Transition time		tT	3	35	3	50	
t _{TLH}	mansition time			3	35	3	50	ns

Note 5. An initial pause of 500 µs is required after power-up followed by any eight RAS or RAS/CAS cycles before proper device operation is achieved.

6. The switching characteristics are defined as $t_{THL} = t_{TLH} = 5$ ns.

Reference levels of input signals are VIH min, and VIL max. Reference levels for transition time are also between VIH and VIL. 7

8. Except for page mode.

9. td(CAS-RAS) requirement is only applicable for RAS/CAS cycles preceeded by a CAS only cycle (i.e., For systems where CAS has not been decoded with RAS.) 10. Operation within the td (RAS-CAS) max limit insures that ta (RAS) max can be met. td (RAS-CAS) max is specified reference point only, if td (BAS-CAS) is greater than the specified td (BAS-CAS) max limit, then access time is controlled exclusively by ta(CAS).

td (RAS-CAS)min = th (RAS-RA)min + 2t THL(t TLH) + t SU(CA-CAS)min.

SWITCHING CHARACTERISTICS (Ta = 0~70°C, V_{CC}=5V±10%, V_{SS}=0V, unless otherwise noted) **Read Cycle**

	Parameter		Alternative - Symbol -	M5K4164AND-12 Limits		M5K4164AND-15		
Symbol						Lin	nits	Unit
				Min	Max	Min	Max	
t _c R	Read cycle time		t _{RC}	220		260		ns
tsu (R-CAS)	Read setup time before CAS		t _{RCS}	0		0		ns
th(CAS-R)	Read hold time after CAS	(Note 11)	t _{RCH}	0		0		ns
th(RAS-R)	Read hold time after RAS	(Note 11)	t RRH	10		20		ns
tdis (CAS)	Output disable time	(Note 12)	t _{OFF}	0	35	0	40	ns
ta (CAS)	CAS access time	(Note 13)	t _{CAC}		60		75	ns
ta (RAS)	RAS access time	(Note 14)	t RAC		120		150	ns

Either th (RAS-R) or th (CAS-R) must be satisfied for a read cycle. Note 11.

Note 12. to Is (CAS) max defines the time at which the output achieves the open circuit condition and is not reference to V_{OH} or V_{OL} .

Note 13.

This is the value when td (RAS-CAS) \geq td (RAS-CAS)max. Test conditions; Load = 2T TL, C_L = 100pF This is the value when td (RAS-CAS)\geqtd (RAS-CAS)max, ta (RAS) will increase by the amount that Note 14 td (RAS-CAS) exceeds the value shown. Test conditions ; Load = 2T TL, CL = 100pF

Write Cycle

		Alternative Symbol	M5K4164	AND-12	M5K4164AND-15		1
Symbol	Parameter		• Limits		Limits		Unit
			. Min	Max	Min	Max	
t _{cw}	Write cycle time	t _{RC}	220		260		ns
tsu(w-CAS)	Write setup time before CAS (Note 17)	twcs	5		5		ns
th (CAS-W)	Write hold time after CAS	t wCH	40		45		ns
th (RAS-W)	Write hold time after RAS	t wcR	90		95		ns
th (w-RAS)	RAS hold time after write	t _{RWL}	40		45		ns
th (w-CAS)	CAS hold time after write	t _{CWL}	40		45		ns
tw(w)	Write pulse width	t _{WP}	40		45		ns
tsu (D-CAS)	Data-in setup time before CAS	t _{DS}	0		0		ns
th (CAS-D)	Data-in hold time after CAS	t _{DH}	40		45		ns
th (RAS-D)	Data-in hold time after RAS	t _{DHR}	90		95		ns

65 536-BIT (65 536-WORD BY 1-BIT) DYNAMIC RAM

Symbol	Parameter		Alternative Symbol			M5K4164AND-15 Limits		Unit
	torw	Read-write cycle time				(Note 15)	t _{RWC}	245
tormw	Read-modify-write cycle time	(Note 16)	t _{RMWC}	265		310		ns
th (w-RAS)	RAS hold time after write		tRWL	40		45		ns
th (w-CAS)	CAS hold time after write		tow	40		45		ns
tw(w)	Write pulse width		twp	40		45		ns
tsu (R-CAS)	Read setup time before CAS		t _{RCS}	0		0		ns
td (RAS-W)	Delay time, RAS to write	(Note 17)	t _{RWD}	100		120		ns
td (CAS-W)	Delay time, CAS to write	(Note 17)	t _{CWD}	40		60		ns
tsu(D-W)	Data-in setup time before write		t _{DS}	0		0		ns
th(w-D)	Data-in hold time after write		t _{DH}	40		45		ns
tdis (CAS)	Output disable time		t _{OFF}	0	35	0	40	ns
ta (CAS)	CAS access time	(Note 13)	t _{CAC}		60		75	ns
ta (RAS)	RAS access time	(Note 14)	t _{RAC}		120		150	ns

Read-Write and Read-Modify-Write Cycles

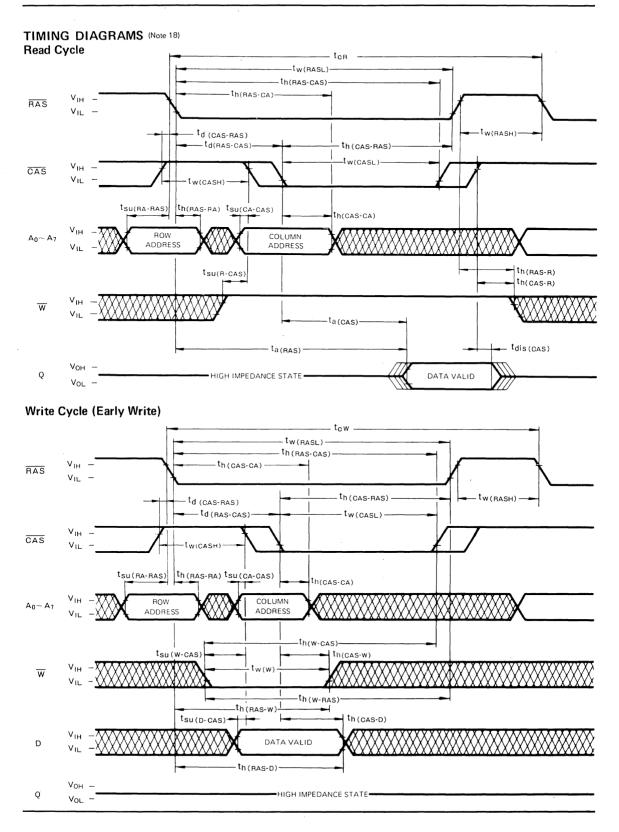
Note 15. t CRW min is defined as t CRW min = td (RAS-W) + th (W-RAS) + tw (RASH) + 3t TLH(tTHL)

16. t_{CRMW} min is defined as t_{CRMW} min = ta (RAS)max + th (W-RAS) + tw (RAS H) + 3t_{TLH}(t_{THL})

17. tsu (w-CAS), td (RAS-w), and td (CAS-w) do not define the limits of operation, but are included as electrical characteristics only.

When tsu (w-CAS)≧tsu (w-CAS)min, an early-write cycle is performed, and the data output keeps the high-impedance state.

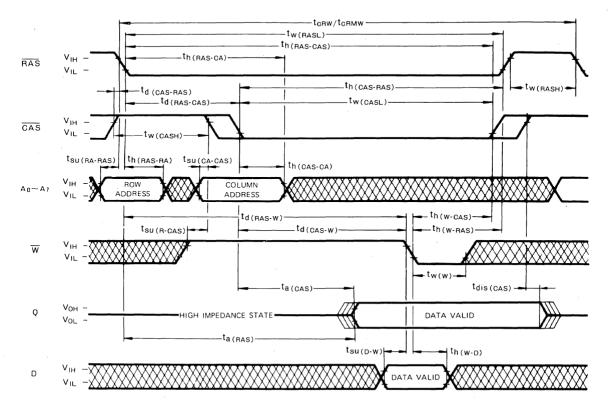
When td (RAS-w) ≥ td (RAS-w)min_ and td (CAS-w) ≥ tsu (w-CAS)min_ a read-write cycle is performed, and the data of the selected address will be read out on the data output.


For all conditions other than those described above, the condition of data output (at access time and until CAS goes back to VIH) is not defined.

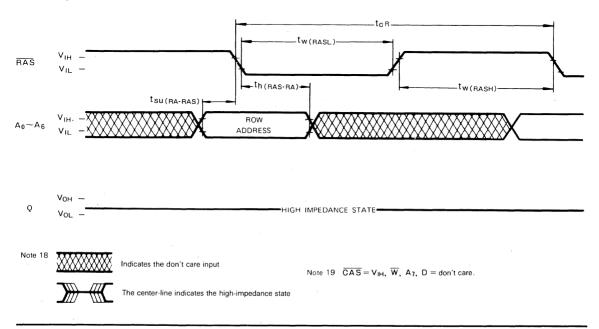
Page-Mode Cycle

Symbol	Parameter	Alternative	M5K4164AND-12 Limits		M5K4164AND-15 Limits		Unit
		Symbol					
			Min	Max	Min	Max	
t _{C PGR}	Page-Mode read cycle time	t _{PC}	140		145		ns
t _{c PGW}	Page-Mode write cycle time	t _{PC}	140		145		ns
t _{c PGRW}	Page-Mode read-write cycle time	-	150		180		ns
t _{c PGRMW}	Page-Mode read-modify-write cycle time	-	170		195		ns
tw(CASH)	CAS high pulse width	t _{CP}	55		60		ns

65 536-BIT (65 536-WORD BY 1-BIT) DYNAMIC RAM

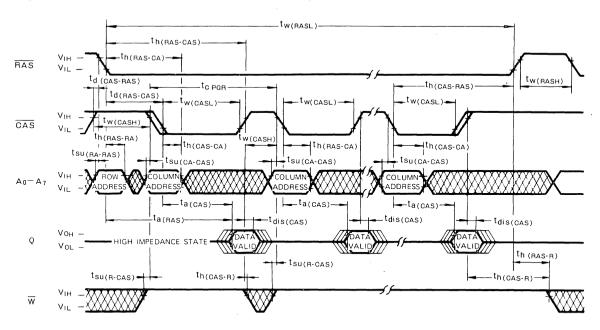


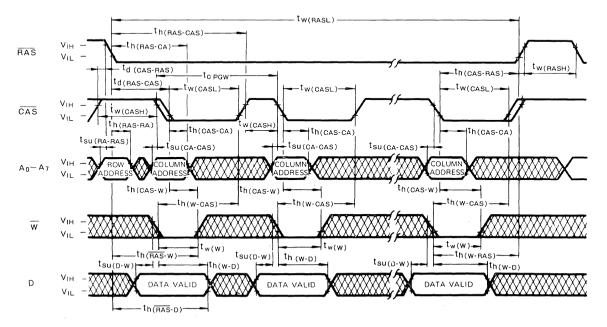
MITSUBISHI LSIs


M5K4164AND-12, -15

65 536-BIT (65 536-WORD BY 1-BIT) DYNAMIC RAM

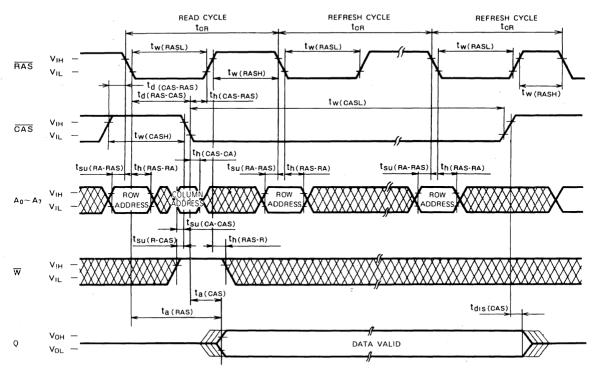
Read-Write and Read-Modify-Write Cycles


RAS-Only Refresh Cycle (Note 19)



65 536-BIT (65 536-WORD BY 1-BIT) DYNAMIC RAM

Page-Mode Read Cycle


Page-Mode Write Cycle

MITSUBISHI LSIS M5K4164AND-12. -15

65 536-BIT (65 536-WORD BY 1-BIT) DYNAMIC RAM

Hidden Refresh Cycle

65 536-BIT (16 384-WORD BY 4-BIT) DYNAMIC RAM

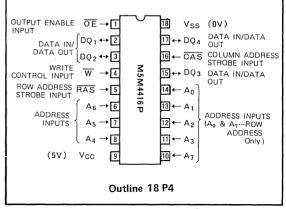
DESCRIPTION

This is family of 16348-word by 4-bit dynamic RAMs, fabricated with the high performance N-channel silicon-gate MOS process, and is ideal for large-capacity memory systems where high speed, low power dissipation, and low costs are essential. The use of double-layer polysilicon process technology and a single-transistor dynamic storage cell provide high circuit density at reduced costs, and the use of dynamic circuitry including sense amplifiers assures low power dissipation. Multiplexed address inputs permit both a reduction in pins to the standard 18-pin package configuration and an increase in system densities. The M5M4416P operates on a 5V power supply using the on-chip substrate bias generator.

FEATURES

Performance ranges

Type name	Access time (max) (ns)	Cycle time (min) (ns)	Power dissipation (typ) (mW)
M5M4416P-12	120	220	175
M5M4416P-15	150	260	150

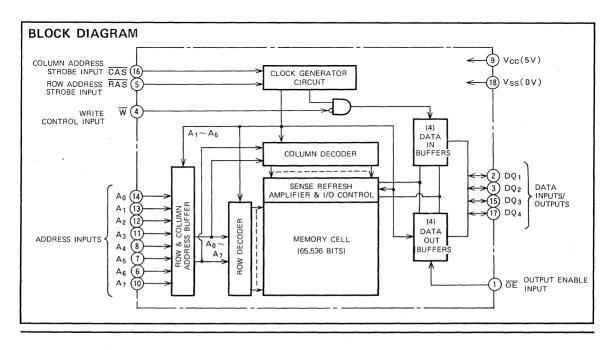

- 16,384 x 4 Organization
- Industry standard 18-pin dual in line package
- Single 5V ±10% supply
- Low standby power dissipation:
- Low operating power dissipation:

M5M4416P-12 M5M4416P-15

2	275mW (max)
5	250mW (max)

25mW (max)

PIN CONFIGURATION (TOP VIEW)



All Inputs, outputs TTL compatible and low capacitance
 3-State unlatched outputs

- 128 refresh cycles/2ms. Pin 10 is not needed for refresh
- Early write or OE to control output buffer impedance
- Read-Modify-Write, RAS-only refresh, Hidden refresh and Page mode capabilities
- Wide \overline{RAS} pulse width for Page mode 30μ s max

APPLICATION

• Refresh memory for CRT

65 536-BIT (16 384-WORD BY 4-BIT) DYNAMIC RAM

FUNCTION

The M5M4416P provides, in addition to normal read, write, and read-modify-write operations, a number of other functions, e.g., page mode, RAS-only refresh, hidden refresh, and delayed-write. The input conditions and output states for each are shown in Table 1.

Table 1 Input conditions for each mode

			Ing	outs			Input,	Output			
Operation	RAS	CAS	w	ŌE	Row	v Column	Input	Output	Refresh	Remarks	
	RAS	CAS		0E	address	adress	DQ	DQ			
Read	ACT	ACT	NAC	ACT	APD	APD	OPN	VLD	YES		
Write (Early Write)	ACT	ACT	ACT	DNC	APD	APD_	VLD	OPN	YES	Page mode identical	
Read-modify-write	ACT	ACT	ACT	ACT	APD	APD	VLD	VLD	YES		
RAS-only retfesh	ACT	NAC	DNC	DNC	APD	DNC	DNC	OPN	YES		
Hidden refresh	ACT	ACT	DNC	ACT	APD	DNC	OPN	VLD	YES		
Standby	NAC	DNC	DNC	DNC	DNC	DNC	DNC	OPN	NO		

Note. ACT active, NAC nonacitive, DNC don't care, VLD valid, APD applied, OPN open.

SUMMARY OF OPERATIONS

address (AO through A7)

Fourteen address bits are required to decode 1 of 16,384 storage locations. Eight row-address bits are set up on pins AO through A7 and latched onto the chip by the row-address strobe (\overline{RAS}). Then the six column-address bits are set up on pins A1 through A6 and latched onto the chip by the column-address strobe (\overline{CAS}). All addresses must be stable on or before the falling edges of \overline{RAS} and \overline{CAS} . \overline{RAS} is similar to a chip enable in that it activates the sense amplifiers as well as the row decoder. \overline{CAS} is used as a chip select activating the column decoder and the input and output buffers.

write enable (W)

The read or write mode is selected through the write enable (\overline{W}) input. A logic high on the \overline{W} input selects the read mode and a logic low selects the write mode. The write enable terminal can be driven from standard TTL circuits without a pull-up resistor. The data input is disabled when the read mode is selected. When \overline{W} goes low prior to \overline{CAS} , data-out will remain in the high-impedance state allowing a write cycle with \overline{OE} grounded.

data-in (DQ1 through DQ4)

Data is written during a write or read-modify write cycle. Depending on the mode of operation, the falling edge of \overline{CAS} or \overline{W} strobes data into the on-chip data latches. These latches can be driven from standard TTL circuits without a pull-up resistor. In an early-write cycle, \overline{W} is brought low prior to \overline{CAS} and the data is strobed in by \overline{CAS} with setup and hold times referenced to this signal. In a delayed write or read-modify-write cycle, \overline{CAS} will already be low, thus the data will be strobed in by \overline{W} with setup and hold times referenced to this signal. In delayed or read-modify-write, \overline{OE} must be high to bring the output buffers to high impedance prior to impressing data on the I/O lines.

data-out (DQ1 through DQ4)

The three-state output buffer provides direct TTL compatibility (no pull-up resistor required) with a fan-out of two Series 74 TTL loads. Data-out is the same polarity as data-in. The output is in the high-impedance (floating) state until CAS is brought low. In a read cycle the output goes active after the access time interval ta(C) that begins with the negative transition of \overline{CAS} as long as $t_a(R)$ and $t_a(OE)$ are satisfied. The output becomes valid after the access time has elapsed and remains valid while \overline{CAS} and \overline{OE} are low. CAS or OE going high returns it to a high impedance state. In an early-write cycle, the output is always in the high-impedance state. In a delayed-write or read-modifywrite cycle, the output must be put in the high impedance state prior to applying data to the DQ input. This is accomplished by bringing OE high prior to applying data, thus satisfying tofHD.

output enable (OE)

The \overline{OE} controls the impedance of the output buffers. When \overline{OE} is high, the buffers will remain in the high impedance state. Bringing \overline{OE} low during a normal cycle will activate the output buffers putting them in the low impedance state. It is necessary for both \overline{RAS} and \overline{CAS} to be brought low for the output buffers to go into the low impedance state. Once in the low impedance state, they will remain in the low impedance state until \overline{OE} or \overline{CAS} is brought high.

65 536-BIT (16 384-WORD BY 4-BIT) DYNAMIC RAM

Page-Mode Operation

This operation allows for multiple-column operating at the same row address, and eliminates the power dissipation associated with the cycling of \overline{RAS} , because once the row address has been strobed, \overline{RAS} is maintained. Also, the time required to strobe in the row address for the second and subsequent cycles is eliminated, thereby decreasing the access and cycle times.

Refresh

Each of the 128 rows ($A_0 \sim A_6$) of the M5M4416P must be refreshed every 2 ms to maintain data. The methods of refreshing for the M5M4416P are as follows.

1. Normal Refresh

Read cycle and Write cycle (early write, delayed write or read-modify-write) refresh the selected row as defined by the low order (\overline{RAS}) addresses. Any write cycle, of course, may change the state of the selected cell. Using a read, write, or read-modify-write cycle for refresh is not recommended for systems which utilize "wired-OR" outputs since output bus contention will occur.

2. RAS Only Refresh

A \overline{RAS} -only refresh cycle is the recommended technique for most applications to provide for data retention. A \overline{RAS} -only refresh cycle maintains the outputs in the high-impedance state with a typical power reduction of 20% over a read or write cycle.

3. Hidden Refresh

A features of the M5M4416P is that refresh cycles may be performed while maintaining valid data at the output pin by extending the \overline{CAS} active time from a previous memory read cycle. This feature is referred to as hidden refresh.

Hidden refresh is performed by holding \overline{CAS} at V_{IL} and taking \overline{RAS} high and after a specified precharge period, executing a \overline{RAS} -only cycling, but with \overline{CAS} held low.

The advantage of this refresh mode is that data can be held valid at the output data ports indefinitely by leaving the \overline{CAS} asserted. In many applications this eliminates the need for off-chip latches.

Power Dissipation

Most of the circuitry in the M5M4416P is dynamic, and most of the power is dissipated when addresses are strobed. Both \overline{RAS} and \overline{CAS} are decoded and applied to the M5M4416P as chip-select in the memory system, but if \overline{RAS} is decoded, all unselected devices go into stand-by independent of the \overline{CAS} condition, minimizing system power dissipation.

Power Supplies

The M5M4416P operates on a single 5V power supply.

A wait of some 500μ s and eight or more dummy cycles is necessary after power is applied to the device before memory operation is achieved.

M5M4416P-12, -15

65 536-BIT (16 384-WORD BY 4-BIT) DYNAMIC RAM

ABSOLUTE MAXIMUM BATINGS

Symbol	parameter	Condtions	Limits	Unit
Vcc	Supply volrage		-1~7	V
Vi	Input voltage	With respect to V _{SS}	- 1~7	V
Vo	Output voltage		-1~7	V
I ₀	Output current		50	mA
Pd	Power dissipation	Ta=25°C	700	mW
Topr	Operating free-air temperature range		0~70	°C
Tstg	Storage temperature range		-65~150	°C

RECOMMENDED OPERATING CONDITIONS ($T_a = 0 \sim 70^{\circ}C$, unless otherwise noted) (Note 1)

Symbol			Limits			
Symbol	Parameter	Min	Nom	Max	Unit	
Vcc	Supply voltage	4.5	5	5.5	V	
Vss	Supply voltage	0	0	0	V	
VIH	High-level input voltage, all inputs	2.4		6.5	V	
VIL	Low-level input voltage, all inputs	-2.0		0.8	V	

Note 1: All voltage values are with respect to Vss

$\label{eq:constraint} \textbf{ELECTRICAL CHARACTERISTICS} (\texttt{T}_a = 0 \sim 70^{\circ}\texttt{C}, \texttt{V}_{CC} = 5 \texttt{V} \pm 10\%, \texttt{V}_{SS} = 0 \texttt{V}, \texttt{unless otherwise noted}) (\texttt{Note 2})$

Symbol	0		Test conditions		Limits		Unit	
SYMDOI	Parameter		lest conditions	Min	Тур	Max	Unit	
VOH	High-level output voltage		I _{OH} =-2mA	2.4		Vcc	V	
VoL	Low-level output voltage		I _{OL} =4.2mA	0		0.4	V	
loz	Off-state output current		Q floating $0V \leq V_{OUT} \leq 5.5V$	-10		10	μA	
li -	Input current		$0V \le V_{IN} \le 6.5V$, All other pins $= 0V$	-10		10	μA	
leavenu	Average supply current from V _{cc} ,	M5M4416P-12	RAS, CAS cycling			55	mA	
I _{CC1} (AV)	operating (Note 3,4)	M5M4416P-15	$t_{c(rd)} = t_{c(w)} = min \text{ output open}$	•		50	mA	
I _{CC2}	Supply current from V_{cc} , standby		RAS=VIH output open			4.5	mA	
1	Average supply current from Vcc,	M5M4416P-12	RAS cycling CAS=VIH			45	mA	
I _{CC3} (AV)	retreshing (Note 3)	M5M4416P-15	to (Prd) = min, output open			40	mA	
1	Average supply current from V _{cc} ,	M5M4416P-12	RAS=VIL, CAS cycling			45	mA	
CC4(AV)	page mode (Note 3,4)	M5M4416P-15	tc (Prd) = min, output open			40	mA	

Note 2: Current flowing into an IC is positive, out is negative. 3: I_{CC1(AV)}, I_{CC3(AV)}, and I_{CC4(AV)} are dependent on cycle rate. Maximum current is measured at the tastest cycle rate. 4: I_{CC1(AV)} and I_{CC4(AV)} are dependent on output loading. Specified values are obtained with the output open.

CAPACITANCE ($T_a = 0 \sim 70^{\circ}C$, $V_{CC} = 5 \vee \pm 10\%$, $V_{SS} = 0 \vee$, unless otherwise noted)

Cumbed.		Test and filling		Unit		
Symbol	Parameter	Test conditions	Min	Тур	Max	Onit
CI(A)	Input capacitance, address inputs	· · · · · · · · · · · · · · · · · · ·			5	pF
CI(OE)	Input capacitance, OE input	V ₁ =V _{SS}			7	pF
C1(W)	Input capacitance, write control input	f=1MHz			7	pF
CI(RAS)	Input capacitance, RAS input	Vi=25mVrms			10	pF
CI (CAS)	Input capacitance, CAS input				10	pF
CI/O	Input/Output capacitance, data ports				10	pF

65 536-BIT (16 384-WORD BY 4-BIT) DYNAMIC RAM

SWITCHING CHARACTERISTICS (Ta =0~70°C, Vcc=5V±10%, Vcs=0V, unless otherwise noted) (Note 5)

			Alternative	M5M4416P-12			416P-15	_
Symbol	Parameter	Symbol		Limits		Limits		Unit
		Symbol	Min	Max	Min	Max	}	
ta(C)	Access time from CAS	(Note 6,7)	t _{CAC}		60		75	ns
ta(R)	Access time from RAS	(Note 6,8)	t _{RAC}		120		150	ns
ta (OE)	Access time from OE	(Note 6)			30		40	ns
tdis(CH)	Output disable time after CAS high	(Note 9)	t _{OFF}	0	25	0	30	ns
tdis(OE)	Output disable time after OE high	(Note 9)		0	25	0	30	ns

Note 5: An initial pause of 500µs is required after power-up followed by any 8 RAS or RAS/CAS cycles before proper device operation is achieved. Note that RAS may be cycled during the initial pause.

And any 8 RAS or RAS/CAS cycles are required after prolonged periods (greater than 2ms) of RAS inactivity before proper device operation is achieved. 6: Measured with a load circuit equivalent to 2TTL loads and 100pF.

7: Assume that tRCCL ≥ tRLCL max.

8: Assume that tRLCL < TRLCL max. If tRLCL is greater than tRLCL max then ta(R) will increase by the amount that tRLCL exceeds tRLCL max.

t dis (CH) max and t dis (OE) max define the time at which the output achieves the high impedance state ($I_{OUT} \leq |\pm 10\mu A|$) and are not reference to V_{OH} 9: min or Vol max.

TIMING REQUIREMENTS (For Read, Write, Read-Modify-Write, Refresh, and Page-Mode Cycles)

 $(T_a=0-70^{\circ}C, V_{CC}=5V\pm10\%, V_{SS}=0V, unless otherwise noted. See notes 10,11)$

			Alternative	M5M4	416P-12	M5M4	416P-15	
Symbol	Parameter		Alternative Symbol	Lir	nits	Limits		Unit
				Min	Max	Min	Max	
t _{C(RF)}	Refresh cycle time		t _{REF}		2		2	ms
t _{w(RH)}	RAS high pulse width		t _{RP}	90		100		ns
t _{RLCL}	Delay time, RAS low to CAS low	(Note 12)	t _{RCD}	25	60	30	75	ns
t _{CHRL}	Delay time, CAS high to RAS low	(Note 13)	t _{CRP}	-20		- 20		ns
t _{su(RA)}	Row address setup time before RAS low		t _{ASR}	0		0		ns
t _{su(CA)}	Column address setup time before CAS low		t _{ASC}	0		0		ns
t _{h(RA)}	Row address hold time after RAS low		t _{RAH}	15		20		ns
th(CLCA)	Column address hold time after CAS low		t _{CAH}	20		25		ns
th(RLCA)	Column address hold time after RAS low		t _{AR}	80		100		ns
t _T	Transition time (rise and fall)	(Note 14)	t _T	3	50	3	50	ns

Note 10: The timing requirements are assumed t_T=5ns.

11: VIH min and VIL max are reference levels for measuring timing of input signals.

12: tRLCL max is specified as a reference point only; if tRLCL is less than tRLCL max, access time is ta(R), if tRLCL is greater than tRLCL max, access time is t_{RLCL} + t_a(c). t_{RLCL} min is specified as t_{RLCL} min. = t_h(R_A) + 2 t_T + t_{SU}(c_A).
 t_{cHRL} requirement is only applicable for RAS/CAS cycles preceded by a CAS only cycle (i.e., For systems where CAS has not been decoded with RAS).

14: t_T is measured between V_{IH} min and V_{IL} max.

Read and Refresh Cycles

			M5M4	416P-12	M5M4	416P-15	[
Symbol	Parameter	Alternative Symbol	Li	mits	Li	mits	Unit
		-,	Min	Max	Min	Max	
tc(rd)	Read cycle time	t _{RC}	220		260		ns
t _{w(RL)}	RAS low pulse width	t _{RAS}	120	10000	150	10000	ns
t _{w(CL)}	CAS low pulse width	t _{CAS}	60		75		ns
t _{w(CH)}	CAS high pulse width	t _{CPN}	30		30		ns
t _{h(RLCH)}	CAS hold time after RAS low	t _{CSH}	120		150		ns
th(CLRH)	RAS hold time after CAS low	t _{RSH}	60		75		ns
t _{su(rd)}	Read setup time before CAS low	t _{RCS}	0		0		ns
t _{h(CHrd)}	Read hold time after CAS high (Note 15	t _{RCH}	0		0		ns
th (RHrd)	Read hold time after RAS high (Note 15	t _{RRH}	10		10		ns
th(OECH)	CAS hold time after OE low		30		40		ns
th(OERH)	RAS hold time after OE low	-	30		40		ns
th(CLOE)	OE hold time after CAS low	-	60		75		ns
th(RLOE)	OE hold time after RAS low	-	120		150		ns
t _{DOEL}	Delay time, Data to OE low		0		0		ns
t _{OEHD}	Delay time, OE high to Data	-	25		30		ns
t _{RHCL}	Delay time, RAS high to CAS low	-	0		0		ns

Note 15: Either $t_{h(CHrd)}$ or $t_{h(RHrd)}$ must be satisfied for a read cycle.

65 536-BIT (16 384-WORD BY 4-BIT) DYNAMIC RAM

	······································		M5M44	416P-12	M5M4416P-15		
Symbol	Parameter	Alternative Symbol	Lir	nits			Unit
		oy moor	Min	Max	Min	Max	
t _{c(W)}	Write cycle time	t _{RC}	220		260		ns
tw(RL)	RAS low pulse width	t RAS	120	10000	150	10000	ns
tw(CL)	CAS low pulse width	t _{CAS}	60	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	75		ns
tw(CH)	CAS high pulse width	t _{CPN}	30		30		ns
th (RLCH)	CAS hold time after RAS low	t _{CSH}	120		150		ns
th (CLRH)	RAS hold time after CAS low	t _{RSH}	60		75		ns
t _{su(wcL)}	Write setup time before CAS low (Note 17)	twcs	-5		-5		ns
th(C∟w)	Write hold time after CAS low	t _{WCH}	40		45		ns
th(RLW)	Write hold time after RAS low	twcr	100		120		ns
th(WCH),	CAS hold time after Write low	t _{CWL}	40		45		ns
th(WRH)	RAS hold time after Write low	t _{RWL}	40		45		ns
tw(w)	Write pulse width	t _{wP}	40		45		ns
t _{su(D)}	Data setup time	t _{DS}	0		0		ns
th(WLD)	Data hold time after Write low	t _{DH}	40		45		ns
th(CLD)	Data hold time after CAS low	t _{DH}	40		45		ns
th(RLD)	Data hold time after RAS low	t _{DHR}	100		120		ns
t _{OEHD}	Delay time, OE high to Data	-	25		30		ns
th(WOE)	OE hold time after Write low	_	25		30		ns

Write Cycles (Early Write and Delayed Write)

Read-Write and Read-Modify-Write Cycles

			M5M4	16P-12	M5M4	416P-15	Unit
Symbol	Parameter	Alternative Symbol	Lir	nits	Lir	nits	
		0,	Min	Max	Min	Max	
t _{c(rdW)}	Read write/read modify write cycle time (Note 16)	t _{RWC}	295		345		ns
t _{w(RL)}	RAS low pulse width	t _{RAS}	195	10000	255	10000	ns
tw(CL)	CAS low pulse width	t _{CAS}	135		180		ns
t _{h(RLCH)}	CAS hold time after RAS low	t _{сsн}	195		255		ns
th(CLRH)	RAS hold time after CAS low	t _{RSH}	135		180		ns
t _{w(CH)}	CAS high pulse width	t _{CPN}	30		30		ns
t _{su (rd)}	Read setup time before CAS low	t _{RCS}	0		0		ņs
t _{CLWL}	Delay time, CAS low to Write low (Note 17)	t _{CWD}	90		110		ns
t _{RLWL}	Delay time, RAS low to Write low (Note 17)	t _{RWD}	150		185		ns
t _{h(WCH)}	CAS hold time after Write low	t _{CWL}	40		45		ns
th(WRH)	RAS hold time after Write low	t _{RWL}	40		45		ns
t _{w(W)}	Write pulse width	t _{wP}	40		45		ns
t _{su(D)}	Data setup time	t _{DS}	0		0		ns
th(WLD)	Data hold time after Write low	t _{DH}	40		45		ns
th(CLOE)	OE hold time after CAS low	_	60		75		ns
th(RLOE)	DE hold time after RAS low	-	120		150		ns
t _{DOEL}	Delay time, Data to DE low	-	0		0		ns
t _{OEHD}	Delay time, OE high to Data	_	25		30		ns

 Note 16: t_{C(rdw)} is specified as t_{C(rdw)} min = t_{A(R)} max + t_{OEHD} min + t_{h(WRH)} min + t_{W(RH)} min + 4 t_T.
 17: t_{SU(WCL)}, t_{CLWL} and t_{RLWL} are specified as reference points only. If t_{SU(WCL)} ≥ t_{SU(WCL)} min, the cycle is an early write cycle and the DQ pins will remain high impedance throughout the entire cycle. If t_{CLWL} ≥ t_{CLWL} min and t_{RLWL} ≥ t_{RLWL} min, the cycle is a read-modify-write cycle and the DQ pins will contain the data read from the selected address. If neither of the above condition is satisfied, the condition of the DQ (at access time and until CAS) or OE goes back to VIH) is indeterminate.

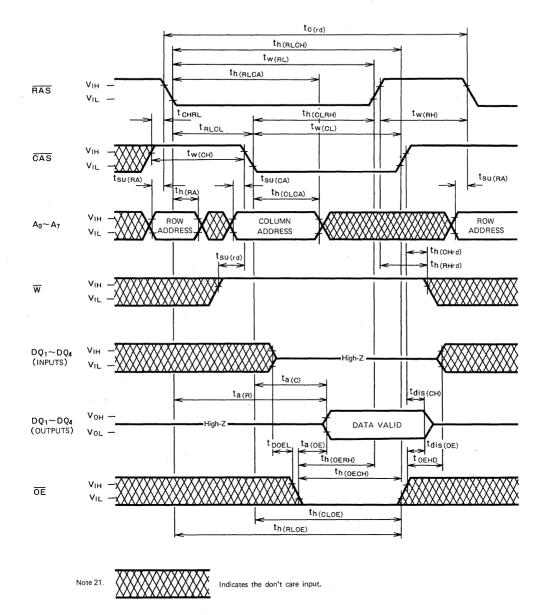
65 536-BIT (16 384-WORD BY 4-BIT) DYNAMIC RAM

Page-Mode Cycle (Note 18)

				M5M4	416P-12	M5M4	416P-15	
Symbol	Parameter		Alternative Symbol	Li	mits	Lir	Unit	
			0,	Min	Max	Min	Max	
t _{c(Prd)}	Read cycle time		t _{PC}	120		145		ns
t _{c(PW)}	Write cycle time		t _{PC}	120		145		ns
tw(RL)	RAS low pulse width	(Note 19)	tRAS	240	30000	295	30000	ns
t _{c(PrdW)}	Read write/read modify write cycle time		-	195		250		ns
tw(RL)	RAS low pulse width	(Note 20)	t _{RAS}	390	30000	505	30000	ns
tw(CH)	CAS high pulse width		t _{CP}	50		60		ns

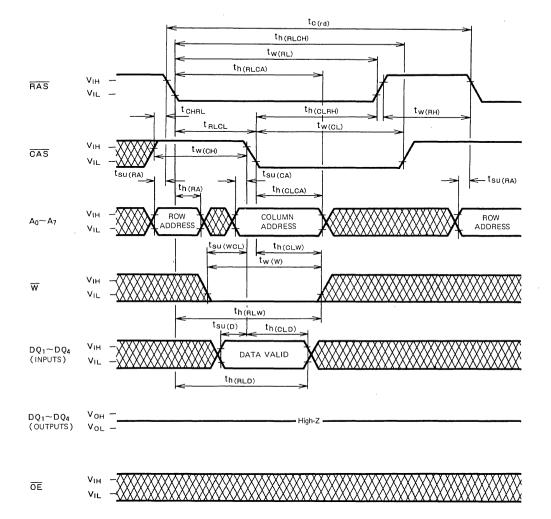
 Note 18:
 All previously specified timing requirements and switching characteristics are applicable to their respective page mode timing.

 19:
 Specified for read or write cycle.

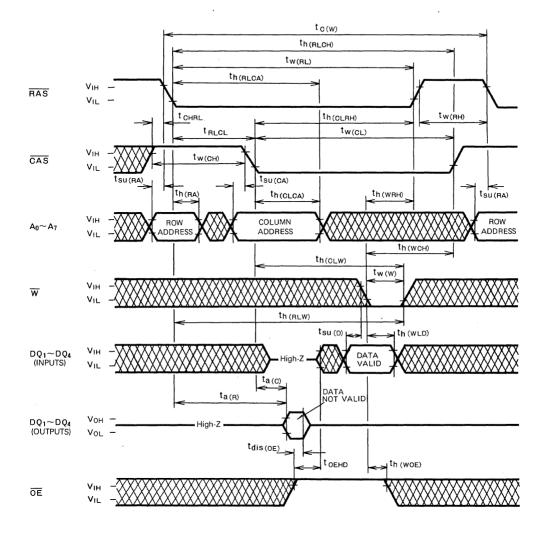

 20:
 Specified for read-write or read-modify-write cycle.

65 536-BIT (16 384-WORD BY 4-BIT) DYNAMIC RAM

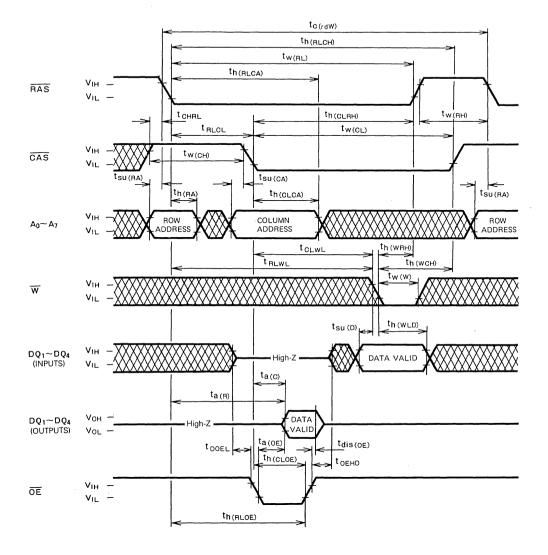
TIMING DIAGRAMS (Note 21)


Read Cycle

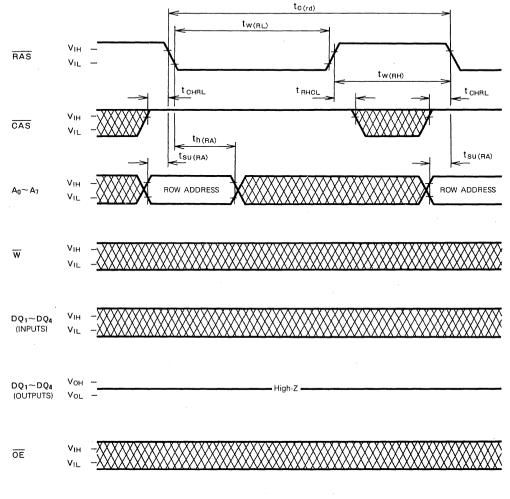
65 536-BIT (16 384-WORD BY 4-BIT) DYNAMIC RAM


Write Cycle (Early Write)

65 536-BIT (16 384-WORD BY 4-BIT) DYNAMIC RAM

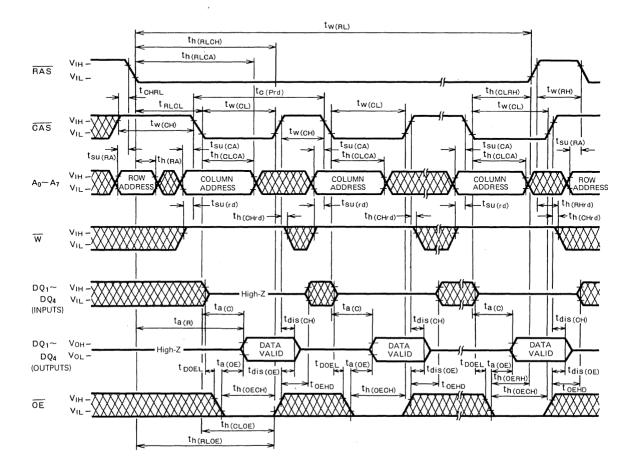

Write Cycle (Delayed Write)

65 536-BIT (16 384-WORD BY 4-BIT) DYNAMIC RAM


Read-Write and Read-Modify-Write Cycles

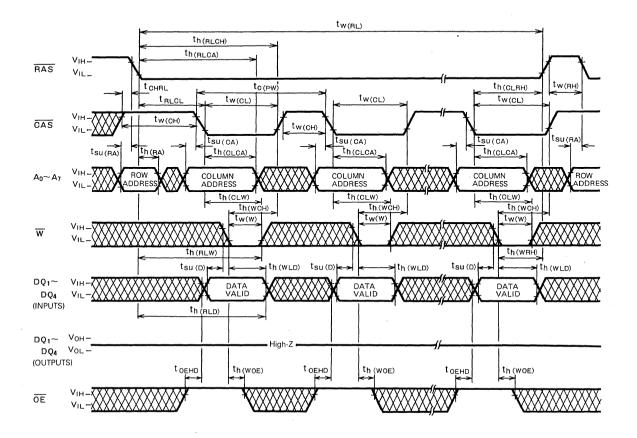
65 536-BIT (16 384-WORD BY 4-BIT) DYNAMIC RAM

RAS-Only Refresh Cycle (Note 22)

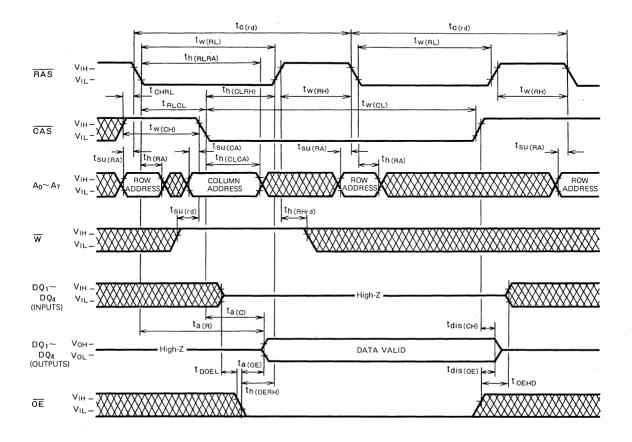


Note 22. A7 may be VIH or VIL

65 536-BIT (16 384-WORD BY 4-BIT) DYNAMIC RAM


Page-Mode Read Cycle

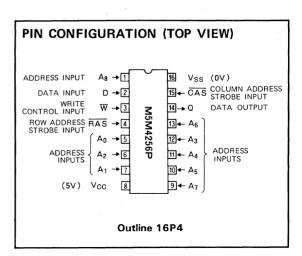
65 536-BIT (16 384-WORD BY 4-BIT) DYNAMIC RAM


Page-Mode Write Cycle

65 536-BIT (16 384-WORD BY 4-BIT) DYNAMIC RAM

Hidden Refresh Cycle

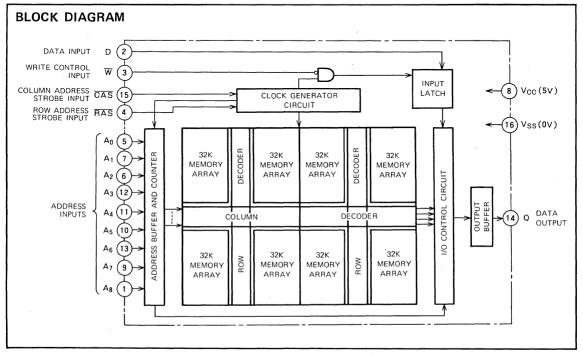
PRODUCT 262 144-RIT (262 144-WORD BY 1-BIT) DYNAMIC RAM


DESCRIPTION

This is a family of 262 144-word by 1-bit dynamic RAMs. fabricated with the high performance N-channel silicon gate MOS process, and is ideal for large-capacity memory systems where high speed, low power dissipation, and low costs are essential. The use of double-layer polysilicon process combined with silicide technology and a singletransistor dynamic storage cell provide high circuit density at reduced costs, and the use of dynamic circuitry including sense amplifiers assures low power dissipation. Multiplexed address inputs permit both a reduction in pins to the standard 16-pin package configuration and an increase in system densities. In addition to the \overline{RAS} only refresh mode, the Hidden refresh mode and CAS before RAS refresh mode are available.

FFATURES

Type name	Access time (max) (ns)	Cycle time (min) (ns)	Power dissipation (typ) (mW)
M5M4256P-12	120	230	260
M5M4256P-15	150	260	230
M5M4256P-20	200	330	190


- Standard 16-pin package
- Single 5V±10% supply
- Low standby power dissipation: 25mW (max)
- Low operating power dissipation: M5M4256P-12 · · · · · · · · · · · 360mW (max)
- Unlatched output enables two-dimensional chip selection and extended page boundary.

- Early-write operation gives common I/O capability
- Read-modify-write, RAS-only-refresh, Page-mode capabilities
- CAS before RAS refresh mode capability
- All input terminals have low input capacitance and are directly TTL-compatible
- Output is three-state and directly TTL-compatible
- 256 refresh cycles every 4ms. Pin 1 is not needed for refresh.
- CAS controlled output allows hidden refresh

APPLICATION

- Main memory unit for computers
- Microcomputer memory

FUNCTION

The M5M4256P provides, in addition to normal read, write, and read-modify-write operations, a number of other functions, e.g., page mode, RAS-only refresh, and delayed-write. The input conditions for each are shown in Table 1.

Table 1 Input conditions for each mode

			Ing	outs			Output		
Operation ·	RAS	CAS	w	D	Row address	Column address	Q	Refresh	Remarks
Read	ACT	ACT	NAC	DNC	APD	APD	VLD	YES	*
Write	ACT	ACT	ACT	VLD	APD	APD	OPN	YES	
Read-modify-write	ACT	ACT	ACT	VLD	APD	APD	VLD	YES	
RAS-only refresh	ACT	NAC	DNC	DNC	APD	DNC	OPN	YES	
Hidden refresh	ACT	ACT	DNC	DNC	DNC	DNC	VLD	YES	
CAS before RAS refresh	ACT	ACT	DNC	DNC	DNC	DNC	OPN	YES	
Standby	NAC	DNC	DNC	DNC	DNC	DNC	OPN	NO	

Note: ACT : active, NAC : nonactive, DNC : don't care, VLD : valid, APD : applied, OPN : open.

* : Page mode identical except refresh is No.

SUMMARY OF OPERATIONS Addressing

To select one of the 262 144 memory cells in the M5M4256P the 18-bit address signal must be multiplexed into 9 address signals, which are then latched into the on-chip latch by two externally-applied clock pulses. First, the negative-going edge of the row-address-strobe pulse (\overline{RAS}) latches the 9 row-address bits; next, the negative-going edge of the column-address-strobe pulse (\overline{CAS}) latches the 9 column-address bits. Timing of the \overline{RAS} and \overline{CAS} clocks can be selected by either of the following two methods:

- 1. The delay time from \overline{RAS} to \overline{CAS} t_d (RAS-CAS) is set between the minimum and maximum values of the limits. In this case, the internal \overline{CAS} control signals are inhibited almost until t_d(RAS-CAS) max ('gated $\overline{CAS'}$ operation). The external \overline{CAS} signal can be applied with a margin not affecting the on-chip circuit operations, e.g. access time, and the address inputs can be easily changed from row address to column address.
- 2. The delay time $t_{d(RAS-CAS)}$ is set larger than the maximum value of the limits. In this case the internal inhibition of \overline{CAS} has already been released, so that the internal \overline{CAS} control signals are controlled by the externally applied \overline{CAS} , which also controls the access time.

Data Input

Data to be written into a selected cell is strobed by the later of the two negative transitions of \overline{W} input and \overline{CAS} input. Thus when the \overline{W} input makes its negative transition prior to \overline{CAS} input (early write), the data input is strobed by \overline{CAS} , and the negative transition of \overline{CAS} is set as the

reference point for set-up and hold times. In the read-write or read-modify-write cycles, however, when the \overline{W} input makes its negative transition after \overline{CAS} , the \overline{W} negative transition is set as the reference point for setup and hold times.

Data Output Control

The output of the M5M4256P is in the high-impedance state when \overline{CAS} is high. When the memory cycle in progress is a read, read-modify-write, or a delayed-write cycle, the data output will go from the high-impedance state to the active condition, and the data in the selected cell will be read. This data output will have the same polarity as the input data. Once the output has entered the active condition, this condition will be maintained until \overline{CAS} goes high, irrespective of the condition of \overline{RAS} .

The output will remain in the high-impedance state throughout the entire cycle in an early-write cycle.

These output conditions, of the M5M4256P, which can readily be changed by controlling the timing of the write pulse in a write cycle, and the width of the CAS pulse in a read cycle, offer capabilities for a number of applications, as follows.

1. Common I/O Operation

If all write operations are performed in the early-write mode, input and output can be connected directly to give a common I/O data bus.

2 Data Output Hold

The data output can be held between read cycles, without lengthening the cycle time. This enables extremely flexible clock-timing settings for \overline{RAS} and \overline{CAS} .

262 144-BIT (262 144-WORD BY 1-BIT) DYNAMIC RAM

3. Two Methods of Chip Selection

Since the output is not latched, \overline{CAS} is not required to keep the outputs of selected chips in the matrix in a highimpedance state. This means that \overline{CAS} and/or \overline{RAS} can both be decoded for chip selection.

4. Extended-Page Boundary

By decoding \overline{CAS} , the page boundary can be extended beyond the 512 column locations in a single chip. In this case, \overline{RAS} must be applied to all devices.

Page-Mode Operation

This operation allows for multiple-column addressing at the same row address, and eliminates the power dissipation associated with the negative-going edge of \overline{RAS} , because once the row address has been strobed, \overline{RAS} is maintained. Also, the time required to strobe in the row address for the second and subsequent cycles is eliminated, thereby decreasing the access and cycle times.

Refresh

Each of the 256 rows (A₀ \sim A₇) of the M5M4256P must be refreshed every 4 ms to maintain data. The methods of refreshing for the M5M4256P are as follows.

1. Normal Refresh

Read cycle and Write cycle (early write, delayed write or read-modify-write) refresh the selected row as defined by the low order (\overline{RAS}) addresses. Any write cycle, of course, may change the state of the selected cell. Using a read, write, or read-modify-write cycle for refresh is not recommended for systems which utilize "wired-OR" outputs since output bus contention will occur.

2. RAS Only Refresh

In this refresh method, the \overline{CAS} clock should be at a V_{IH} level and the system must perform \overline{RAS} Only cycle on all 256 row address every 4 ms. The sequential row addresses from an external counter are latched with the \overline{RAS} clock and associated internal row locations are refreshed. A \overline{RAS} Only Refresh cycle maintains the output in the high impedance state with a typical power reduction of 20% over a read or write cycle.

3. CAS before RAS Refresh

If \overline{CAS} falls $t_{SUR}(CAS \cdot RAS)$ earlier than \overline{RAS} and if \overline{CAS} is kept low by $t_{hR}(RAS \cdot CAS)$ after \overline{RAS} falls, \overline{CAS} before \overline{RAS} Refresh is initiated. The external address is ignored and the refresh address generated by the internal 8-bit counter is put into the address buffer to refresh the corresponding row. The output will stay in the high impedance state.

If \overline{CAS} is kept low after the above operation, \overline{RAS} cycle initiates \overline{RAS} Only Refresh with internally generated refresh address (Automatic refresh). The output will again stay in the high impedance state.

Bringing \overline{RAS} high and then low while \overline{CAS} remains high initiates the normal \overline{RAS} Only Refresh using the external address.

If \overline{CAS} is kept low after the normal read/write cycle, RAS cycle initiates the RAS Only Refresh using the internal refresh address and especially after the normal read cycle, it becomes Hidden Refresh with internal address. The output is available unit \overline{CAS} is brought high.

4. Hidden Refresh

A feature of the M5M4256P is that refresh cycles may be performed while maintaining valid data at the output pin by extending the \overline{CAS} active time from a previous memory read cycle. This feature is referred to as hidden refresh.

Hidden refresh is performed by holding \overline{CAS} at V_{1L} and taking \overline{RAS} high and after a specified precharge period, executing a \overline{RAS} -only cycling, but with \overline{CAS} held low.

The advantage of this refresh mode is that data can be held valid at the output data port indefinitely by leaving the \overline{CAS} asserted. In many applications this eliminates the need for off-chip latches.

Power Dissipation

Most of the circuitry in the M5M4256P is dynamic, and most of the power is dissipated when addresses are strobed. Both \overline{RAS} and \overline{CAS} are decoded and applied to the M5M4256P as chip-select in the memory system, but if \overline{RAS} is decoded, all unselected devices go into stand-by independent of the \overline{CAS} condition, minimizing system power dissipation.

Power Supplies

The M5M4256P operates on a single 5V power supply.

A wait of some $500\mu s$ and eight or more dummy cycles is necessary after power is applied to the device before memory operation is achieved.

262 144-BIT (262 144-WORD BY 1-BIT) DYNAMIC RAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Limits	Unit
Vcc	Supply voltage		-1-7	V
Vi	Input voltage	With respect to V _{SS}	-1~7	V
Vo	Output voltage		-1~7	V
10	Output current		50	mA
Pd	Power dissipation	Ta = 25°C	1000	mW
Topr	Operating free-air temperature range		0~70	°C
Tstg	Storage temperature range		- 65 - 150	°C

RECOMMENDED OPERATING CONDITIONS (Ta = 0 ~ 70°C, unless otherwise noted) (Note 1)

<u> </u>			Limits				
Symbol	Parameter	Min	Nom	Max	Unit		
Vcc	Supply voltage	4.5	5	5.5	V		
Vss	Supply voltage	0	0	0	v		
VIH	High-level input voltage, all inputs	2.4		6.5	v		
VIL	Low-level input voltage, all inputs	-2		0.8	v		

Note 1: All voltage values are with respect to VSS

ELECTRICAL CHARACTERISTICS (Ta = $0 \sim 70^{\circ}$ C, V_{CC} = $5V \pm 10\%$, V_{SS} = 0V, unless otherwise noted) (Note 2)

Symbol			Test conditions		Limits		11.5
SYMDO	Parameter		Test conditions	Min	Тур	Max	Unit
Vон	High-level output voltage		I _{OH} =-5mA	2.4		Vcc	V
Vol	Low-level output voltage		I _{OL} =4.2mA	0		0.4	V
loz	Off-state output current		Q floating $0V \leq V_{OUT} \leq 5.5V$	-10		10	μA
I _I	Input current		$0V \leq V_{IN} \leq V_{CC}$, Other input pins = $0V$	-10		10	μA
	A	M5M4256P-12	RAS, CAS cycling			65	mΑ
I _{CC1(AV)}	Average supply current from V _{CC} , operating (Note 3, 4)	M5M4256P-15				60	mA
		M5M4256P-20	$t_{CR} = t_{CW} = min$, output open			50	mA
I _{CC2}	Supply current from V _{CC} , standby	•	RAS = CAS = VIH output open			4.5	mA
		M5M4256P-12				55	mA
CC3 (AV)	Average supply current from V _{CC} , refreshing (Note 3)	M5M4256P-15	\overrightarrow{RAS} cycling $\overrightarrow{CAS} = V_{IH}$			50	mA
	retreating (Note 3)	M5M4256P-20	$t_{C(\overline{RAS})} = min, output open$			40	mA
		M5M4256P-12				50	mA
CC4 (AV)	Average supply current from V _{CC} , page mode (Note 3, 4)	M5M4256P-15	$\overline{RAS} = V_{IL}, \overline{CAS}$ cycling			45	mA
	page mode (Note 3, 4)	M5M4256P-20	t _{CPG} = min, output open			40	mA
	Average supply current from V _{CC} ,	M5M4256P-12	CAS before RAS refresh cycling			60	mA
ICC6(AV)	CAS before RAS refresh mode	M5M4256P-15	$t_c(RAS) = min, output open$			55	mA
	(Note 3)	M5M4256P-20	to (RAS) - min, output open			45	mA
C _{I (A)}	Input capacitance, address inputs	·				5	pF
C _{I (D)}	Input capacitance, data input		VI=VSS			5	pF
C _{I (W)}	Input capacitance, write control input	t	f=1MHz			7	pF
CI (RAS)	Input capacitance, RAS input		Vi=25mVrms			10	pF
CI (CAS)	Input capacitance, CAS input					10	pF
Co	Output capacitance		$V_0 = V_{SS}$, f=1MHz, V _i =25mVrms			7	pF

Note 2: Current flowing into an IC is positive ; out is negative.

3: ICC1(AV), ICC3(AV), ICC4(AV) and ICC6(AV) are dependent on cycle rate. Maximum current is measured at the fastest cycle rate.

4: ICC1(AV) and ICC4(AV) are dependent on output loading. Specified values are obtained with the output open.

262 144-BIT (262 144-WORD BY 1-BIT) DYNAMIC RAM

TIMING REQUIREMENTS (For Read, Write, Read-Modify-Write, Refresh, and Page-Mode Cycle)

					Limits						
Symbol	Parameter		Alternative	M5M4256P-12		M5M42	56P-15	M5M42	256P-20	Unit	
			Symbol	Min	Max	Min	Max	Min	Max		
t _{CRF}	Refresh cycle time		t _{REF}		4		4		4	ms	
tw(RASH)	RAS high pulse width		t _{RP}	100		100		120		ns	
tw(RASL)	RAS low pulse width		t RAS	120	10000	150	10000	200	10000	ns	
tw(CASL)	CAS low pulse width		tCAS	60		75		100		ns	
tw(CASH)	CAS high pulse width	(Note 8)	t _{CPN}	30		35		40		ns	
th(RAS-CAS)	CAS hold time after RAS		t _{CSH}	120		150		200		ns	
th(CAS-RAS)	RAS hold time after CAS		t _{RSH}	60		75	l	100		ns	
td (CAS-RAS)	Delay time, CAS to RAS	(Note 9)	t _{CRP}	30		30		40		ns	
td(RAS-CAS)	Delay time, RAS to CAS	(Note 10)	t _{RCD}	20	60	25	75	30	100	ns	
tsu(RA-RAS)	Row address setup time before RAS		t ASR	0		0		0		ns	
tsu(ca-cas)	Column address setup time before CAS		t ASC	-5		-5		-5		ns	
t _h (RAS-RA)	Row address hold time after RAS		t _{RAH}	15		20		25		ns	
th(CAS-CA)	Column address hold time after CAS		t _{CAH}	20		25		35		ns	
t _h (RAS-CA)	Column address hold time after RAS		t _{AR}	80		100		135		ns	
t _{THL}	Transition time		tT	3	50	3	50	3	50	ns	
t _{TLH}			• 1			_					

 $(Ta = 0 \sim 70^{\circ}C, V_{CC} = 5V \pm 10\%, V_{SS} = 0V, unless otherwise noted. See notes 5, 6 and 7)$

Note 5: An initial pause of 500 us is required after power-up followed by any eight RAS or RAS/CAS cycles before proper device operation is achieved.

6: The switching characteristics are defined as $t_{THI} = t_{TLH} = 5$ ns.

Reference levels of input signals are V_{IH} min, and V_{IL} max. Reference levels for transition time are also between V_{IH} and V_{IL} . 7

8: Except for page-mode.

9: td (CAS-RAS) requirement is applicable for all RAS/CAS cycles.

10: Operation within the td (RAS-CAS) max limit insures that ta (RAS) max can be met. td (RAS-CAS) max is specified reference point only if td (RAS-CAS) is greater than the specified td (RAS-CAS) max limit, then access time is controlled exclusively by ta (CAS). $t_d (RAS-CAS)min = t_h (RAS-RA)min + 2t_{THL}(t_{TLH}) + t_{SU}(CA-CAS)min$.

SWITCHING CHARACTERISTICS (Ta=0~70°C, V_{CC}=5V±10%, V_{SS}=0V, unless otherwise noted) **Read Cycle**

			Alternative	Limits							
Symbol	Parameter		Symbol	M5M42	256P-12	M5M42	56P-15	M5M42	56P-20	Unit	
			Symbol	Min	Max	Min	Max	Min	Max		
t _{cR}	Read cycle time		t _{RC}	230		260		330		ns	
t _{su (R-CAS)}	Read setup time before CAS		t _{RCS}	0		0		0		ns	
th(CAS-R)	Read hold time after CAS	(Note 11)	t _{RCH}	0		0		0		ns	
th(RAS-R)	Read hold time after RAS	(Note 11)	t RRH	20		20		25		ns	
tdis (CAS)	Output disable time	(Note 12)	t _{OFF}	0	35	0	40	0	50	ns	
ta (CAS)	CAS access time	(Note 13)	t CAC		60		75		100	ns	
ta (RAS)	RAS access time	(Note 14)	t _{RAC}		120		150		200	ns	

Note 11: Either th (RAS-R) or th (CAS-R) must be satisfied for a read cycle.

12: tdis (CAS) max defines the time at which the output achieves the open circuit condition and is not reference to VOH or VOL

13:

This is the value when $t_d(ras-cas) \ge t_d(ras-cas)max$. Test conditions : Load $\ge 2TTL, C_L = 100pF$ This is the value when $t_d(ras-cas) \le t_d(ras-cas)max$. When $t_d(ras-cas) \ge t_d(ras-cas)max$, $t_a(ras)$ will increase by the amount that 14: td(RAS-CAS) exceeds the value shown. Test conditions ; Load = 2TTL. CL = 100pF

Write Cycle

·····		Alternative			Lir	nits			
Symbol	Parameter		M5M42	56P-12	M5M42	56P-15	M5M42	56P-20	Unit
		Symbol	Min	Max	Min	Max	Min	Max	
t _{cw}	Write cycle time	t _{RC}	230		260		330		ns
t _{su(w-cas)}	Write setup time before CAS (Note 17)	twcs	-10		-10		-10		ns
th(CAS-W)	Write hold time after CAS	t wch	40		45		55		ns
t _{h(RAS-W)}	Write hold time after RAS	twcR	100		120		155		ns
th(w-RAS)	RAS hold time after write	t _{RWL}	40		45		55		ns
t _{h (w-CAS)}	CAS hold time after write	t _{CWL}	40		45		55		ns
t _{w(w)}	Write pulse width	twp	40		45		55		ns
t _{su (D-CAS)}	Data-in setup time before CAS	t _{DS}	0		0		0		ns
t _{h (CAS-D})	Data-in hold time after CAS	t _{DH}	30		35		40		ns
th (RAS-D)	Data-in hold time after RAS	t DHR	90		110		140		ns

MITSUBISHI LSIs

M5M4256P-12, -15, -20

262 144-BIT (262 144-WORD BY 1-BIT) DYNAMIC RAM

•			Alternative	Limits						
Symbol	Parameter		Symbol	M5M4256P-12		M5M42	56P-15	M5M42	56P-20	Unit
			Symbol	Min	Max	Min	Max	Min	Max	
t _{CRW}	Read-write cycle time	(Note 15)	t RWC	260		295		370		ns
t _{CRMW}	Read-modify-write cycle time	(Note 16)	t _{RMWC}	275		310		390		ns
th(w-RAS)	RAS hold time after write		t RWL	40		45		55		ns
th(w-CAS)	CAS hold time after write		tcwL	40		45		55		ns
tw(w)	Write pulse width		twp	40		45		55		ns
tsu (R-CAS)	Read setup time before CAS		t _{RCS}	0		0		0		ns
td(RAS-W)	Delay time, RAS to write	(Note 17)	t _{RWD}	110		135		180		ns
td(CAS-W)	Delay time, CAS to write	(Note 17)	t _{CWD}	50		60		80		ns
t _{su(D-w)}	Data-in set-up time before write		t _{DS}	0		0		0		ns
th(w-D)	Data-in hold time after write		t _{DH}	40		45		55		ns
tdis (CAS)	Output disable time		t _{OFF}	0	35	0	40	0	50	ns
ta(CAS)	CAS access time	(Note 13)	t CAC		60		75		100	ns
ta (BAS)	RAS access time	(Note 14)	t BAC		120		150		200	ns

Read, Write and Read-Modify-Write Cycles

Note 15 t_{CRW} min is defined as t_{CRW} min = $t_{d(RAS-CAS)}$ max + $t_{d(CAS-W)}$ min + $t_{h(W-RAS)}$ + $t_{w(RASH)}$ + $3t_{TLH(t_{TLL})}$

16. t_{CRMW} min is defined as t_{CRMW} min = t_a (RAS)max + t_h (w-RAS) + t_w (RAS H) + 3t_{TLH}(t_{THL})

17: tsu(w-CAS), td (RAS-w), and td (CAS-w) do not define the limits of operation, but are included as electrical characteristics only.

When tsu(w-CAS)≧tsu(w-CAS)min, an early-write cycle is performed, and the data output keeps the high-impedance state.

When $t_d(RAS-w) \ge t_d(RAS-w)min$, and $t_d(CAS-w) \ge t_{SU}(w-CAS)min$ a read-write cycle is performed, and the data of the selected address will be read out on the data output.

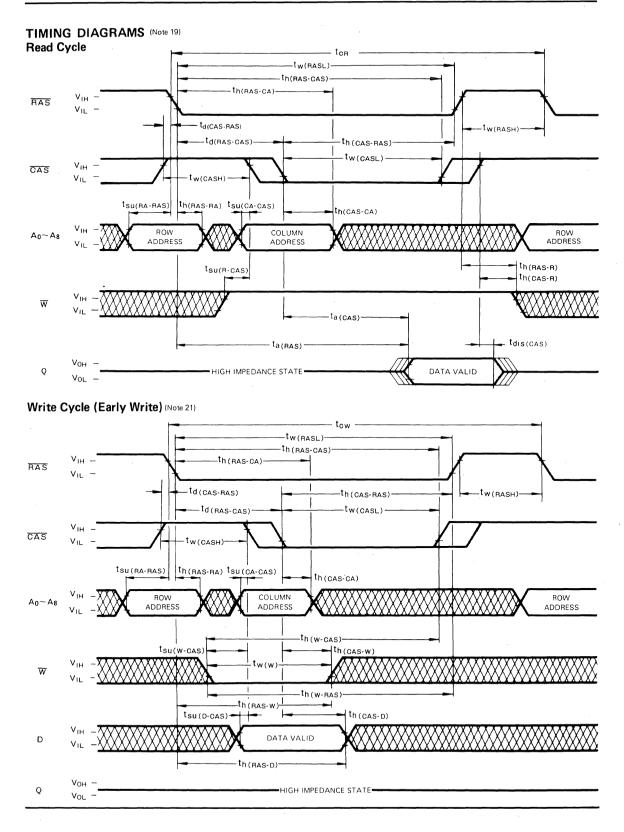
For all conditions other than those described above, the condition of data output (at access time and until CAS goes back to VIH) is not defined,

Page-Mode Cycle

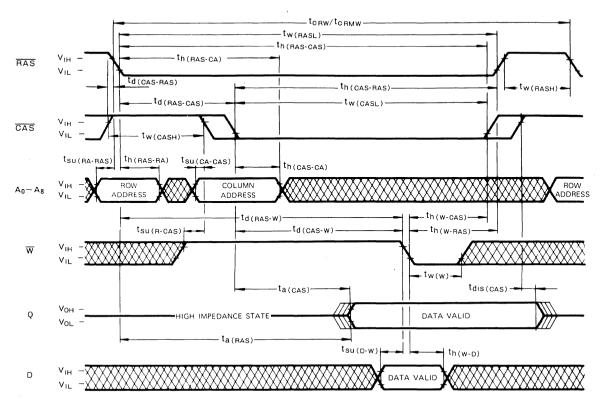
Symbol	Parameter	Alternative	M5M4256P-12		M5M42	56P-15	M5M42	56P-20	Unit
		o y moor	Min	Max	Min	Max	Min	Max	
t _{CPG}	Page-mode cycle time	t PC	125		145		190		ns
tw (CASH)	CAS high pulse width	t _{CP}	55		60		80		ns
topgrw	Page-mode RW cycle time	t _{PCRW}	160		180		230		ns
t _{CPGRMW}	Page-mode RMW cycle time	t _{PCRMW}	170		195		250		ns

CAS before RAS Refresh Cycle (Note 18)

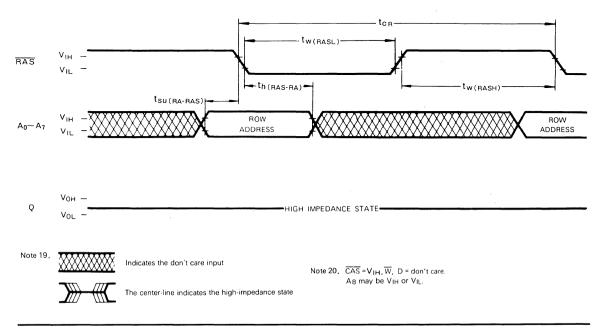
Symbol	Parameter	Alternative Symbol M5M	M5M4256P-12		M5M42	56P-15	M5M4256P-20		Unit
	· · · · · · · · · · · · · · · · · · ·	oymbol	Min	Max	Min	Max	Min	Max	
t _{sur (Cas-ras)}	CAS setup time for auto refresh	t _{CSR}	30		30		40		ns
thr (ras-cas)	CAS hold time for auto refresh	t _{CHR}	50		50		50		ns
t _{dr (ras-cas)}	Precharge to CAS active time	t _{RPC}	0		0		0		ns


Note 18. Eight or more CAS before RAS cycles is necessary for proper operation of CAS before RAS refresh mode.

MITSUBISHI LSIs

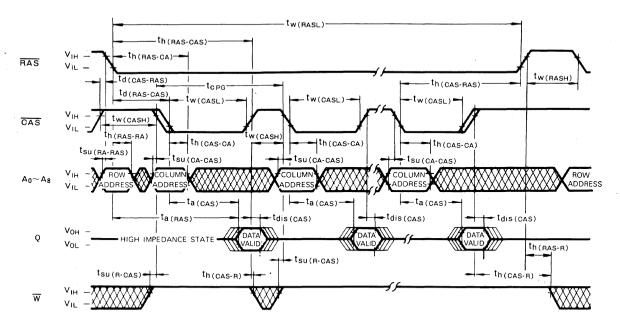

M5M4256P-12, -15, -20

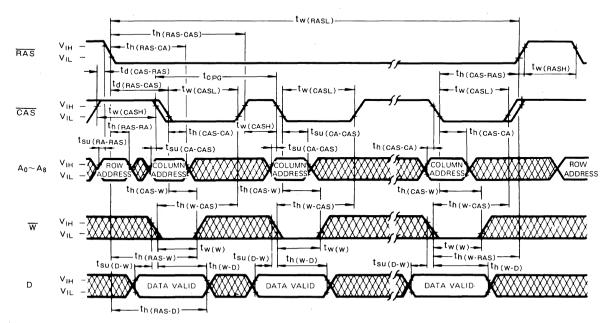
262 144-BIT (262 144-WORD BY 1-BIT) DYNAMIC RAM



262 144-BIT (262 144-WORD BY 1-BIT) DYNAMIC RAM

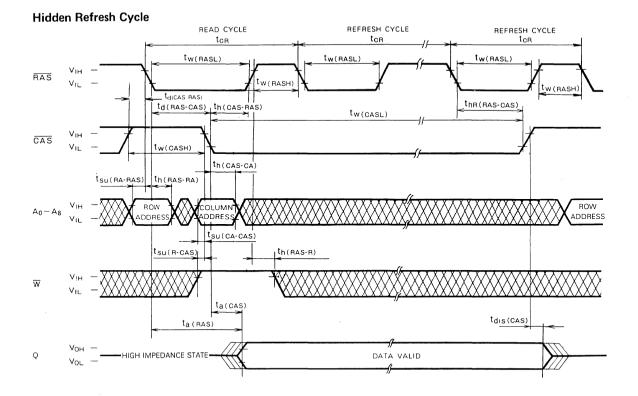
Read-Write and Read-Modify-Write Cycles

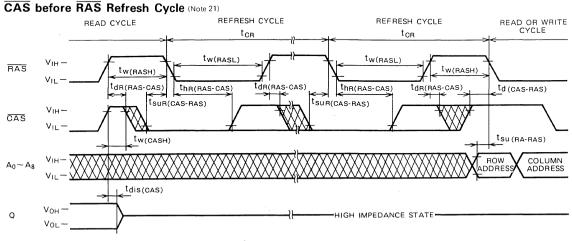

RAS-Only Refresh Cycle (Note 20)



262 144-BIT (262 144-WORD BY 1-BIT) DYNAMIC RAM

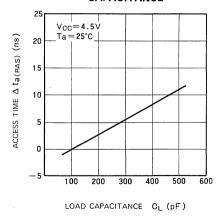
Page-Mode Read Cycle



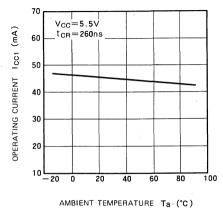

Page-Mode Write Cycle

262 144-BIT (262 144-WORD BY 1-BIT) DYNAMIC RAM

Note 21: \overline{W} , D = don't care.



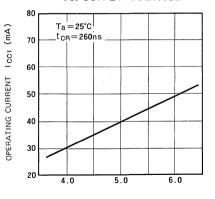
262 144-BIT (262 144-WORD BY 1-BIT) DYNAMIC RAM


TYPICAL CHARACTERISTICS NORMALIZED ACCESS TIME VS. SUPPLY VOLTAGE

SUPPLY VOLTAGE VCC (V)

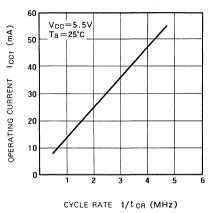
ACCESS TIME VS. LOAD CAPACITANCE

OPERATING CURRENT VS. AMBIENT TEMPERATURE

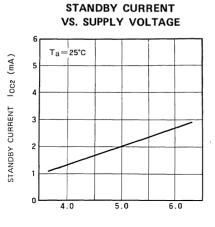


VS. AMBIENT TEMPERATURE 1 3 V_{CC}=5.0V VORMALIZED ACCESS TIME ta(RAS) 1.2 1.1 1.0 0.9 0.8 0.7 - 20 ò 20 40 60 80 100

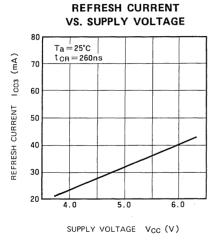
NORMALIZED ACCESS TIME

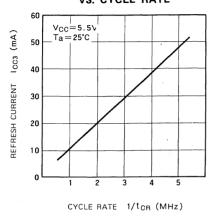

AMBIENT TEMPERATURE Ta (°C)

OPERATING CURRENT VS. SUPPLY VOLTAGE

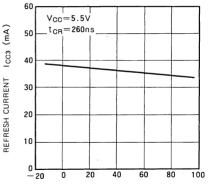

SUPPLY VOLTAGE VCC (V)

OPERATING CURRENT VS. CYCLE RATE

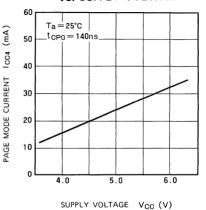



262 144-BIT (262 144-WORD BY 1-BIT) DYNAMIC RAM

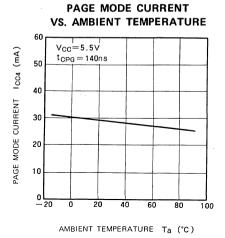
SUPPLY VOLTAGE VCC (V)


REFRESH CURRENT

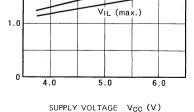
STANDBY CURRENT VS. AMBIENT TEMPERATURE 6 $V_{CC} = 5.5V$ (mA) 5 I cc2 4 STANDBY CURRENT 3 2 1 0 - 20 'n 20 40 60 80 100

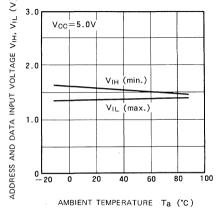

AMBIENT TEMPERATURE Ta (°C)

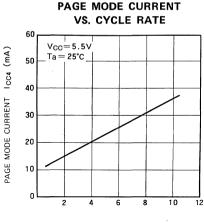
REFRESH CURRENT VS. AMBIENT TEMPERATURE


AMBIENT TEMPERATURE Ta (°C)

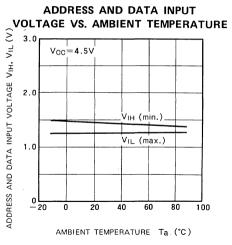
PAGE MODE CURRENT VS. SUPPLY VOLTAGE

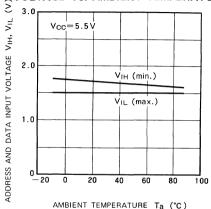



262 144-BIT (262 144-WORD BY 1-BIT) DYNAMIC RAM



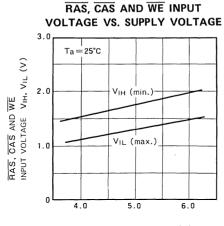
ADDRESS AND DATA INPUT VOLTAGE VS. SUPPLY VOLTAGE ADDRESS AND DATA INPUT VOLTAGE VIH, VIL (V) 3.0 $T_a = 25^{\circ}C$ 2.0 VIH (min.) Vi∟ (max.) 1.0


VOLTAGE VS. AMBIENT TEMPERATURE

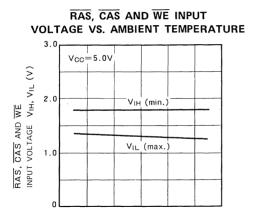


CYCLE RATE 1/t CPG (MHz)

ADDRESS AND DATA INPUT



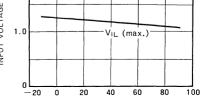
VOLTAGE VS. AMBIENT TEMPERATURE



262 144-BIT (262 144-WORD BY 1-BIT) DYNAMIC RAM

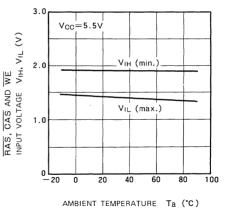
SUPPLY VOLTAGE VCC (V)

40 AMBIENT TEMPERATURE Ta (°C)

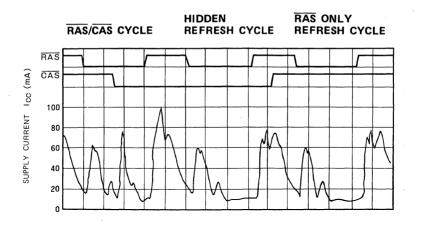

60

80 100

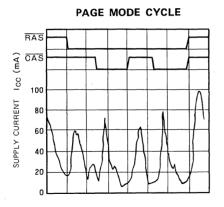
20


-20 0

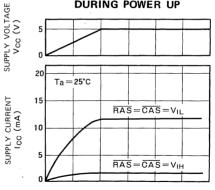
RAS. CAS AND WE INPUT VOLTAGE VS. AMBIENT TEMPERATURE 3.0 $V_{CC} = 4.5V$ RAS, CAS AND WE INPUT VOLTAGE VIH, VIL (V) 2.0 ViH (min.) 1.0 Vii (max.)



AMBIENT TEMPERATURE Ta (°C)


RAS, CAS AND WE INPUT VOLTAGE VS. AMBIENT TEMPERATURE

262 144-BIT (262 144-WORD BY 1-BIT) DYNAMIC RAM



50ns/DIVISION

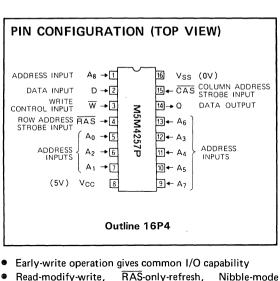
50ns/DIVISION

CURRENT WAVEFORM

s/DIVISION عرة

M5M4257P-12, -15, -20

RODUCT 262 144-BIT (262 144-WORD BY 1-BIT) DYNAMIC RAM

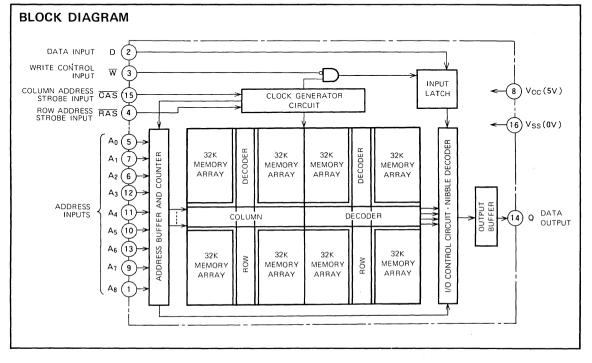

DESCRIPTION

This is a family of 262 144-word by 1-bit dynamic RAMs. fabricated with the high performance N-channel silicon gate MOS process, and is ideal for large-capacity memory systems where high speed, low power dissipation, and low costs are essential. The use of double-layer polysilicon process combined with silicide technology and a singletransistor dynamic storage cell provide high circuit density at reduced costs, and the use of dynamic circuitry including sense amplifiers assures low power dissipation. Multiplexed address inputs permit both a reduction in pins to the standard 16-pin package configuration and an increase in system densities. In addition to the BAS only refresh mode, the Hidden refresh mode and CAS before BAS refresh mode are available

FEATURES

Type name	Access time (max) (ns)	Cycle time (min) (ns)	Power dissipation (typ) (mW)
M5M4257P-12	120	230	260
M5M4257P-15	150	260	230
M5M4257P-20	200	330	190

- Standard 16-pin package
- Single 5V±10% supply
- 25mW (max) Low standby power dissipation:
 - Low operating power dissipation: M5M4257P-12 · · · · · · · · · 360mW (max) M5M4257P-15 · · · · · · · · 330mW (max)
- Unlatched output enables two-dimensional chip selection



MITSURISHI LSIS

- capabilities. (Pin 1 is used for nibble mode) CAS before RAS refresh mode capability
- All input terminals have low input capacitance and are directly TTL-compatible
- Output is three-state and directly TTL-compatible
- 256 refresh cycles every 4ms. Pin 1 is not needed for refresh.
- CAS controlled output allows hidden refresh

APPLICATION

- Main memory unit for computers
- Microcomputer memory

M5M4257P-12, -15, -20

262 144-BIT (262 144-WORD BY 1-BIT) DYNAMIC RAM

FUNCTION

The M5M4257P provides, in addition to normal read, write, and read-modify-write operations, a number of other functions, e.g., nibble mode, RAS-only refresh, and delayed-write. The input conditions for each are shown in Table 1.

Table 1 Input conditions for each mode

	Inputs									
Operation	RAS	CAS	w	D	Row address	Column address	Q	Refresh	Remarks	
Read	ACT	ACT	NAC	DNC	APD	APD	VLD	YES	*	
Write	ACT	ACT	ACT	VLD	APD	APD	OPN	YES		
Read-modify-write	ACT	ACT	ACT	VLD	APD	APD	VLD	YES		
RAS-only refresh	ACT	NAC	DNC	DNC	APD	DNC	OPN	YES		
Hidden refresh	ACT	ACT	DNC	DNC	DNC	DNC	VLD	YES		
CAS before RAS refresh	ACT	ACT	DNC	DNC	DNC	DNC	OPN	YES		
Standby	NAC	DNC	DNC	DNC	DNC	DNC	OPN	NO		

Note: ACT : active, NAC : nonactive, DNC : don't care, VLD : valid, APD : applied, OPN : open

* Nibble mode identical except refresh is No, and Nibble mode column address is DNC while toggling CAS.

SUMMARY OF OPERATIONS Addressing

To select one of the 262 144 memory cells in the M5M4257P the 18-bit address signal must be multiplexed into 9 address signals, which are then latched into the on-chip latch by two externally-applied clock pulses. First, the negative-going edge of the row-address-strobe pulse (\overline{RAS}) latches the 9 row-address bits; next, the negative-going edge of the column-address-strobe pulse (\overline{CAS}) latches the 9 column-address bits. Timing of the \overline{RAS} and \overline{CAS} clocks can be selected by either of the following two methods:

- 1. The delay time from \overrightarrow{RAS} to $\overrightarrow{CAS} t_{d (RAS-CAS)}$ is set between the minimum and maximum values of the limits. In this case, the internal \overrightarrow{CAS} control signals are inhibited almost until $t_{d(RAS-CAS)}$ max ('gated $\overrightarrow{CAS'}$ operation). The external \overrightarrow{CAS} signal can be applied with a margin not affecting the on-chip circuit operations, e.g. access time, and the address inputs can be easily changed from row address to column address.
- 2. The delay time $t_{d(RAS-CAS)}$ is set larger than the maximum value of the limits. In this case the internal inhibition of \overline{CAS} has already been released, so that the internal \overline{CAS} control signals are controlled by the externally applied \overline{CAS} , which also controls the access time.

Data Input

Data to be written into a selected cell is strobed by the later of the two negative transitions of \overline{W} input and \overline{CAS} input. Thus when the \overline{W} input makes its negative transition prior to \overline{CAS} input (early write), the data input is strobed by \overline{CAS} , and the negative transition of \overline{CAS} is set as the reference point for set-up and hold times. In the read-write or read-modify-write cycles, however, when the \overline{W} input makes its negative transition after \overline{CAS} , the \overline{W} negative transition is set as the reference point for setup and hold times.

Data Output Control

The output of the M5M4257P is in the high-impedance state when \overline{CAS} is high. When the memory cycle in progress is a read, read-modify-write, or a delayed-write cycle, the data output will go from the high-impedance state to the active condition, and the data in the selected cell will be read. This data output will have the same polarity as the input data. Once the output has entered the active condition, this condition will be maintained until \overline{CAS} goes high, irrespective of the condition of \overline{RAS} .

The output will remain in the high-impedance state throughout the entire cycle in an early-write cycle.

These output conditions, of the M5M4257P, which can readily be changed by controlling the timing of the write pulse in a write cycle, and the width of the CAS pulse in a read cycle, offer capabilities for a number of applications, as follows.

1. Common I/O Operation

If all write operations are performed in the early-write mode, input and output can be connected directly to give a common I/O data bus.

2 Data Output Hold

The data output can be held between read cycles, without lengthening the cycle time. This enables extremely flexible clock-timing settings for \overline{RAS} and \overline{CAS} .

3. Two Methods of Chip Selection

Since the output is not latched, \overline{CAS} is not required to keep the outputs of selected chips in the matrix in a highimpedance state. This means that \overline{CAS} and/or \overline{RAS} can both be decoded for chip selection.

4. Extended-Page Boundary

By decoding \overline{CAS} , the page boundary can be extended beyond the 512 column locations in a single chip. In this case, \overline{RAS} must be applied to all devices.

Nibble-Mode Operation

The M5M4257P is designed to allow high speed serial read, write or read-modify-write access of 4 bits of data. The first of 4 nibble bits is accessed by the normal mode with read data coming out at $t_{a(CAS)}$ time. Next 2, 3 or 4 nibble bits is read or writen by bringing CAS high then low (toggle) while RAS remains low. Thus the time required to strobe in not only the row address but also the column address is eliminated, thereby faster access and shorter cycle time than that of Page-Mode is achieved.

Address on pin 1 (row address A8 and column address A8) is used to select 1 of the 4 nibble bits for initial access. Toggling \overrightarrow{CAS} causes row A8 and column A8 to be incremented by the internal shift register with A8 row being the least significant address and allows to access to the next nibble bit. If more than 4 bits are accessed during this mode the same address bit will be accessed cyclically. In Nibble-Mode, any combination of read, write and read-modify-write operation is possible (e.g. first bit read, second bit write, third bit read-modify-write, etc.).

Refresh

Each of the 256 rows ($A_0 \sim A_7$) of the M5M4257P must be refreshed every 4 ms to maintain data. The methods of refreshing for the M5M4257P are as follows.

1. Normal Refresh

Read cycle and Write cycle (early write, delayed write or read-modify-write) refresh the selected row as defined by the low order (\overline{RAS}) addresses. Any write cycle, of course, may change the state of the selected cell. Using a read, write, or read-modify-write cycle for refresh is not recommended for systems which utilize "wired-OR" outputs since output bus contention will occur.

2. RAS Only Refresh

In this refresh method, the \overline{CAS} clock should be at a V_{IH} level and the system must perform \overline{RAS} Only cycle on all 256 row address every 4 ms. The sequential row addresses from an external counter are latched with the \overline{RAS} clock and associated internal row locations are refreshed. A \overline{RAS} Only Refresh cycle maintains the output in the high impedance state with a typical power reduction of 20% over a read or write cycle.

3. CAS before RAS Refresh

If CAS falls $t_{SUR(CAS-RAS)}$ earlier than RAS and if CAS is kept low by $t_{hR(RAS-CAS)}$ after RAS falls, CAS before RAS Refresh is initiated. The external address is ignored and the refresh address generated by the internal 8-bit counter is put into the address buffer to refresh the corresponding row. The output will stay in the high impedance state.

If \overline{CAS} is kept low after the above operation, \overline{RAS} cycle initiates \overline{RAS} Only Refresh with internally generated refresh address (Automatic refresh). The output will again stay in the high impedance state.

Bringing \overline{RAS} high and then low while \overline{CAS} remains high initiates the normal \overline{RAS} Only Refresh using the external address.

If \overline{CAS} is kept low after the normal read/write cycle, RAS cycle initiates the RAS Only Refresh using the internal refresh address and especially after the normal read cycle, it becomes Hidden Refresh with internal address. The output is available unit \overline{CAS} is brought high.

4. Hidden Refresh

A feature of the M5M4257P is that refresh cycles may be performed while maintaining valid data at the output pin by extending the \overline{CAS} active time from a previous memory read cycle. This feature is referred to as hidden refresh.

Hidden refresh is performed by holding \overline{CAS} at V_{1L} and taking \overline{RAS} high and after a specified precharge period, executing a \overline{RAS} -only cycling, but with \overline{CAS} held low.

The advantage of this refresh mode is that data can be held valid at the output data port indefinitely by leaving the CAS asserted. In many applications this eliminates the need for off-chip latches.

Power Dissipation

Most of the circuitry in the M5M4257P is dynamic, and most of the power is dissipated when addresses are strobed. Both \overline{RAS} and \overline{CAS} are decoded and applied to the M5M4257P as chip-select in the memory system, but if \overline{RAS} is decoded, all unselected devices go into stand-by independent of the \overline{CAS} condition, minimizing system power dissipation.

Power Supplies

The M5M4257P operates on a single 5V power supply.

A wait of some 500μ s and eight or more dummy cycles is necessary after power is applied to the device before memory operation is achieved.

MITSUBISHI LSIs

M5M4257P-12, -15, -20

262 144-BIT (262 144-WORD BY 1-BIT) DYNAMIC RAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Limits	Unit
Vcc	Supply voltage		-1~7	V
VI	Input voltage	With respect to V _{SS}	-1~7	V
Vo	Output voltage		-1~7	v
10	Output current		50	mA
Pd	Power dissipation	Ta = 25°C	1000	mW
Topr	Operating free-air temperature range		0~70	°C
Tstg	Storage temperature range		-65~150	°C

RECOMMENDED OPERATING CONDITIONS (Ta = 0 ~ 70°C, unless otherwise noted) (Note 1)

0			Unit		
Symbol	Parameter	Min	Nom	Max	Unit
Vcc	Supply voltage	4.5	5	5.5	v
V _{SS}	Supply voltage	0	0	0	v
VIH	High-level input voltage, all inputs	2.4		6.5	v
VIL	Low-level input voltage, all inputs	-2		0.8	v

Note 1: All voltage values are with respect to VSS

ELECTRICAL CHARACTERISTICS ($Ta = 0 \sim 70^{\circ}C$, $V_{CC} = 5V \pm 10\%$, $V_{SS} = 0V$, unless otherwise noted) (Note 2)

Symbol		Parameter Test conditions			Limits		
Symbol	Parameter		lest conditions	Min	Тур	' Max	Unit
V _{OH}	High-level output voltage		I _{OH} =-5mA			Vcc	V
VOL	Low-level output voltage		I _{OL} =4.2mA	0		0.4	V
loz	Off-state output current		Q floating $0V \leq V_{OUT} \leq 5.5V$	· — 10		10	μA
li -	Input current		$0V \leq V_{IN} \leq V_{CC}$, Other input pins = $0V$	-10		10	μA
		M5M4257P-12				65	mA
CC1(AV)	Average supply current from V _{CC} , operating (Note 3, 4)	M5M4257P-15				60	mA
		M5M4257P-20	$t_{CR} = t_{CW} = min$, output open			50	mA
I CC2	Supply current from V _{CC} , standby		RAS = CAS = VIH output open			4.5	mA
		M5M4257P-12				55	mA
CC3 (AV)	Average supply current from V _{CC} , refreshing (Note 3) M5M4257P-15 M5M4257P-20	M5M4257P-15	RAS cycling $CAS = V_{IH}$			50	mA
		M5M4257P-20	$t_{C(RAS)} = min, output open$			40	mA
		M5M4257P-12	$\overline{RAS} = V_{II}$, \overline{CAS} cycling			30	mA
CC5 (AV)	nibble mode	M5M4257P-15				25	mA .
		M5M4257P-20	t CN= min, output open			23	mA
	Average supply current from V _{CC} ,	M5M4257P-12	CAS before RAS refresh cycling			60	mÁ
ICC6(AV)		M5M4257P-15	$t_{C(RAS)} = min, output open$			55	mA
	(Note 3)	M5M4257P-20	C(RAS) = mm, output open			45	mA
CI (A)	Input capacitance, address inputs					5	pF
C _{I (D)}	Input capacitance, data input		V _I =V _{SS}			5	pF
C _{I (W)}	Input capacitance, write control input	1	f=1MHz		1	7	pF
CI (RAS)	Input capacitance, RAS input		Vi=25 mVrms			10	pF
CI (CAS)	Input capacitance, CAS input		1			10	pF
Co	Output capacitance		$V_0 = V_{SS}$, f=1MHz, V _i =25mVrms			7	pF

Note 2: Current flowing into an IC is positive ; out is negative.

3: ICC1(AV), ICC3(AV), ICC5(AV) and ICC6(AV) are dependent on cycle rate. Maximum current is measured at the fastest cycle rate.

4: ICC1(AV) and ICC5(AV) are dependent on output loading. Specified values are obtained with the output open.

MITSUBISHI LSIs M5M4257P-12. -15. -20

262 144-BIT (262 144-WORD BY 1-BIT) DYNAMIC RAM

TIMING REQUIREMENTS (For Read, Write, Read-Modify-Write, Refresh, and Nibble-Mode Cycle)

($Ta=0\sim70^{\circ}C$, $~V_{CC}=5V~\pm~10\%$, $~V_{SS}=0V$, unless otherwise noted, See notes 5, 6 and 7) Limits Alternative Symbol Parameter M5M4257P-12 M5M4257P-15 M5M4257P-20 Unit Symbol Min Min Мах Min Max Max Refresh cycle time t _{REF} tear Δ 4 4 ms RAS high pulse width 100 100 120 tw(RASH) tep ns RAS low pulse width tw(RASL) 120 10000 150 10000 200 10000 t BAS ns tw(CASL) CAS low pulse width tCAS 60 75 100 ns CAS high pulse width tw(CASH) (Note 8) t _{CPN} 30 35 40 ns CAS hold time after RAS th(RAS-CAS) t _{CSH} 120 150 200 ns th(CAS-RAS) RAS hold time after CAS t _{RSH} 60 75 100 ns Delay time, CAS to RAS td (CAS-RAS) 30 30 40 (Note 9) t_{CRP} ns Delay time, RAS to CAS 20 60 25 30 (Note 10) t _{RCD} 75 100 td(RAS-CAS) ns Bow address setup time before BAS 0 0 n t_{su(RA-RAS)} t ASR ns Column address setup time before CAS -5 -5 - 5 tsu(CA-CAS) t ASC ns Row address hold time after RAS 15 20 25 th (RAS-RA) t RAH ns th(CAS-CA) Column address hold time after CAS 20 t CAH 25 35 ns Column address hold time after RAS 80 100 135 th (RAS-CA) t _{AR} ns t THU Transition time 3 50 t – 3 50 50 2 ns t_{TLH} An initial pause of 500µs is required after power-up followed by any eight RAS or RAS/CAS cycles before proper device operation is achieved. Note 5

The switching characteristics are defined as $t_{THL} = t_{TLH} = 5$ ns. 6.

Reference levels of input signals are VIH min and VII max. Reference levels for transition time are also between VIH and VII. 7

8 Except for nibble-mode.

q td (RAS-CAS) requirement is applicable for all RAS/CAS cycles.

10 Operation within the td (RAS-CAS) max limit insures that ta (RAS) max can be met. td (RAS-CAS) max is specified reference point only; if t_{d} (RAS-CAS) is greater than the specified t_{d} (RAS-CAS) max limit, then access time is controlled exclusively by t_{a} (CAS). $t_d (RAS-CAS)min = t_h (RAS-RA)min + 2t_{THL}(t_{TLH}) + t_{SU}(CA-CAS)min$.

SWITCHING CHARACTERISTICS (Ta = $0 \sim 70^{\circ}$ C, V_{CC} = 5V ± 10%, V_{SS} = 0V, unless otherwise noted) **Read Cycle**

Symbol	Parameter		Alternative							
			Symbol	M5M4257P-12		M5M4257P-15		M5M4257F-20		Unit
				Min	Max	Min	Max	Min	Max	
t _{cR}	Read cycle time		t _{RC}	230		260		330		ns
t _{su (R-CAS})	Read setup time before CAS		t _{RCS}	0		0		0		ns
th(CAS-R)	Read hold time after CAS (No	ote 11)	t _{RCH}	0		0		0		ns
th(RAS-R)	Read hold time after RAS (No	ote 11)	tвян	20		20		25		ns
tdis (CAS)	Output disable time (No	ote 12)	toff	0	35	0	40	0	50	ns .
t _{a (CAS})	CAS access time (No	ote 13)	t _{CAC}		60		75		100	ns
ta (RAS)	RAS access time (No	ote 14)	t _{RAC}		120		150		200	ns

Note 11: Either th (RAS-R) or th (CAS-R) must be satisfied for a read cycle.

 t_{dis} (CAS) max defines the time at which the output achieves the open circuit condition and is not reference to V_{OH} or V_{OL}: 12:

13:

This is the value when $t_d(RAS-CAS) \ge t_d(RAS-CAS)max$. Test conditions : Load = 2TTL, $C_L = 100pF$ This is the value when $t_d(RAS-CAS) \le t_d(RAS-CAS)max$. When $t_d(RAS-CAS) \ge t_d(RAS-CAS)max$, $t_a(RAS)$ will increase by the amount that $t_d(RAS-CAS) = t_d(RAS-CAS) \ge t_d(RAS-CAS)max$. 14:

Write Cycle

		Alternative Symbol							
Symbol	Parameter		M5M4257P-12		M5M4257P-15		M5M4257P-20		Unit
			Min	Max	Min	Max	Min	Max	
tow	Write cycle time	t _{RC}	230		260		330		ns -
t _{su (w-cas)}	Write setup time before CAS (Note 17)	twcs	-10		-10		-10		ns
th(CAS-W)	Write hold time after CAS	t _{wCH}	40		45		55		ns
th(RAS-W)	Write hold time after RAS	t _{WCR}	100		120		155		ns
th(w-RAS)	RAS hold time after write	t _{RWL}	40		45		55		ns
th(w-CAS)	CAS hold time after write	t _{CWL}	40		45		55		ns
t _{w(w)}	Write pulse width	t _{WP}	40		45		55		ns
t _{su (D-CAS})	Data-in setup time before CAS	t _{DS}	0		0		0		ns
th (CAS-D)	Data-in hold time after CAS	t _{DH}	30		35		40		ns
th(RAS-D)	Data-in hold time after RAS	t _{DHR}	90		110		140		ns

262 144-BIT (262 144-WORD BY 1-BIT) DYNAMIC RAM

Read, Write and Read-Modify-Write Cycles

			Alternative			Lir	nits			
Symbol	Parameter		Symbol	M5M42	257P-12	M5M42	257P-15	M5M42	57P-20	Unit
			Symbol	Min	Max	Min	Max	Min	Max	
t _{cRw}	Read-write cycle time	(Note 15)	t _{RWC}	260		295		370		ns
tormw	Read-modify-write cycle time	(Note 16)	t _{RMWC}	275		310		390		ns
th(w-RAS)	RAS hold time after write		t _{RWL}	40		45		55		ns
th(w-CAS)	CAS hold time after write		t _{cw∟}	40		45		55		ns
tw(w)	Write pulse width		twp	40		45		55		ns
tsu (R-CAS)	Read setup time before CAS		t _{RCS}	0		0		0		ns
td(RAS-W)	Delay time, RAS to write	(Note 17)	t _{RWD}	110	T	135		180		ns
td(CAS-W)	Delay time, CAS to write	(Note 17)	t _{CWD}	50		60		80		ns
tsu(D-w)	Data-in set-up time before write		t _{DS}	0		0		0		ns
t _{h(w-D)}	Data-in hold time after write		t _{DH}	40		45		55		ns
tdis (CAS)	Output disable time		toFF	0	35	0	40	0	50	ns
ta(CAS)	CAS access time	(Note 13)	t _{CAC}		60		75		100	ns
ta(RAS)	RAS access time	(Note 14)	t _{RAC}		120		150		200	ns

Note 15: t_{CRW}min is defined as t_{CRW}min = td(RAS-CAS)max + td(CAS-W)min + th(W-RAS) + tw(RASH) + 3t TLH(ITHL)

16: t_{CRMW} min is defined as t_{CRMW} min = $t_{a}(RAS)max + t_{h}(W-RAS) + t_{w}(RAS-H) + 3t_{TLH}(t_{THL})$

17: tsu (w-cas), td (RAS-w), and td (cas-w) do not define the limits of operation, but are included as electrical characteristics only.

When $t_{su(w-CAS)} \ge t_{su(w-CAS)min}$, an early-write cycle is performed, and the data output keeps the high-impedance state.

When $t_d(RAS-w) \ge t_d(RAS-w)min$ and $t_d(CAS-w) \ge t_{SU(w-CAS)}min$ a read-write cycle is performed, and the data of the selected address will be read out on the data output.

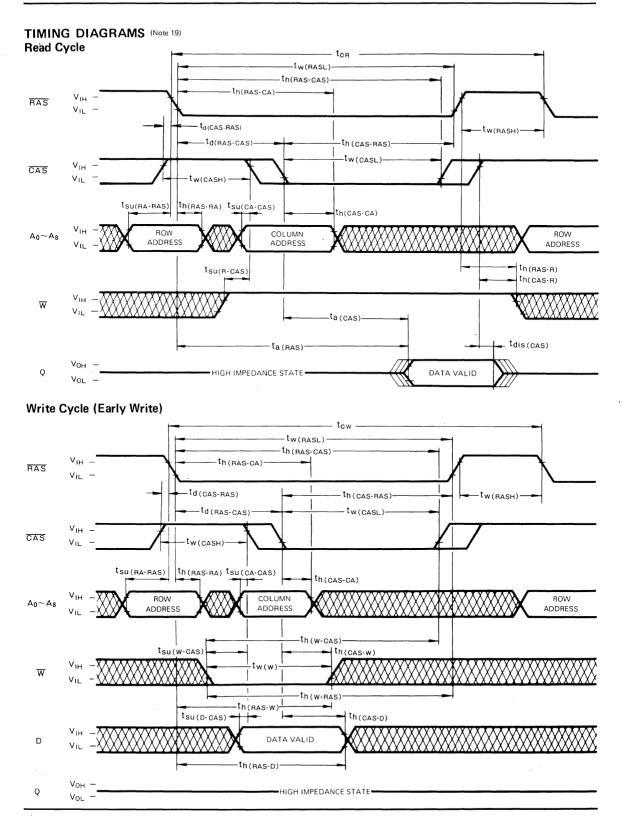
For all conditions other than those described above, the condition of data output (at access time and until CAS goes back to VIH) is not defined.

Nibble-Mode Cycle

					Li	mits			
Symbol	Parameter	Alternative Symbol	M5M42	257P-12	M5M42	257P-15	M5M42	57P-20	Unit
		Symbol	Min	Max	Min	Max	Min	Max	
t _{CN}	Nibble mode cycle time	t _{NC}	55		70		90		ns
tan (CAS)	Nibble mode access time	t NAC		30		40		50	ns
twn (CASL)	Nibble mode CAS low pulse width	t _{NCAS}	30		40		50		ns
twn(cash)	Nibble mode precharge time	t _{NP}	15		20		30		ns
thn (CAS-RAS)	Nibble mode RAS hold time	t _{NRSH}	30		40		50		ns
t _{dN (CAS-W)}	Nibble mode CAS to WRITE delay	t _{NCWD}	30		40		50		ns
twnRMW (CASL)	Nibble mode RMW CAS pulse width	t _{NCRW}	65		85		105		ns
thNRMW(W-CAS)	Nibble mode WRITE to CAS lead time	t _{NCWL}	30		40		50		ns
thnrmw (cas-ras)	Nibble mode RMW RAS hold time	t _{NWSH}	65		85		105		ns
t _{sun(w-cas)}	Nibble mode WRITE setup time before CAS	t _{NWCS}	0		0		0		ns

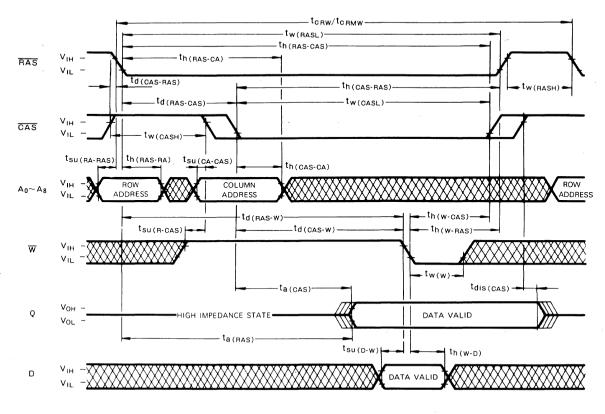
CAS before RAS Refresh Cycle (Note 18)

Symbol	Parameter	Alternative Symbol	M5M42	57P-12	M5M42	57P-15	M5M42	257P-20	Unit
		Symbol	Min	Max	Min	Max	Min	Max	
t _{sur (Cas-ras)}	CAS setup time for auto refresh	t _{CSR}	30		30		40		ns
thr (ras-cas)	CAS hold time for auto refresh	t _{CHR}	50		50		50		ns
tdr (ras-cas)	Precharge to CAS active time	t _{RPC}	0		0		0		ns

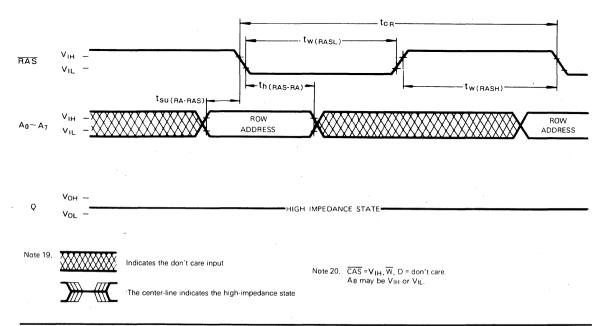

Note 18. Eight or more CAS before RAS cycles is necessary for proper operation of CAS before RAS refresh mode.

Nibble Mode Addressing Sequence Example

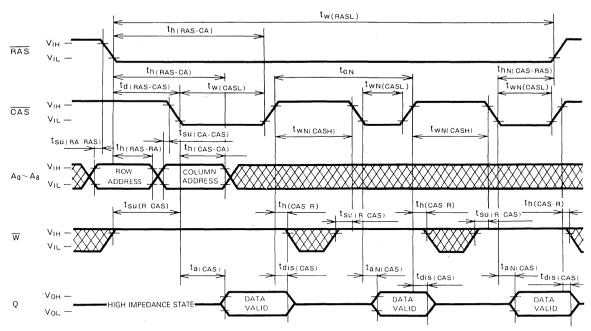
Sequence	Nibble bit			(Colum	nn ad	dress							Rov	v add	ress] .
Godgenios	NIDDIE DI	A ₀	A ₁	A ₂	Α3	A4	A_5	A_6	Α7	Α8	A ₀	Α1	A2	A_3	Α4	A_5	A_6	Α7	Α8	
RAS/CAS	1	0	1	0	1	0	1	0	1	0	0	1	0	1	0	1	0	1	0	External address
toggle CAS	2	0	1	0	1	0	1	0	1	0	0	1	0	1	0	1	0	1	1	
toggle CAS	3	0	1	0	1	0	1	0	1	1	0	1	0	1	0	1	0	1	0	Internally generated address
toggle CAS	4	0	1	0	1	0	1	0.	1	1	0	1	0	1	0	1	0	1	1	
toggle CAS	1	0	1	0	1	0	1	0	1	0	0	1	0	1	0	1	0	1	0	J J



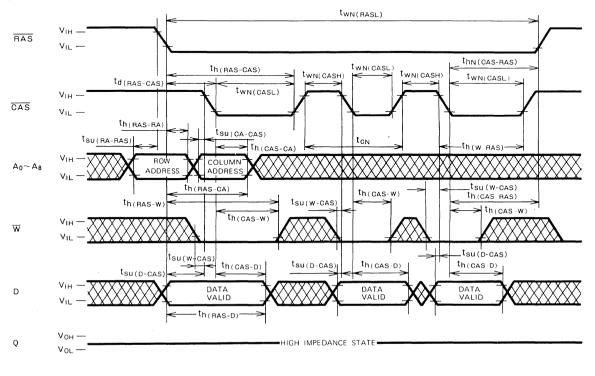
262 144-BIT (262 144-WORD BY 1-BIT) DYNAMIC RAM



262 144-BIT (262 144-WORD BY 1-BIT) DYNAMIC RAM

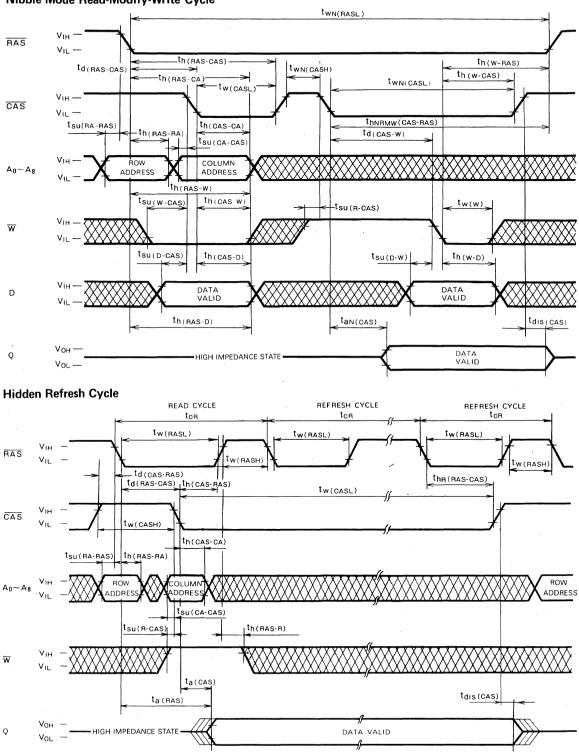

Read-Write and Read-Modify-Write Cycles

RAS-Only Refresh Cycle (Note 20)

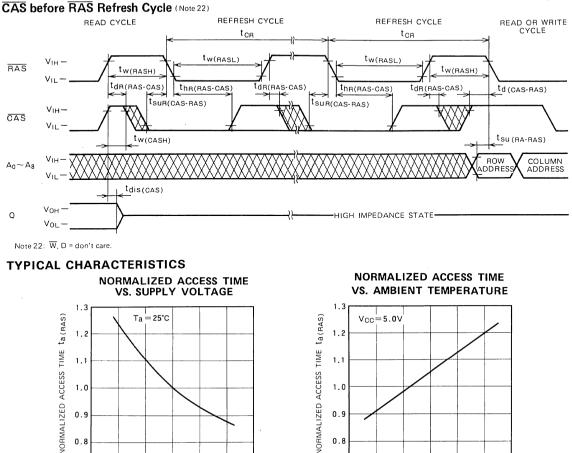


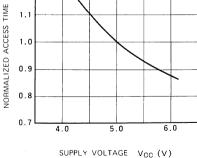
262 144-BIT (262 144-WORD BY 1-BIT) DYNAMIC RAM

Nibble Mode Read Cycle (Note 21)

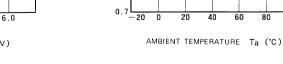

Note 21. Pin 1 at Row Time and Column Time Determines the Starting Address of the Nibble Cycle.

Nibble Mode Write Cycle (Early Write)


262 144-BIT (262 144-WORD BY 1-BIT) DYNAMIC RAM



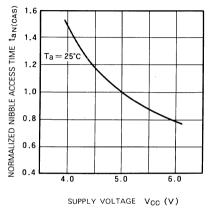
Nibble Mode Read-Modify-Write Cycle



262 144-BIT (262 144-WORD BY 1-BIT) DYNAMIC RAM

ACCESS TIME VS. LOAD CAPACITANCE 25 V_{CC}=4.5V $T_a = 25^{\circ}C$ 20 15

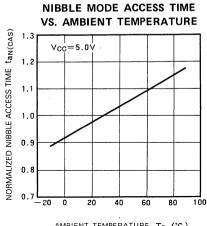
0.9 0.8


NIBBLE MODE ACCESS TIME VS. SUPPLY VOLTAGE

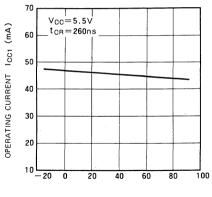
40

60

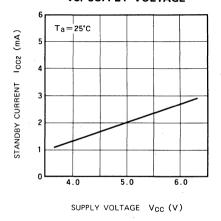
80 100

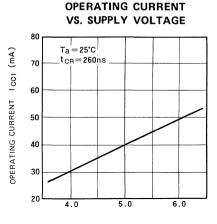

20

ACCESS TIME Δ t_{a(RAS)} (ns) 10 5 0 -5300 400 500 600 100 200 LOAD CAPACITANCE CL (pF)

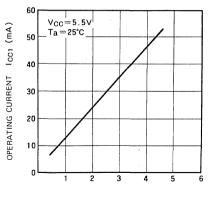


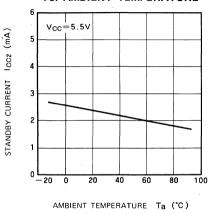
262 144-BIT (262 144-WORD BY 1-BIT) DYNAMIC RAM


AMBIENT TEMPERATURE $\ensuremath{ Ta}$ (°C)

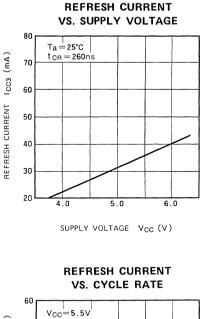

OPERATING CURRENT VS. AMBIENT TEMPERATURE

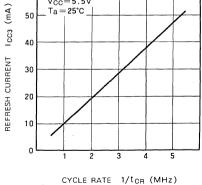
AMBIENT TEMPERATURE Ta (°C)


STANDBY CURRENT VS. SUPPLY VOLTAGE

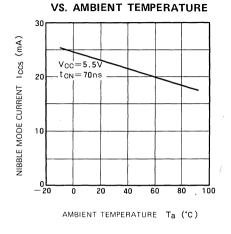

SUPPLY VOLTAGE VCC (V)

OPERATING CURRENT VS. CYCLE RATE

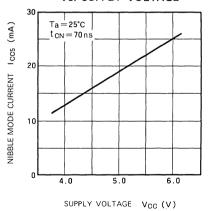



CYCLE RATE 1/t CR (MHz)

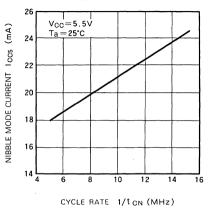
STANDBY CURRENT VS. AMBIENT TEMPERATURE



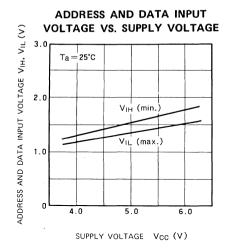
262 144-BIT (262 144-WORD BY 1-BIT) DYNAMIC RAM


NIBBLE MODE CURRENT

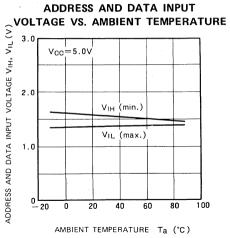
REFRESH CURRENT VS. AMBIENT TEMPERATURE 60 V_{CC}=5.5V t_{CR}=260ns (mA) 50 Icc3 40 REFRESH CURRENT 30 20 10 0 0 20 40 60 80 100 - 20


AMBIENT TEMPERATURE Ta (°C)

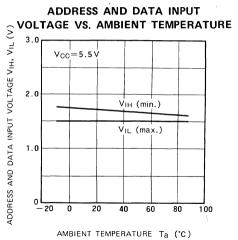
NIBBLE MODE CURRENT VS. SUPPLY VOLTAGE


NIBBLE MODE CURRENT

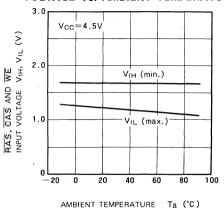
VS. CYCLE RATE



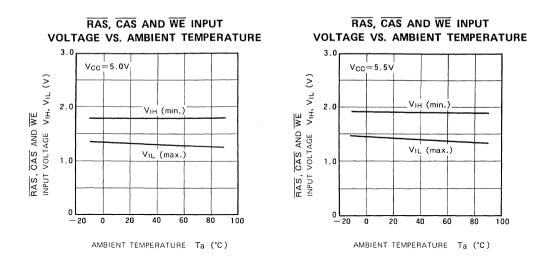
262 144-BIT (262 144-WORD BY 1-BIT) DYNAMIC RAM

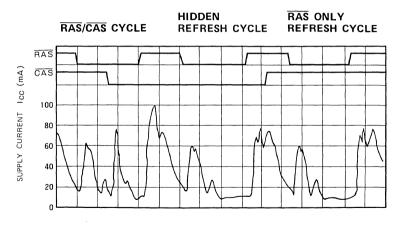

ADDRESS AND DATA INPUT

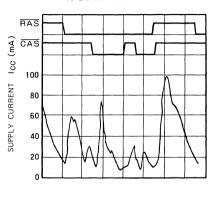
RAS, CAS AND WE INPUT VOLTAGE VS. SUPPLY VOLTAGE 3.0 $T_a = 25^{\circ}C$ VIH, VIL (V) 2.0 Viн (min.) RAS, CAS AND WE INPUT VOLTAGE VIH, VIL (max.) 1.0 n 4.0 5.0 6.0

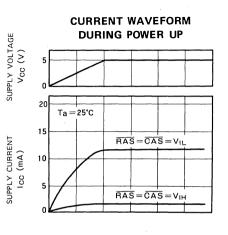

SUPPLY VOLTAGE VCC (V)

ADDRESS AND DATA INPUT AMBIENT TEMPERATURE Ta (°C)


ADDRESS AND DATA INPUT


RAS, CAS AND WE INPUT **VOLTAGE VS. AMBIENT TEMPERATURE**


262 144-BIT (262 144-WORD BY 1-BIT) DYNAMIC RAM



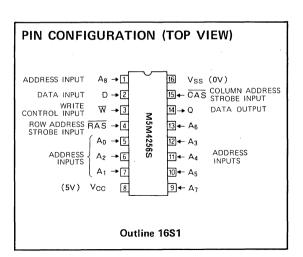
50ns/DIVISION

NIBBLE MODE CYCLE

50ns/DIVISION

50µs/DIVISION

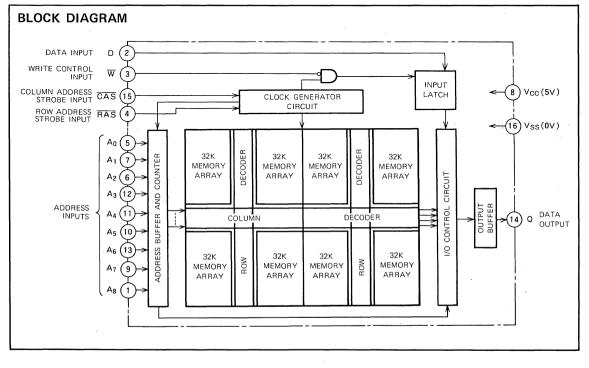
262 144-BIT (262 144-WORD BY 1-BIT) DYNAMIC RAM


DESCRIPTION

This is a family of 262 144-word by 1-bit dynamic RAMs, fabricated with the high performance N-channel silicon gate MOS process, and is ideal for large-capacity memory systems where high speed, low power dissipation, and low costs are essential. The use of double-layer polysilicon process combined with silicide technology and a single-transistor dynamic storage cell provide high circuit density at reduced costs, and the use of dynamic circuitry including sense amplifiers assures low power dissipation. Multiplexed address inputs permit both a reduction in pins to the standard 16-pin package configuration and an increase in system densities. In addition to the RAS only refresh mode, the Hidden refresh mode and CAS before RAS refresh mode are available.

FEATURES

Type name	Access time (max) (ns)	Cycle time (min) (ns)	Power dissipation (typ) (mW)
M5M4256S-12	120	230	260
M5M4256S-15	150	260	230
M5M4256S-20	200	330	190


- Standard 16-pin package
- Single 5V±10% supply
- Low standby power dissipation: 22mW (max)
- Unlatched output enables two-dimensional chip selection and extended page boundary.

- Early-write operation gives common I/O capability
- Read-modify-write, RAS-only-refresh, Page-mode capabilities
- CAS before RAS refresh mode capability
- All input terminals have low input capacitance and are directly TTL-compatible
- Output is three-state and directly TTL-compatible
- 256 refresh cycles every 4ms. Pin 1 is not needed for refresh.
- CAS controlled output allows hidden refresh

APPLICATION

- Main memory unit for computers
- Microcomputer memory

262 144-BIT (262 144-WORD BY 1-BIT) DYNAMIC RAM

FUNCTION

The M5M4256S provides, in addition to normal read, write, and read-modify-write operations, a number of other functions, e.g., page mode, RAS-only refresh, and delayed-write. The input conditions for each are shown in Table 1.

Table 1 Input conditions for each mode

			Ing	outs			Output		
Operation	RAS	CAS	w	D	Row address	Column address	Q	Refresh	Remarks
Read	ACT	ACT	NAC	DNC	APD	APD	VLD	YES	*
Write	ACT	ACT	ACT	VLD	APD	APD	OPN	YES	
Read-modify-write	ACT	ACT	ACT	VLD	APD	APD	VLD	YES	
RAS-only refresh	ACT	NAC	DNC	DNC	APD	DNC	OPN	YES	
Hidden refresh	ACT	АСТ	DNC	DNC	DNC	DNC	VLD	YES	
CAS before RAS refresh	ACT	ACT	DNC	DNC	DNC	DNC	OPN	YES	
Standby	NAC	DNC	DNC	DNC	DNC	DNC	OPN	NO	

Note: ACT : active, NAC : nonactive, DNC : don't care, VLD : valid, APD : applied, OPN : open.

Page mode identical except refresh is No.

SUMMARY OF OPERATIONS Addressing

To select one of the 262 144 memory cells in the M5M4256S the 18-bit address signal must be multiplexed into 9 address signals, which are then latched into the on-chip latch by two externally-applied clock pulses. First, the negative-going edge of the row-address-strobe pulse (\overline{RAS}) latches the 9 row-address bits; next, the negative-going edge of the column-address-strobe pulse (\overline{CAS}) latches the 9 column-address bits. Timing of the \overline{RAS} and \overline{CAS} clocks can be selected by either of the following two methods:

- 1. The delay time from \overline{RAS} to \overline{CAS} t_d (RAS-CAS) is set between the minimum and maximum values of the limits. In this case, the internal \overline{CAS} control signals are inhibited almost until t_d(RAS-CAS) max ('gated $\overline{CAS'}$ operation). The external \overline{CAS} signal can be applied with a margin not affecting the on-chip circuit operations, e.g. access time, and the address inputs can be easily changed from row address to column address.
- 2. The delay time $t_{d(RAS-CAS)}$ is set larger than the maximum value of the limits. In this case the internal inhibition of \overline{CAS} has already been released, so that the internal \overline{CAS} control signals are controlled by the externally applied \overline{CAS} , which also controls the access time.

Data Input

Data to be written into a selected cell is strobed by the later of the two negative transitions of \overline{W} input and \overline{CAS} input. Thus when the \overline{W} input makes its negative transition prior to \overline{CAS} input (early write), the data input is strobed by \overline{CAS} , and the negative transition of \overline{CAS} is set as the

reference point for set-up and hold times. In the read-write or read-modify-write cycles, however, when the \overline{W} input makes its negative transition after \overline{CAS} , the \overline{W} negative transition is set as the reference point for setup and hold times.

Data Output Control

The output of the M5M4256S is in the high-impedance state when \overline{CAS} is high. When the memory cycle in progress is a read, read-modify-write, or a delayed-write cycle, the data output will go from the high-impedance state to the active condition, and the data in the selected cell will be read. This data output will have the same polarity as the input data. Once the output has entered the active condition, this condition will be maintained until \overline{CAS} goes high, irrespective of the condition of \overline{RAS} .

The output will remain in the high-impedance state throughout the entire cycle in an early-write cycle.

These output conditions, of the M5M4256S, which can readily be changed by controlling the timing of the write pulse in a write cycle, and the width of the CAS pulse in a read cycle, offer capabilities for a number of applications, as follows.

1. Common I/O Operation

If all write operations are performed in the early-write mode, input and output can be connected directly to give a common I/O data bus.

2 Data Output Hold

The data output can be held between read cycles, without lengthening the cycle time. This enables extremely flexible clock-timing settings for \overline{RAS} and \overline{CAS} .

262 144-BIT (262 144-WORD BY 1-BIT) DYNAMIC RAM

3. Two Methods of Chip Selection

Since the output is not latched, \overline{CAS} is not required to keep the outputs of selected chips in the matrix in a highimpedance state. This means that \overline{CAS} and/or \overline{RAS} can both be decoded for chip selection.

4. Extended-Page Boundary

By decoding \overline{CAS} , the page boundary can be extended beyond the 512 column locations in a single chip. In this case, \overline{RAS} must be applied to all devices.

Page-Mode Operation

This operation allows for multiple-column addressing at the same row address, and eliminates the power dissipation associated with the negative-going edge of \overline{RAS} , because once the row address has been strobed, \overline{RAS} is maintained. Also, the time required to strobe in the row address for the second and subsequent cycles is eliminated, thereby decreasing the access and cycle times.

Refresh

Each of the 256 rows ($A_0 \sim A_7$) of the M5M4256S must be refreshed every 4 ms to maintain data. The methods of refreshing for the M5M4256S are as follows.

1. Normal Refresh

Read cycle and Write cycle (early write, delayed write or read-modify-write) refresh the selected row as defined by the low order (RAS) addresses. Any write cycle, of course, may change the state of the selected cell. Using a read, write, or read-modify-write cycle for refresh is not recommended for systems which utilize "wired-OR" outputs since output bus contention will occur.

2. RAS Only Refresh

In this refresh method, the \overline{CAS} clock should be at a V_{IH} level and the system must perform \overline{RAS} Only cycle on all 256 row address every 4 ms. The sequential row addresses from an external counter are latched with the \overline{RAS} clock and associated internal row locations are refreshed. A \overline{RAS} Only Refresh cycle maintains the output in the high impedance state with a typical power reduction of 20% over a read or write cycle.

3. CAS before RAS Refresh

If \overline{CAS} falls $t_{SUR}(CAS-RAS)$ earlier than \overline{RAS} and if \overline{CAS} is kept low by $t_{hR}(RAS-CAS)$ after \overline{RAS} falls, \overline{CAS} before \overline{RAS} Refresh is initiated. The external address is ignored and the refresh address generated by the internal 8-bit counter is put into the address buffer to refresh the corresponding row. The output will stay in the high impedance state.

If \overline{CAS} is kept low after the above operation, \overline{RAS} cycle initiates \overline{RAS} Only Refresh with internally generated refresh address (Automatic refresh). The output will again stay in the high impedance state.

Bringing \overline{RAS} high and then low while \overline{CAS} remains high initiates the normal \overline{RAS} Only Refresh using the external address.

If \overline{CAS} is kept low after the normal read/write cycle, RAS cycle initiates the RAS Only Refresh using the internal refresh address and especially after the normal read cycle, it becomes Hidden Refresh with internal address. The output is available unit \overline{CAS} is brought high.

4. Hidden Refresh

A feature of the M5M4256S is that refresh cycles may be performed while maintaining valid data at the output pin by extending the \overline{CAS} active time from a previous memory read cycle. This feature is referred to as hidden refresh.

Hidden refresh is performed by holding \overline{CAS} at V_{IL} and taking \overline{RAS} high and after a specified precharge period, executing a \overline{RAS} -only cycling, but with \overline{CAS} held low.

The advantage of this refresh mode is that data can be held valid at the output data port indefinitely by leaving the CAS asserted. In many applications this eliminates the need for off-chip latches.

Power Dissipation

Most of the circuitry in the M5M4256S is dynamic, and most of the power is dissipated when addresses are strobed. Both \overline{RAS} and \overline{CAS} are decoded and applied to the M5M4256S as chip-select in the memory system, but if \overline{RAS} is decoded, all unselected devices go into stand-by independent of the \overline{CAS} condition, minimizing system power dissipation.

Power Supplies

The M5M4256S operates on a single 5V power supply.

A wait of some 500µs and eight or more dummy cycles is necessary after power is applied to the device before memory operation is achieved.

262 144-BIT (262 144-WORD BY 1-BIT) DYNAMIC RAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Limits	Unit
Vcc	Supply voltage		-1~7	V
VI	Input voltage	With respect to V _{SS}	-1~7	V
Vo	Output voltage		-1~7	V
10	Output current		50	mA
Pd	Power dissipation	Ta = 25°C	1000	mW
Topr	Operating free-air temperature range		0~70	°C
Tstg	Storage temperature range		-65-150	°C

RECOMMENDED OPERATING CONDITIONS (Ta = 0 ~ 70°C, unless otherwise noted) (Note 1)

Symbol	Descurator		Limits		Unit
Symbol	Parameter	Min	Nom	Max	Unit
Vcc	Supply voltage	4.5	5	5.5	V
Vss	Supply voltage	0	0	0	V
VIH	High-level input voltage, all inputs	2.4		6.5	V
VIL	Low-level input voltage, all inputs	-2		0.8	V

Note 1: All voltage values are with respect to VSS

ELECTRICAL CHARACTERISTICS (Ta = $0 \sim 70^{\circ}$ C, V_{CC} = 5V ± 10%, V_{SS} = 0V, unless otherwise noted) (Note 2)

Symbol			Test conditions		Limits		Unit
Symbol	Parameter		lest conditions	Min	Тур	Max	Unit
Voн	High-level output voltage		1 _{0H} =-5mA	2.4		Vcc	V
VOL	Low-level output voltage		I _{OL} =4.2mA	0		0.4	V
loz	Off-state output current		Q floating $0V \leq V_{OUT} \leq 5.5V$	-10		10	μA
4	Input current		$0V \leq V_{IN} \leq V_{CC}$, Other input pins = $0V$	-10		10	μA
		M5M4256S-12	RAS, CAS cycling			75	mA
CC1(AV)	Average supply current from V _{CC} , operating (Note 3, 4)	M5M4256S-15	, , , ,			70	mA
		M5M4256S-20	$t_{CR} = t_{CW} = min$, output open			55	mA
1002	Supply current from V _{CC} , standby		RAS=CAS=VIH output open			4	mA
		M5M4256S-12				60	mA
CC3 (AV)	Average supply current from V _{CC} , refreshing (Note 3)	M5M4256S-15	RAS cycling $CAS = V_{IH}$			55	mA
	Terrearing (Note 3)	M5M4256S-20	$t_{C(RAS)} = min, output open$			45	mA
		M5M4256S-12	$\overline{RAS} = V_{11}$, \overline{CAS} cycling			55	mA
CC4 (AV)	Average supply current from V _{CC} , page mode (Note 3, 4)	M5M4256S-15				50	mA
	page mode (Note 3, 4)	M5M4256S-20	$t_{CPG} = min$, output open			45	mA
	Average supply current from V _{CC} ,	M5M4256S-12	CAS before RAS refresh cycling			60	mA
CC6 (AV)	CAS before RAS refresh mode	M5M4256S-15	t_{c} (BAS) = min, output open			55	mA
	(Note 3)	M5M4256S-20	(RAS) = min, output open			45	mA
C _{I (A)}	Input capacitance, address inputs	•				5	pF
C _{I (D)}	Input capacitance, data input		VI=VSS			5	pF
C _{I (W)}	Input capacitance, write control inpu		f=1MHz			7	pF
CI (RAS)	Input capacitance, RAS input		Vi=25mVrms			10	pF
CI (CAS)	Input capacitance, CAS input					10	pF
Co	Output capacitance		$V_0 = V_{SS}$, f=1MHz, V _i =25mVrms			7	pF

Note 2: Current flowing into an IC is positive ; out is negative.

3: ICC1(AV), ICC3(AV), ICC4(AV) and ICC6(AV) are dependent on cycle rate. Maximum current is measured at the fastest cycle rate.

4: ICC1(AV) and ICC4(AV) are dependent on output loading. Specified values are obtained with the output open.

262 144-BIT (262 144-WORD BY 1-BIT) DYNAMIC RAM

TIMING REQUIREMENTS (For Read, Write, Read-Modify-Write, Refresh, and Page-Mode Cycle) $(Ta = 0 \sim 70^{\circ}C, V_{CC} = 5V \pm 10\%, V_{SS} = 0V, unless otherwise noted. See notes 5. 6 and 7.)$

						Li	mits			
Symbol	- Parameter		Alternative Symbol	M5M42	256S-12	M5M42	2565-15	M5M42	2565-20	Unit
			Symbol	Min	Max	Min	Max	Min	Max	
t _{CRF}	Refresh cycle time		t _{REF}		4		4		4	ms
tw(RASH)	RAS high pulse width		t _{RP}	100		100		120		ns
tw(RASL)	RAS low pulse width		t _{RAS}	120	10000	150	10000	200	10000	ns
tw(CASL)	CAS low pulse width		t _{CAS}	60		75		100		ns
tw(CASH)	CAS high pulse width	(Note 8)	t _{CPN}	30		35		40		ns
th(RAS-CAS)	CAS hold time after RAS		t _{CSH}	120		150		200		ns
t _{h(CAS-RAS)}	RAS hold time after CAS		t _{RSH}	60		75		100		ns
td(CAS-RAS)	Delay time, CAS to RAS	(Note 9)	t _{CRP}	30		30		40		ns
td(RAS-CAS)	Delay time, RAS to CAS	(Note 10)	t _{RCD}	25	60	25	75	30	100	ns
t _{su(RA-RAS)}	Row address setup time before RAS		t ASR	0		0		0		ns
t _{su(ca-cas)}	Column address setup time before CAS		t _{ASC}	0		-5		5		ns
t _{h (RAS-RA)}	Row address hold time after RAS		t _{RAH}	15		20		25		ns
t _{h(CAS-CA)}	Column address hold time after CAS		t _{CAH}	20		25		35		ns
t _{h (RAS-CA})	Column address hold time after RAS		t _{AR}	80		100		135		ns
t _{.THL}	Transition time		t _T	3	50	3	50	3	50	
t _{TLH}			1	3	50	5	50	3	50	ns

Note 5: An initial pause of 500 µs is required after power-up followed by any eight RAS or RAS/CAS cycles before proper device operation is achieved.

6. The switching characteristics are defined as $t_{THL} = t_{TLH} = 5$ ns.

Reference levels of input signals are VIH min, and VIL max. Reference levels for transition time are also between VIH and VIL. 7.

8: Except for page-mode.

9: td (CAS-RAS) requirement is applicable for all RAS/CAS cycles.

10: Operation within the t_{d} (RAS-CAS) max limit insures that t_{a} (RAS) max can be met. t_{d} (RAS-CAS) max is specified reference point only; if t_{d} (RAS-CAS) is greater than the specified t_{d} (RAS-CAS) max limit, then access time is controlled exclusively by t_{a} (CAS). $t_d (RAS-CAS)min = t_h (RAS-RA)min + 2t_{THL}(t_{TLH}) + t_{SU}(CA-CAS)min$.

SWITCHING CHARACTERISTICS ($Ta = 0 \sim 70^{\circ}C$, $V_{CC} = 5V \pm 10\%$, $V_{SS} = 0V$, unless otherwise noted) Read Cycle

			Alternative							
Symbol	Parameter		Symbol	M5M42	2565-12	M5M42	565-15	M5M42	2565-20	Unit
			Symbol .	Min	Max	Min	Max	Min	Max	
t _{CR}	Read cycle time		t _{RC}	230		260		330		ns
t _{su (R-CAS})	Read setup time before CAS		t _{RCS}	0		0		0		ns
th(CAS-R)	Read hold time after CAS	(Note 11)	t _{RCH}	0		0		0		ns
t _{h(RAS-R)}	Read hold time after RAS	(Note 11)	t RRH	20		20		25		ns
t _{dis (CAS)}	Output disable time	(Note 12)	t OFF	0	35	0	40	0	50	ns
t _{a (CAS)}	CAS access time	(Note 13)	t _{CAC}		60		75		100	ns
ta (RAS)	RAS access time	(Note 14)	t _{RAC}		120		150		200	ns

Note 11: Either th (RAS-R) or th (CAS-R) must be satisfied for a read cycle.

tdis (CAS)max defines the time at which the output achieves the open circuit condition and is not reference to V_{OH} or V_{OL}. 12: 13:

This is the value when $t_d(RAS-CAS) \le t_d(RAS-CAS)max$. Test conditions ; Load = 2TTL, $C_L = 100pF$ This is the value when $t_d(RAS-CAS) \le t_d(RAS-CAS)max$. When $t_d(RAS-CAS) \ge t_d(RAS-CAS)max$, $t_a(RAS)$ will increase by the amount that $t_d(RAS-CAS) = t_d(RAS-CAS) \ge t_$ 14:

Write Cycle

		Alternative			Lir	nits			
Symbol	Parameter	Symbol	M5M42	56S-12	M5M42	2565-15	M5M42	56S-20	Unit
		Symbol	Min	Max	Min	Max	Min	Max	
t _{cw}	Write cycle time	t _{RC}	230		260		330		ns
tsu(w-CAS)	Write setup time before CAS (Note 17)	twcs	-5		-10		-10		ns
th(CAS-W)	Write hold time after CAS	t wch	40		45		55		ns
th(RAS-W)	Write hold time after RAS	t wcR	100		120	^	155		ns
t _{h (w-RAS})	RAS hold time after write	t _{RWL}	40		45		55		ns
th(w-CAS)	CAS hold time after write	t _{CWL}	40		45		55		ns
t _{w(w)}	Write pulse width	twp	40		45		55		ns
t _{su(D-CAS})	Data-in setup time before CAS	t _{DS}	0		0	1	0		ns
th (CAS-D)	Data in hold time after CAS	t _{DH}	30		35		40		ns
th(RAS-D)	Data-in hold time after RAS	t _{DHR}	90		110		140		ns

262 144-BIT (262 144-WORD BY 1-BIT) DYNAMIC RAM

			Alternative							
Symbol	Parameter		Symbol	M5M4256S-12		M5M4256S-15		M5M4256S-20		Unit
			Symbol	Min	Max	Min	Max	Min	Max	
t _{CRW}	Read-write cycle time	(Note 15)	t _{RWC}	260		295		370		ns
tormw	Read-modify-write cycle time	(Note 16)	t _{RMWC}	275		310		390		ns
th(w-RAS)	RAS hold time after write		t _{RWL}	40		45		55		ns
th(w-CAS)	CAS hold time after write		t _{CWL}	40		45		55		ns
tw(w)	Write pulse width		twp	40		45		55		ns
tsu (R-CAS)	Read setup time before CAS		t _{RCS}	0		0		0		ns
td(RAS-W)	Delay time, RAS to write	(Note 17)	t _{RWD}	110		135		180		ns
td(CAS-W)	Delay time, CAS to write	(Note 17)	t _{cwD}	50		60		80		ns
t _{su(D-w)}	Data-in set-up time before write		t _{DS}	0		0		0		ns
t _{h (w-D)}	Data-in hold time after write		t _{DH}	40		45		55		ns
tdis (CAS)	Output disable time		t OFF	0	35	0	40	0	50	ns
ta(CAS)	CAS access time	(Note 13)	t CAC		60		75		100	ns
ta(RAS)	RAS access time	(Note 14)	t _{RAC}		120		150		200	ns

Read, Write and Read-Modify-Write Cycles

Note 15: $t_{CRW}min$ is defined as $t_{CRW}min = t_{d(RAS-CAS)max} + t_{d(CAS-W)min} + t_{h(W-RAS)} + t_{w(RASH)} + 3t_{TLH(t_{TL})}$

16: t_{CRMW} min is defined as t_{CRMW} min = t_{a (RAS)}max + t_{h (W-RAS)} + t_{w (RAS H)} + 3t_{TLH}(t_{THL)}

17: tsu(w-CAS), td(RAS-w), and td(CAS-w) do not define the limits of operation, but are included as electrical characteristics only.

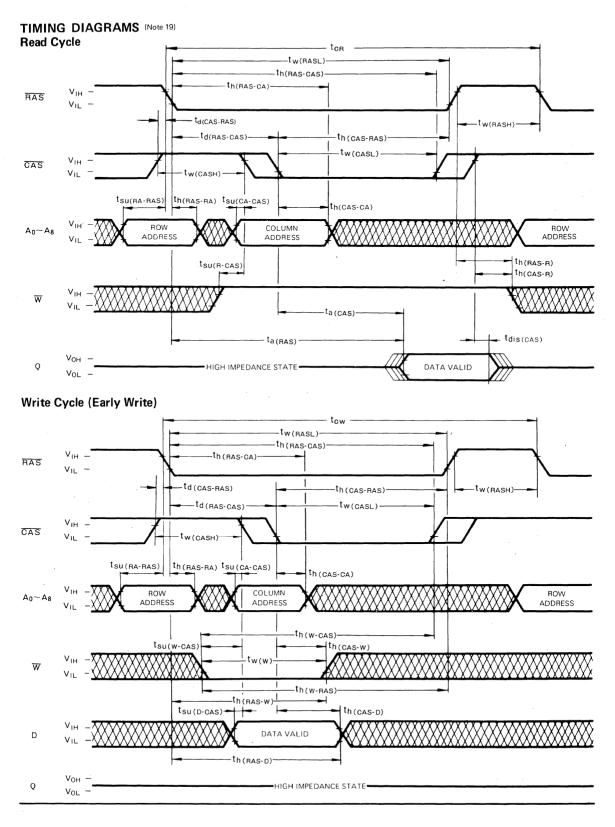
When $t_{su(w-CAS)} \ge t_{su(w-CAS)}$ min, an early-write cycle is performed, and the data output keeps the high-impedance state.

When td (RAS-w) ≥td (RAS-w)min, and td (CAS-w) ≥tsu (w-CAS) min a read-write cycle is performed, and the data of the selected address will be read out on the data output.

For all conditions other than those described above, the condition of data output (at access time and until CAS goes back to VIH) is not defined.

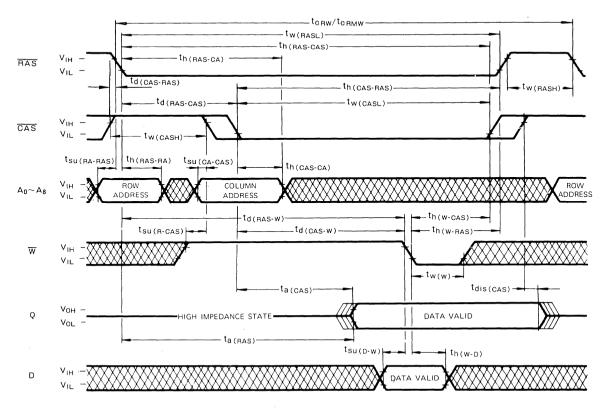
Page-Mode Cycle

Symbol	Parameter	Alternative Symbol	M5M42	56S-12	2 M5M4256S-15		M5M4256S-20		Unit
			Min	Max	Min	Max	Min	Max	
t _{CPG}	Page-mode cycle time	t PC	125		145		190		ns
tw (CASH)	CAS high pulse width	t _{CP} .	55		60		80		ns
t _{CPGRW}	Page-mode RW cycle time	t _{PCRW}	160		180		230		ns
t _{CPGRMW}	Page-mode RMW cycle time	t _{PCRMW}	170		195		250		ns

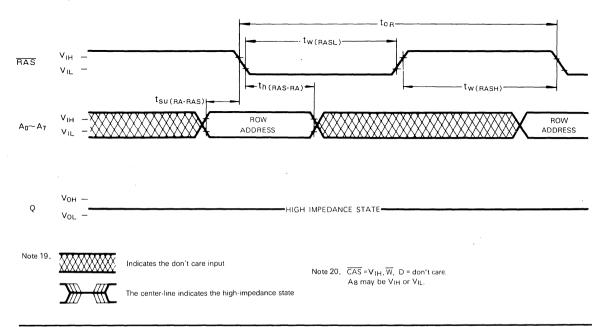

CAS before RAS Refresh Cycle (Note 18)

Symbol	Parameter	Alternative Symbol	M5M4256S-12		M5M4256S-15		M5M4256S-20		Unit
	Cymbol -	Min	Max	Min	Max	Min	Max		
t _{sur (Cas-ras)}	CAS setup time for auto refresh	t _{CSR}	30		30		40		ns
thr (ras-cas)	CAS hold time for auto refresh	t _{CHR}	50		50		50		ns
tdr (ras-cas)	Precharge to CAS active time	t _{RPC}	0		0		0		ns

Note 18. Eight or more CAS before RAS cycles is necessary for proper operation of CAS before RAS refresh mode.

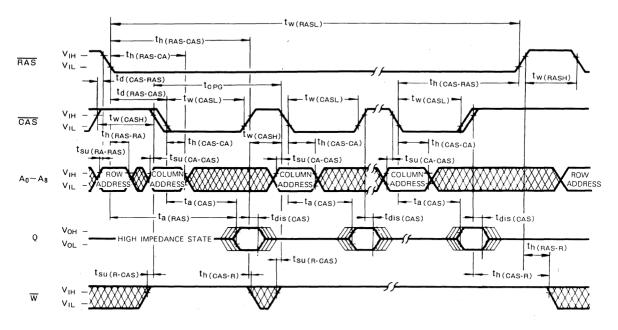


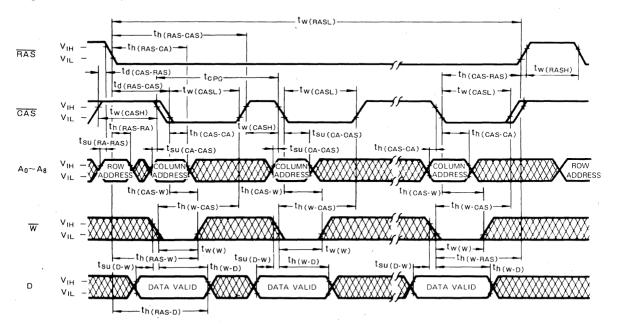
262 144-BIT (262 144-WORD BY 1-BIT) DYNAMIC RAM



262 144-BIT (262 144-WORD BY 1-BIT) DYNAMIC RAM

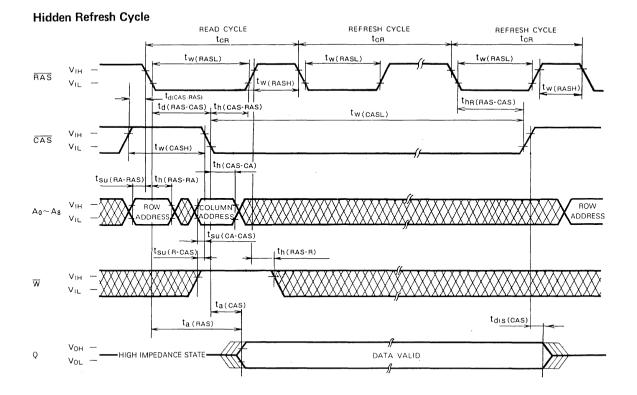
Read-Write and Read-Modify-Write Cycles


RAS-Only Refresh Cycle (Note 20)

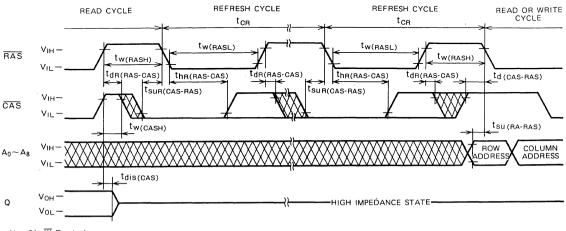


262 144-BIT (262 144-WORD BY 1-BIT) DYNAMIC RAM

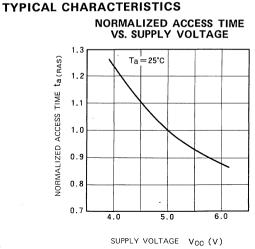
Page-Mode Read Cycle



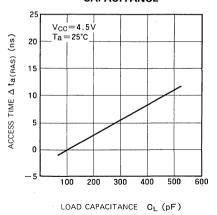
Page-Mode Write Cycle

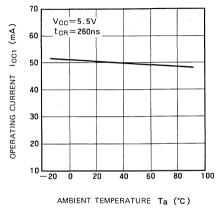


262 144-BIT (262 144-WORD BY 1-BIT) DYNAMIC RAM

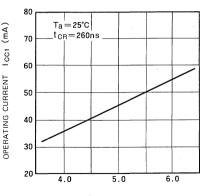

CAS before RAS Refresh Cycle (Note 21)

Note 21: \overline{W} , D = don't care.

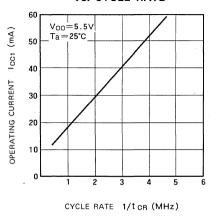

262 144-BIT (262 144-WORD BY 1-BIT) DYNAMIC RAM



AMBIENT TEMPERATURE Ta (°C)


ACCESS TIME VS. LOAD CAPACITANCE

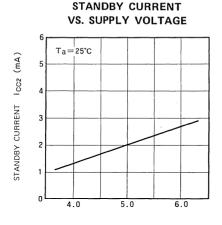
OPERATING CURRENT VS. AMBIENT TEMPERATURE



OPERATING CURRENT VS. SUPPLY VOLTAGE

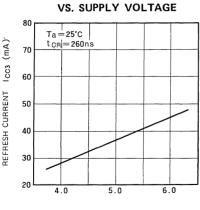
SUPPLY VOLTAGE VCC (V)

OPERATING CURRENT VS. CYCLE RATE

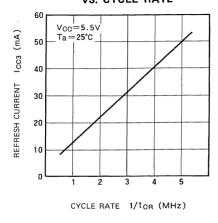


262 144-BIT (262 144-WORD BY 1-BIT) DYNAMIC RAM

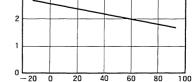
(MM)


1002

STANDBY CURRENT

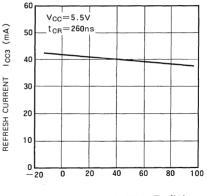

SUPPLY VOLTAGE VCC (V)

REFRESH CURRENT

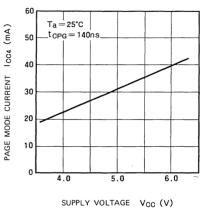


SUPPLY VOLTAGE V_{CC} (V)

REFRESH CURRENT VS. CYCLE RATE



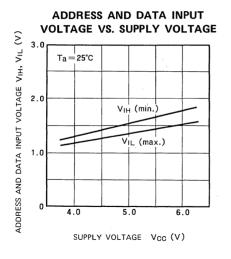
STANDBY CURRENT VS. AMBIENT TEMPERATURE


AMBIENT TEMPERATURE Ta (°C)

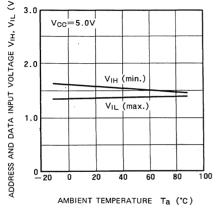
REFRESH CURRENT VS. AMBIENT TEMPERATURE

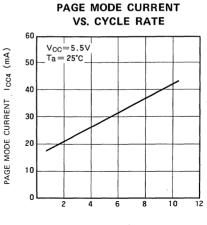
AMBIENT TEMPERATURE Ta (°C)


PAGE MODE CURRENT VS. SUPPLY VOLTAGE

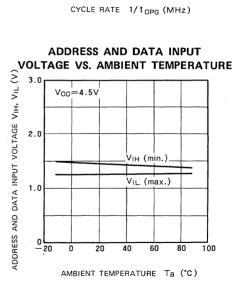

MITSUBISHI I SIs M5M4256S-12. -15. -20

262 144-BIT (262 144-WORD BY 1-BIT) DYNAMIC RAM

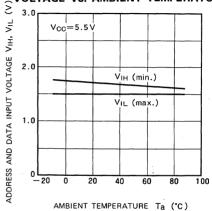



PAGE MODE CURRENT

AMBIENT TEMPERATURE Ta (°C)

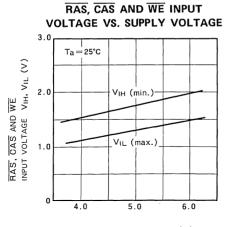


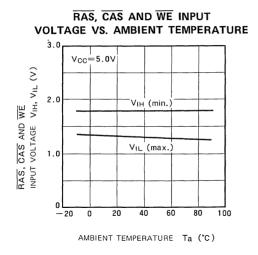
VOLTAGE VS. AMBIENT TEMPERATURE



CYCLE RATE 1/t CPG (MHz)

VOLTAGE VS. AMBIENT TEMPERATURE




262 144-BIT (262 144-WORD BY 1-BIT) DYNAMIC RAM

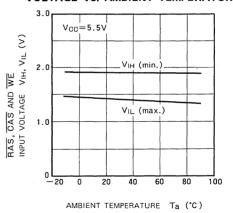
0

- 20 n

SUPPLY VOLTAGE VCC (V)

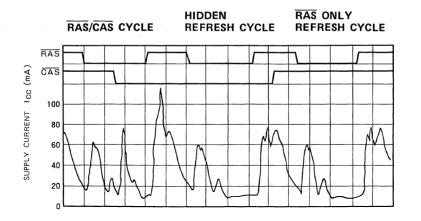
RAS. CAS AND WE INPUT VOLTAGE VS. AMBIENT TEMPERATURE 3.0 V_{CC}=4.5V RAS, CAS AND WE INPUT VOLTAGE VIH, VIL (V) 2.0 VIH (min.) 1.0 Vii (max.)

40 AMBIENT TEMPERATURE Ta (°C)

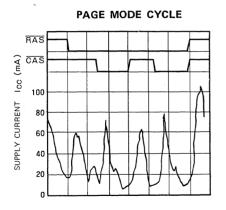

60

80

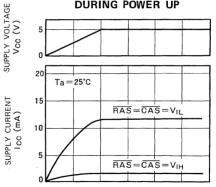
100


20

RAS, CAS AND WE INPUT VOLTAGE VS. AMBIENT TEMPERATURE



262 144-BIT (262 144-WORD BY 1-BIT) DYNAMIC RAM



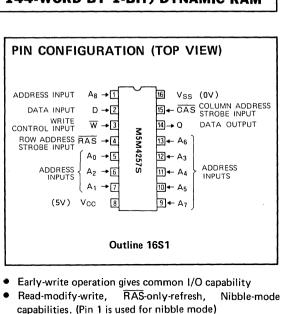
50ns/DIVISION

50ns/DIVISION

CURRENT WAVEFORM DURING POWER UP

50µs/DIVISION

262 144-BIT (262 144-WORD BY 1-BIT) DYNAMIC RAM


DESCRIPTION

This is a family of 262 144-word by 1-bit dynamic RAMs, fabricated with the high performance N-channel silicon gate MOS process, and is ideal for large-capacity memory systems where high speed, low power dissipation, and low costs are essential. The use of double-layer polysilicon process combined with silicide technology and a single-transistor dynamic storage cell provide high circuit density at reduced costs, and the use of dynamic circuitry including sense amplifiers assures low power dissipation. Multiplexed address inputs permit both a reduction in pins to the standard 16-pin package configuration and an increase in system densities. In addition to the RAS only refresh mode, the Hidden refresh mode and CAS before RAS refresh mode are available.

FEATURES

Type name	Access time (max) (ns)	Cycle time (min) (ns)	Power dissipation (typ) (mW)
M5M4257S-12	120	230	260
M5M4257S-15	150	260	230
M5M4257S-20	200	330	190

- Standard 16-pin package
- Single 5V±10% supply
- Low standby power dissipation: 22mW (max)
- Unlatched output enables two-dimensional chip selection

- CAS before BAS refresh mode capability
- All input terminals have low input capacitance and are directly TTL-compatible
- Output is three-state and directly TTL-compatible
- 256 refresh cycles every 4ms. Pin 1 is not needed for refresh.
- CAS controlled output allows hidden refresh

APPLICATION

- Main memory unit for computers
- Microcomputer memory

FUNCTION

The M5M4257S provides, in addition to normal read, write, and read-modify-write operations, a number of other functions, e.g., nibble mode, RAS-only refresh, and delayed-write. The input conditions for each are shown in Table 1.

Table 1 Input conditions for each mode

			Inp	outs			Output		
Operation .	RAS	CAS	w	D	Row address	Column address	Q	Refresh	Remarks
Read	ACT	ACT	NAC	DNC	APD	APD	VLD	YES	*
Write	ACT	ACT	ACT	VLD	APD	APD	OPN	YES	
Read-modify-write	ACT	ACT	ACT	VLD	APD	APD	VLD	YES	
RAS-only refresh	ACT	NAC	DNC	DNC	APD	DNC	OPN	YES	
Hidden refresh	ACT	ACT	DNC	DNC	DNC	DNC	VLD	YES	
CAS before RAS refresh	ACT	ACT	DNC	DNC	DNC	DNC	OPN	YES	
Standby	NAC	DŃC	DNC	DNC	DNC	DNC	OPN	NO	

Note: ACT : active, NAC : nonactive, DNC : don't care, VLD : valid, APD : applied, OPN : open.

* : Nibble mode identical except refresh is No, and Nibble mode column address is DNC While toggling CAS.

SUMMARY OF OPERATIONS Addressing

To select one of the 262 144 memory cells in the M5M4257S the 18-bit address signal must be multiplexed into 9 address signals, which are then latched into the on-chip latch by two externally-applied clock pulses. First, the negative-going edge of the row-address-strobe pulse (RAS) latches the 9 row-address bits; next, the negative-going edge of the column-address-strobe pulse (CAS) latches the 9 column-address bits. Timing of the RAS and CAS clocks can be selected by either of the following two methods:

- 1. The delay time from \overline{RAS} to \overline{CAS} t_d (RAS-CAS) is set between the minimum and maximum values of the limits. In this case, the internal \overline{CAS} control signals are inhibited almost until t_d(RAS-CAS) max ('gated $\overline{CAS'}$ operation). The external \overline{CAS} signal can be applied with a margin not affecting the on-chip circuit operations, e.g. access time, and the address inputs can be easily changed from row address to column address.
- 2. The delay time $t_{d(RAS-CAS)}$ is set larger than the maximum value of the limits. In this case the internal inhibition of \overline{CAS} has already been released, so that the internal \overline{CAS} control signals are, controlled by the externally applied \overline{CAS} , which also controls the access time.

Data Input

Data to be written into a selected cell is strobed by the later of the two negative transitions of \overline{W} input and \overline{CAS} input. Thus when the \overline{W} input makes its negative transition prior to \overline{CAS} input (early write), the data input is strobed by \overline{CAS} , and the negative transition of \overline{CAS} is set as the reference point for set-up and hold times. In the read-write or read-modify-write cycles, however, when the \overline{W} input makes its negative transition after \overline{CAS} , the \overline{W} negative transition is set as the reference point for setup and hold times.

Data Output Control

The output of the M5M4257S is in the high-impedance state when \overline{CAS} is high. When the memory cycle in progress is a read, read-modify-write, or a delayed-write cycle, the data output will go from the high-impedance state to the active condition, and the data in the selected cell will be read. This data output will have the same polarity as the input data. Once the output has entered the active condition, this condition will be maintained until \overline{CAS} goes high, irrespective of the condition of \overline{RAS} .

The output will remain in the high-impedance state throughout the entire cycle in an early-write cycle.

These output conditions, of the M5M4257S, which can readily be changed by controlling the timing of the write pulse in a write cycle, and the width of the CAS pulse in a read cycle, offer capabilities for a number of applications, as follows.

1. Common I/O Operation

If all write operations are performed in the early-write mode, input and output can be connected directly to give a common I/O data bus.

2 Data Output Hold

The data output can be held between read cycles, without lengthening the cycle time. This enables extremely flexible clock-timing settings for RAS and CAS.

3. Two Methods of Chip Selection

Since the output is not latched, \overline{CAS} is not required to keep the outputs of selected chips in the matrix in a highimpedance state. This means that \overline{CAS} and/or \overline{RAS} can both be decoded for chip selection.

4. Extended-Page Boundary

By decoding \overline{CAS} , the page boundary can be extended beyond the 512 column locations in a single chip. In this case, \overline{RAS} must be applied to all devices.

Nibble-Mode Operation

The M5M4257S is designed to allow high speed serial read, write or read-modify-write access of 4 bits of data. The first of 4 nibble bits is accessed by the normal mode with read data coming out at $t_{a(CAS)}$ time. Next 2, 3 or 4 nibble bits is read or writen by bringing CAS high then low (toggle) while RAS remains low. Thus the time required to strobe in not only the row address but also the column address is eliminated, thereby faster access and shorter cycle time than that of Page-Mode is achieved.

Address on pin 1 (row address A8 and column address A8) is used to select 1 of the 4 nibble bits for initial access. Toggling \overrightarrow{CAS} causes row A8 and column A8 to be incremented by the internal shift register with A8 row being the least significant address and allows to access to the next nibble bit. If more than 4 bits are accessed during this mode the same address bit will be accessed cyclically. In Nibble-Mode, any combination of read, write and read-modify-write operation is possible (e.g. first bit read, second bit write, third bit read-modify-write, etc.).

Refresh

Each of the 256 rows ($A_0 \sim A_7$) of the M5M4257S must be refreshed every 4 ms to maintain data. The methods of refreshing for the M5M4257S are as follows.

1. Normal Refresh

Read cycle and Write cycle (early write, delayed write or read-modify-write) refresh the selected row as defined by the low order (RAS) addresses. Any write cycle, of course, may change the state of the selected cell. Using a read, write, or read-modify-write cycle for refresh is not recommended for systems which utilize "wired-OR" outputs since output bus contention will occur.

2. RAS Only Refresh

In this refresh method, the \overline{CAS} clock should be at a V_{IH} level and the system must perform \overline{RAS} Only cycle on all 256 row address every 4 ms. The sequential row addresses from an external counter are latched with the \overline{RAS} clock and associated internal row locations are refreshed. A \overline{RAS} Only Refresh cycle maintains the output in the high impedance state with a typical power reduction of 20% over a read or write cycle.

3. CAS before RAS Refresh

If \overline{CAS} falls $t_{SUR(CAS-RAS)}$ earlier than \overline{RAS} and if \overline{CAS} is kept low by $t_{hR(RAS-CAS)}$ after \overline{RAS} falls, \overline{CAS} before \overline{RAS} Refresh is initiated. The external address is ignored and the refresh address generated by the internal 8-bit counter is put into the address buffer to refresh the corresponding row. The output will stay in the high impedance state.

If \overline{CAS} is kept low after the above operation, \overline{RAS} cycle initiates \overline{RAS} Only Refresh with internally generated refresh address (Automatic refresh). The output will again stay in the high impedance state.

Bringing \overline{RAS} high and then low while \overline{CAS} remains high initiates the normal \overline{RAS} Only Refresh using the external address.

If \overline{CAS} is kept low after the normal read/write cycle, RAS cycle initiates the RAS Only Refresh using the internal refresh address and especially after the normal read cycle, it becomes Hidden Refresh with internal address. The output is available unit \overline{CAS} is brought high.

4. Hidden Refresh

A feature of the M5M4257S is that refresh cycles may be performed while maintaining valid data at the output pin by extending the \overline{CAS} active time from a previous memory read cycle. This feature is referred to as hidden refresh.

Hidden refresh is performed by holding \overline{CAS} at V_{1L} and taking \overline{RAS} high and after a specified precharge period, executing a \overline{RAS} -only cycling, but with \overline{CAS} held low.

The advantage of this refresh mode is that data can be held valid at the output data port indefinitely by leaving the \overline{CAS} asserted. In many applications this eliminates the need for off-chip latches.

Power Dissipation

Most of the circuitry in the M5M4257S is dynamic, and most of the power is dissipated when addresses are strobed. Both \overline{RAS} and \overline{CAS} are decoded and applied to the M5M4257S as chip-select in the memory system, but if \overline{RAS} is decoded, all unselected devices go into stand-by independent of the \overline{CAS} condition, minimizing system power dissipation.

Power Supplies

The M5M4257S operates on a single 5V power supply.

A wait of some 500μ s and eight or more dummy cycles is necessary after power is applied to the device before memory operation is achieved.

262 144-BIT (262 144-WORD BY 1-BIT) DYNAMIC RAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Limits	Unit
Vcc	Supply voltage		-1~7	V
VI	Input voltage	With respect to V _{SS}	-1~7	V
Vo	Output voltage		-1~7	V
10	Output current		50	mA
Pd	Power dissipation	Ta=25°C	1000	mW
Topr	Operating free-air temperature range		0~70	°C
Tstg	Storage temperature range		-65~150	°C

RECOMMENDED OPERATING CONDITIONS (Ta = 0 ~ 70°C, unless otherwise noted) (Note 1)

Guardian	Durante		Limits				
Symbol	Parameter	Min	Nom	Max	Unit		
Vcc	Supply voltage	4.5	5	5.5	v		
Vss	Supply voltage	0	0	0	V .		
VIH	High-level input voltage, all inputs	2.4		6.5	V		
VIL	Low-level input voltage, all inputs	-2		0.8	V		

Note 1: All voltage values are with respect to VSS

ELECTRICAL CHARACTERISTICS (Ta = $0 \sim 70^{\circ}$ C, V_{CC} = $5V \pm 10\%$, V_{SS} = 0V, unless otherwise noted) (Note 2)

Symbol	Deservator		Test conditions		Limits		
Symbol	Parameter		lest conditions	Min	Тур	Max	Unit
V _{OH}	High-level output voltage		I _{OH} =-5mA	2.4		Vcc	V
VOL	Low-level output voltage		I _{OL} =4.2mA	0		0.4	V
loz	Off-state output current		Q floating $0V \leq V_{OUT} \leq 5.5V$	-10		10	μA
-t _i	Input current		$0V \leq V_{IN} \leq V_{CC}$, Other input pins = $0V$	-10		10	μA
	Average supply current from Vcc.	M5M4257S-12				75	mA
CC1(AV)	operating (Note 3, 4)	M5M4257S-15	$t_{CB} = t_{CW} = min$, output open			70	mA
		M5M4257S-20	CR=CW= min, output open			55	mA
I _{CC2}	Supply current from V _{CC} , standby		RAS=CAS=VIH output open			4	mA
	A	M5M4257S-12				60	mA
CC3 (AV)	Average supply current from V _{CC} , refreshing (Note 3)	M5M4257S-15				55	mA
		M5M4257S-20	$t_{C(\overline{RAS})} = min, output open$			45	mA
		M5M4257S-12	$\overline{RAS} = V_{IL}, \overline{CAS}$ cycling			35	mA
CC5 (AV)	Average supply current from V _{CC}	M5M4257S-15				30	mA
		M5M4257S-20	t cn= min, output open			28	mA
	Average supply current from V _{CC} ,	M5M4257S-12	CAS before RAS refresh cycling			60	mA
ICC6(AV)	CAS before RAS refresh mode	M5M4257S-15	$t_{C(\overline{BAS})} = \min$, output open			55	mA
	(Note 3)	M5M4257S-20				45	mA
C _{I (A)}	Input capacitance, address inputs					5	pF
C _{I (D)}	Input capacitance, data input		VI=VSS		1	5	pF
C _{I (W)}	Input capacitance, write control input	t	f=1MHz			7	pF
CI (RAS)	Input capacitance, RAS input		Vi=25mVrms			10	pF
CI (CAS)	Input capacitance, CAS input		1			10	pF
Co	Output capacitance		$V_0 = V_{SS}$, f=1MHz, Vi=25mVrms			7	pF

Note 2: Current flowing into an IC is positive ; out is negative.

3: I CC1 (AV), I CC3 (AV), I CC5 (AV) and I CC6 (AV) are dependent on cycle rate. Maximum current is measured at the fastest cycle rate.

4: ICC1(AV) and ICC5(AV) are dependent on output loading. Specified values are obtained with the output open.

ms

ns

262 144-BIT (262 144-WORD BY 1-BIT) DYNAMIC RAM

TIMING REQUIREMENTS (For Read, Write, Read-Modify-Write, Refresh, and Nibble-Mode Cycle)

 $(Ta = 0 - 70^{\circ}C, V_{CC} = 5V \pm 10\%, V_{SS} = 0V, unless otherwise noted. See notes 5.6 and 7.)$ Limits Alternative Symbol M5M4257S-12 M5M4257S-15 M5M4257S-20 Parameter Unit Symbol Min Max Min Max Min Max torr Refresh cycle time tBFF 4 ٨ Δ RAS high pulse width 100 100 120 tw(RASH) t_{BP} RAS low pulse width 120 10000 150 10000 200 10000 tw(RASL) t_{BAS} CAS low pulse width 75 100 tw(CASL) tCAS 60 CAS high pulse width (Note 8) 30 35 40 tw(CASH) t_{CPN} th (RAS-CAS) CAS hold time after RAS t_{CSH} 120 150 200 RAS hold time after CAS 75 100 th (CAS-BAS) t _{RSH} 60 Delay time, CAS to RAS 30 30 40 td (CAS-BAS) t _{CRP} (Note 9) Delay time, RAS to CAS 75 100 td(RAS-CAS) (Note 10) t _{BCD} 25 60 25 30 Row address setup time before RAS t_{ASB} n 0 n tsu(RA-RAS) tsu(ca-cas) Column address setup time before CAS t ASC 0 - 5 - 5 th (BAS-BA) Bow address hold time after BAS t BAH 15 20 25 th(CAS-CA) Column address hold time after CAS t CAH 20 25 35 th(RAS-CA) Column address hold time after RAS t⊿B 80 100 135 tтн 3 Transition time tт 3 50 50 3 50 t _{TLH}

Note 5: An initial pause of 500 us is required after power-up followed by any eight RAS or RAS/CAS cycles before proper device operation is achieved,

The switching characteristics are defined as $t_{THI} = t_{TIH} = 5$ ns. 6

Reference levels of input signals are VIH min, and VIL max. Reference levels for transition time are also between VIH and VII.

8 Except for nibble-mode.

9: td (BAS-CAS) requirement is applicable for all BAS/CAS cycles.

10 Operation within the td (RAS-CAS) max limit insures that ta (RAS) max can be met. td (RAS-CAS) max is specified reference point only; if td (BAS-CAS) is greater than the specified td (BAS-CAS) max limit, then access time is controlled exclusively by ta (CAS). $t_d (RAS-CAS)min = t_h (RAS-RA)min + 2t_{THL}(t_{TLH}) + t_{SU}(CA-CAS)min$.

SWITCHING CHARACTERISTICS (Ta = 0 ~ 70°C, V_{CC}=5V±10%, V_{SS}=0V, unless otherwise noted) **Read Cycle**

			Alternative Symbol							
Symbol	Parameter			M5M4257S-12		M5M4257S-15		M5M4257S-20		Unit
			Symbol	Min	Max	Min	Max	Min	Max	
t _{CR}	Read cycle time		t _{RC}	230		260		330		ns
t _{su (R-CAS)}	Read setup time before CAS		t _{RCS}	0		0		0		ns
th(CAS-R)	Read hold time after CAS	Note 11)	t _{RCH}	0		0		0		ns
th(RAS-R)	Read hold time after RAS (Note 11)	t RRH	20		20		25		ns
tdis (CAS)	Output disable time (Note 12)	t OFF	0	35	0	40	0	50	ns
ta(CAS)	CAS access time (Note 13)	t _{CAC}		60		75		100	ns
ta (RAS)	RAS access time (Note 14)	t RAC		120		150		200	ns

Either th (BAS-B) or th (CAS-B) must be satisfied for a read cycle. Note 11:

to the company defines the time at which the output achieves the open circuit condition and is not reference to V_{OH} or V_{OH} 12:

13.

This is the value when $td(ras-cas) \le td(ras-cas)max$. Then $td(ras-cas) \ge td(ras-cas) \le td(ras-cas) \ge td(ras-cas) \le td(ras-cas) \ge td(ras-cas$ 14: $t_{d(RAS-CAS)}$ exceeds the value shown. Test conditions ; Load = 2T TL, C_L = 100pF

Write Cycle

			1		Lir	nits			
Symbol	Parameter	Alternative	M5M42	M5M4257S-12		M5M4257S-15		575-20	Unit
		Symbol	Min	Max	Min	Max	Min	Max	
tow	Write cycle time	t _{RC}	230		260		330		ns
t _{su (w-CAS)}	Write setup time before CAS (Note 17)	twcs	-5		-10		-10		ns
th(CAS-W)	Write hold time after CAS	t _{wCH}	40		45		55		ns
th(RAS-W)	Write hold time after RAS	t _{WCR}	100		120		155		ns
t _{h (W-RAS)}	RAS hold time after write	t _{RWL}	40		45		55		ns
th(w-CAS)	CAS hold time after write	t _{CWL}	40		45		55		ns
tw(w)	Write pulse width	twp	40		45		55		ns
t _{su (D-CAS})	Data-in setup time before CAS	t _{DS}	0		0		0		ns
th (CAS-D)	Data-in hold time after CAS	t _{DH}	30		35		40		ns
th(RAS-D)	Data-in hold time after RAS	t _{DHR}	90		110		140		ns

262 144-BIT (262 144-WORD BY 1-BIT) DYNAMIC RAM

Limite Alternative M5M4257S-12 M5M4257S-15 Symbol M5M4257S-20 Parameter l Ini+ Symbol Min Max Min Max Min Max 260 370 295 Read-write cycle time (Note 15) torw t RWC ne (Note 16) 275 310 390 LOBMW Bead-modify-write cycle time t RMWC ne 40 55 RAS hold time after write 45 ne th (W-BAS) t RWL 40 45 55 CAS hold time after write ne th (w-CAS) t_{CWL} 40 45 55 tw(w) Write pulse width t wP ne 0 0 Read setup time before CAS 0 tsu(R-CAS) t _{RCS} ns Delay time, RAS to write (Note 17) 110 135 180 td (RAS-W) t RWD ne Delay time, CAS to write (Note 17) 50 60 90 td (CAS-W) t cwp ne t_{DS} Π n 0 Data-in set-up time before write tsu(D-W) ns 40 45 th(w-D) Data-in hold time after write t _{DH} 55 ns 0 0 t OFF 0 tdis (CAS) Output disable time 35 40 50 ns CAS access time 60 75 100 ta (CAS) (Note 13) t CAC ns RAS access time (Note 14) 120 200 t RAC 150 ta (RAS) ns

Read, Write and Read-Modify-Write Cycles

Note 15: t_{CRW}min is defined as t_{CRW}min = td(RAS-CAS)max + td(CAS-w)min + th(W-RAS) + tw(RASH) + 3t_{TLH(tTHL})

16: t_{CRMW} min is defined as t_{CRMW} min = t_{a} (RAS) max + t_{h} (W-RAS) + t_{w} (RAS-H) + $3t_{TLH}$ (tTHL)

17: tsu(w-cas), td(RAS-w), and td(CAS-w) do not define the limits of operation, but are included as electrical characteristics only.

When $t_{su(w-cas)} \ge t_{su(w-cas)}$ min, an early-write cycle is performed, and the data output keeps the high-impedance state.

When $t_d(_{RAS-w}) \ge t_d(_{RAS-w})$ min, and $t_d(_{CAS-w}) \ge t_{SU}(_{w-CAS})$ min a read-write cycle is performed, and the data of the selected address will be read out on the data output.

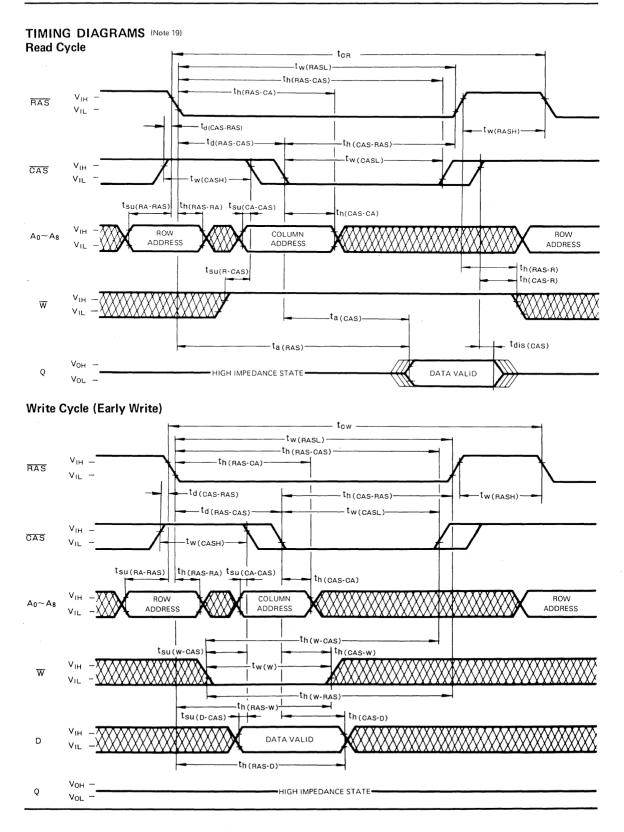
For all conditions other than those described above, the condition of data output (at access time and until CAS goes back to VIH) is not defined.

Nibble-Mode Cycle

					Li	mits			
Symbol	Parameter	Alternative Symbol	M5M4257S-12		M5M4257S-15		M5M42	Unit	
		Symbol	Min	Max	Min	Max	Min	Max	
t _{on}	Nibble mode cycle time	t _{NC}	55		70		90		ns
tan (CAS)	Nibble mode access time	t NAC		30		40		50	ns
t _{wn (CASL})	Nibble mode CAS low pulse width	t _{NCAS}	30		40		50		ns
twn(cash)	Nibble mode precharge time	t _{NP}	15	•	20		30		ns
thn (CAS-RAS)	Nibble mode RAS hold time	t NRSH	30		40		50		ns
t _{dN (CAS-W)}	Nibble mode CAS to WRITE delay	t _{NCWD}	30		40		50		ns
twnrmw (CASL)	Nibble mode RMW CAS pulse width	t NCRW	65		85		105		ns
thNRMW(W-CAS)	Nibble mode WRITE to CAS lead time	t NOWL	30		40		50		ns
thNRMW (CAS-RAS)	Nibble mode RMW RAS hold time	t _{NWSH}	65		85		105		ns
tsun(w-cas)	Nibble mode WRITE setup time before CAS	t _{NWCS}	0		0		0		ns

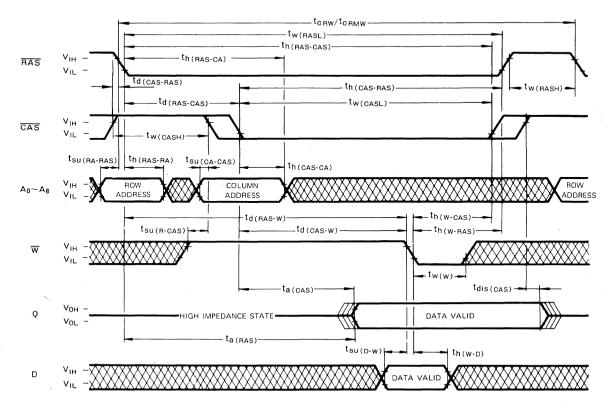
CAS before RAS Refresh Cycle (Note 18)

		Alternative Symbol							
Symbol	Parameter		M5M4257S-12		M5M4257S-15		M5M42	Unit	
	- Symbol	Min	Max	Min	Max	Min	Max		
tsur (Cas-ras)	CAS setup time for auto refresh	t _{CSR}	30		30		40		ns
thr (RAS-CAS)	CAS hold time for auto refresh	t _{CHR}	50		50		50		ns
tdr (ras-cas)	Precharge to CAS active time	t _{RPC}	0		0		0		ns

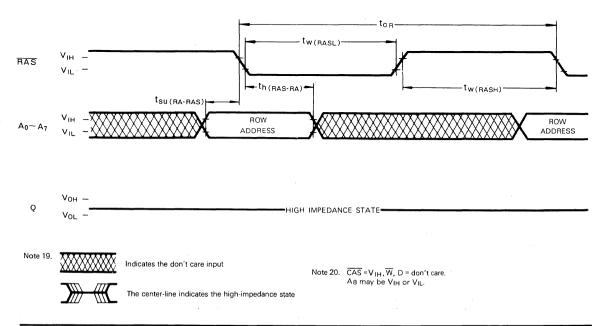

Note 18. Eight or more CAS before RAS cycles is necessary for proper operation of CAS before RAS refresh mode.

Nibble Mode Addressing Sequence Example

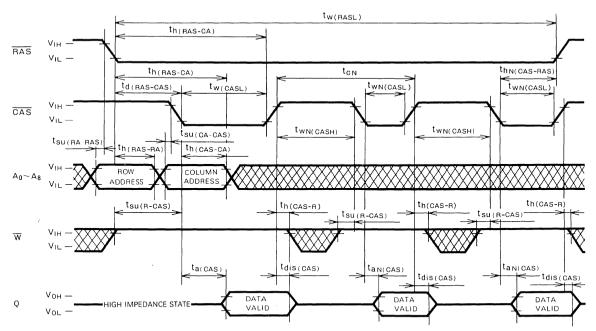
Sequence	Nibble bit	Column address								Row address]		
		A ₀	Α1	A ₂	A_3	A_4	A_5	A_6	Α7	Α8	A ₀	Α1	A_2	A ₃	A4	A_5	A_6	A ₇	A ₈		
RAS/CAS	1	0	1	0	1	0	1	0	1	0	0	1	0	1	0	1	0	1	0	1	External address
toggle CAS	2	0	1	0	1	0	1	0	1	0	0	1	0	1	0	1	0	1	1)
toggle CAS	3	0	1	0	1	0	1	0	1	1	0	1	0	1	0	1	0	1	0		Internally generated address
toggle CAS	4	0	1	0	1	0	1	0	1	1	0	1	0	1	0	1	0	1	1		S Internativ generated address
toggle CAS	1	0	1	0	1	0	1	0	1	0	0	1	0	1	0	1	0	1	0		ļ



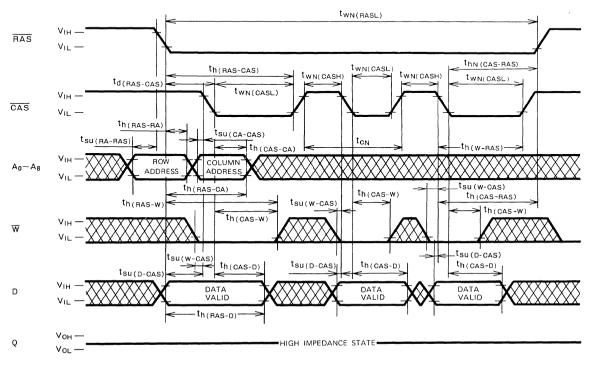
262 144-BIT (262 144-WORD BY 1-BIT) DYNAMIC RAM



262 144-BIT (262 144-WORD BY 1-BIT) DYNAMIC RAM


Read-Write and Read-Modify-Write Cycles

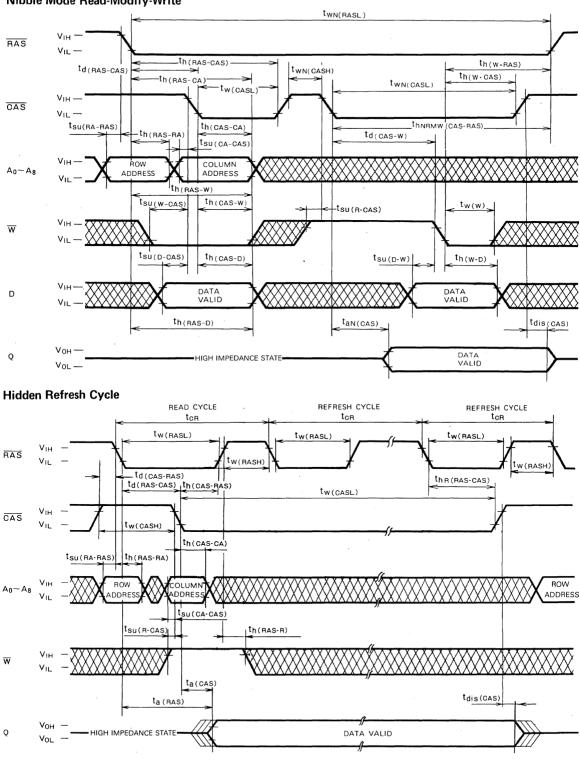
RAS-Only Refresh Cycle (Note 20)



262 144-BIT (262 144-WORD BY 1-BIT) DYNAMIC RAM

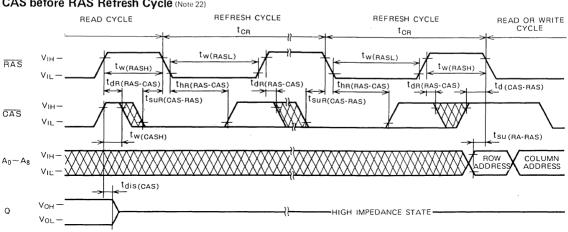
Nibble Mode Read Cycle (Note 21)

Note 21. Pin 1 at Row Time and Column Time Determines the Starting Address of the Nibble Cycle.

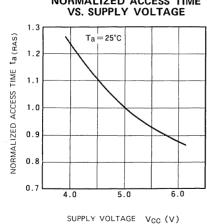

Nibble Mode Write Cycle (Early Write)

MITSUBISHI LSIs

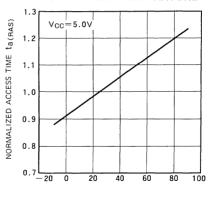
M5M4257S-12. -15. -20


262 144-BIT (262 144-WORD BY 1-BIT) DYNAMIC RAM

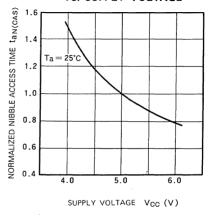
Nibble Mode Read-Modify-Write

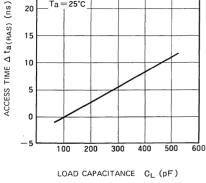


262 144-BIT (262 144-WORD BY 1-BIT) DYNAMIC RAM


CAS before RAS Refresh Cycle (Note 22)

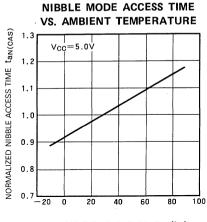
Note 22: \overline{W} , D = don't care.

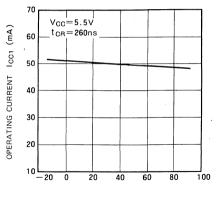

TYPICAL CHARACTERISTICS NORMALIZED ACCESS TIME VS. SUPPLY VOLTAGE



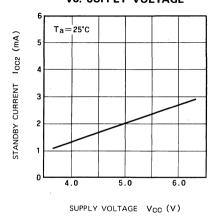
AMBIENT TEMPERATURE Ta (°C)

NIBBLE MODE ACCESS TIME VS. SUPPLY VOLTAGE


ACCESS TIME VS. LOAD CAPACITANCE 25 Vcc=4.5V $T_a = 25^{\circ}C$

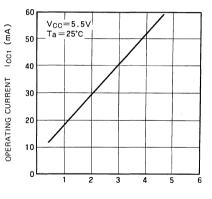

OPERATING CURRENT

262 144-BIT (262 144-WORD BY 1-BIT) DYNAMIC RAM

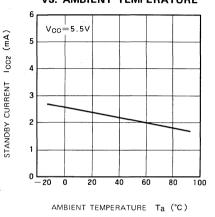

AMBIENT TEMPERATURE Ta (°C)

OPERATING CURRENT VS. AMBIENT TEMPERATURE

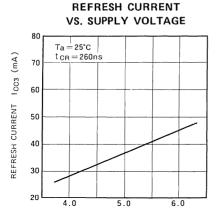
AMBIENT TEMPERATURE Ta (°C)


STANDBY CURRENT VS. SUPPLY VOLTAGE

VS. SUPPLY VOLTAGE (Ψ) 100 Ta=25°C $t_{CR}=260$ ns 40 40 20 4.0 5.06.0

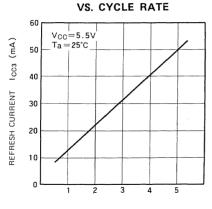

SUPPLY VOLTAGE V_{CC} (V)

OPERATING CURRENT VS. CYCLE RATE

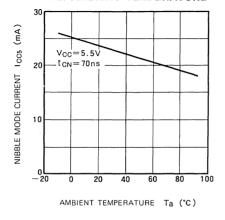


CYCLE RATE 1/t CR (MHz)

STANDBY CURRENT VS. AMBIENT TEMPERATURE

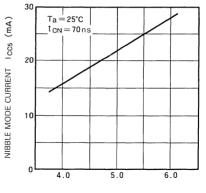


262 144-BIT (262 144-WORD BY 1-BIT) DYNAMIC RAM

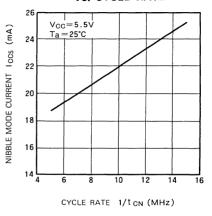

SUPPLY VOLTAGE VCC (V)

BEFRESH CURBENT

CYCLE RATE 1/tor (MHz)


NIBBLE MODE CURRENT VS. AMBIENT TEMPERATURE

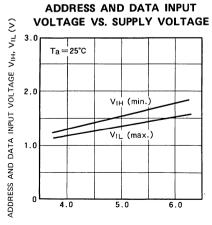
REERESH CURRENT **VS. AMBIENT TEMPERATURE** 60 V_{CC}=5.5V (mA) t_{CB}=260ns 50 1003 40 REFRESH CURRENT 30 20 10 0 100 - 20 n 20 40 60 80


AMBIENT TEMPERATURE Ta (°C)

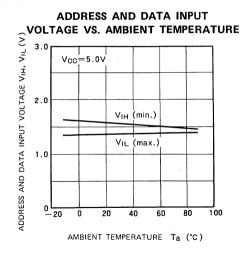
NIBBLE MODE CURRENT VS. SUPPLY VOLTAGE

SUPPLY VOLTAGE VCC (V)

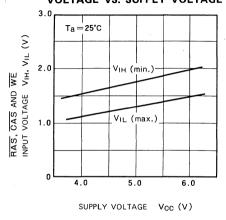
NIBBLE MODE CURRENT VS. CYCLE RATE

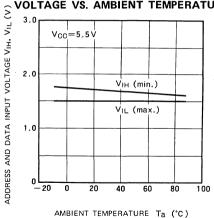

262 144-BIT (262 144-WORD BY 1-BIT) DYNAMIC RAM

ADDRESS AND


0∟ _20

n

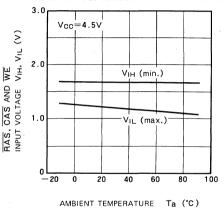

20 40


SUPPLY VOLTAGE VCC (V)

RAS, CAS AND WE INPUT VOLTAGE VS. SUPPLY VOLTAGE

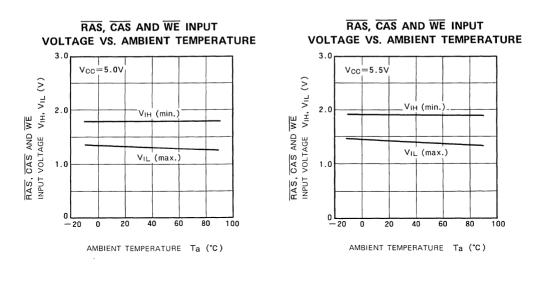
ADDRESS AND DATA INPUT VOLTAGE VS. AMBIENT TEMPERATURE

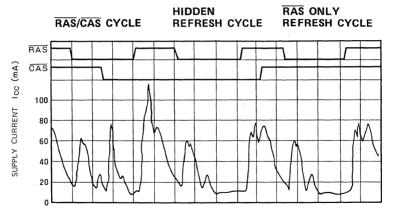
ADDRESS AND DATA INPUT


AMBIENT TEMPERATURE Ta (°C)

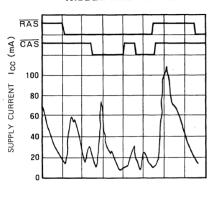
60

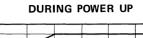
80


100


RAS, CAS AND WE INPUT VOLTAGE VS. AMBIENT TEMPERATURE

262 144-BIT (262 144-WORD BY 1-BIT) DYNAMIC RAM




50ns/DIVISION

5

NIBBLE MODE CYCLE

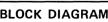
50ns/DIVISION

CURRENT WAVEFORM

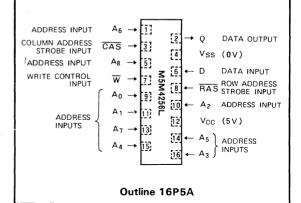
SUPPLY VOLTAGE Vcc (V) n 20 Ta=25°C 15 SUPPLY CURRENT $\overline{RAS} = \overline{CAS} = V_{II}$ Icc (mA) 10 5 RAS=CAS=VIH ٢

50µs/DIVISION

LINN MAR 262 144-BIT (262 144-WORD BY 1-BIT) DYNAMIC RAM

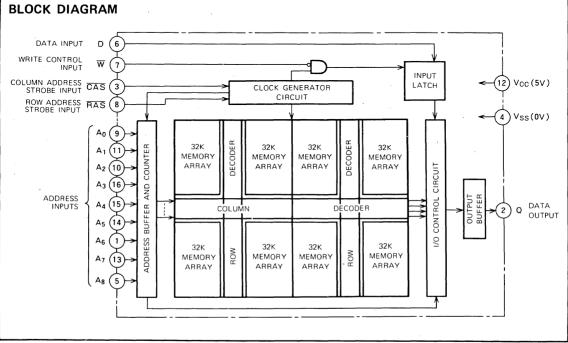

DESCRIPTION

This is a family of 262 144-word by 1-bit dynamic RAMs. fabricated with the high performance N-channel silicon gate MOS process, and is ideal for large-capacity memory systems where high speed, low power dissipation, and low costs are essential. The use of double-layer polysilicon process combined with silicide technology and a singletransistor dynamic storage cell provide high circuit density at reduced costs, and the use of dynamic circuitry including sense amplifiers assures low power dissipation. Multiplexed address inputs permit both a reduction in pins to the 16 pin zigzag inline package configuration and an increase in system densities. In addition to the \overline{RAS} only refresh mode. the Hidden refresh mode and \overline{CAS} before \overline{RAS} refresh mode are available.


FEATURES

Type name	Access time (max) (ns)	Cycle time (min) (ns)	Power dissipation (typ) (mW)
M5M4256L-12	120	230	260
M5M4256L-15	150	260	230
M5M4256L-20	200	330	190

- 16 pin zigzag inline package
- Single 5V±10% supply
- 25mW (max) Low standby power dissipation:
 - Low operating power dissipation:
- Unlatched output enables two-dimensional chip selection and extended page boundary.


PIN CONFIGURATION (TOP VIEW)

- Early-write operation gives common I/O capability .
- Read-modify-write, RAS-only-refresh, Page-mode capabilities
- CAS before RAS refresh mode capability
- All input terminals have low input capacitance and are directly TTL-compatible
- Output is three-state and directly TTL-compatible
- 256 refresh cycles every 4ms. Pin 1 is not needed for refresh
- CAS controlled output allows hidden refresh

APPLICATION

- Main memory unit for computers
- Microcomputer memory

FUNCTION

The M5M4256L provides, in addition to normal read, write, and read-modify-write operations, a number of other functions, e.g., page mode, \overrightarrow{RAS} -only refresh, and delayed-write. The input conditions for each are shown in Table 1.

Table 1 Input conditions for each mode

			Inp	uts			Output		
Operation	RAS	CAS	w	D	Row address	Column address	Q	Refresh	Remarks
Read	ACT	ACT	NAC	DNC	APD	APD	VLD	YES	*
Write	ACT	ACT	ACT	VLD	APD	APD	OPN	YES	
Read-modify-write	ACT	ACT	ACT	VLD	APD	APD	VLD	YES	
RAS-only refresh	ACT	NAC	DNC	DNC	APD	DNC	OPN	YES	
Hidden refresh	ACT	ACT	DNC	DNC	DNC	DNC	VLD	YES	
CAS before RAS refresh	ACT	ACT	DNC	DNC	DNC	DNC	OPN	YES	
Standby	NAC	DNC	DNC	DNC	DNC	DNC	OPN	NO	

Note: ACT: active, NAC: nonactive, DNC: don't care, VLD: valid, APD: applied, OPN: open.

* : Page mode identical except refresh is No,

SUMMARY OF OPERATIONS

To select one of the 262 144 memory cells in the M5M4256L the 18-bit address signal must be multiplexed into 9 address signals, which are then latched into the on-chip latch by two externally-applied clock pulses. First, the negative-going edge of the row-address-strobe pulse (\overline{RAS}) latches the 9 row-address bits; next, the negative-going edge of the column-address-strobe pulse (\overline{CAS}) latches the 9 column-address bits. Timing of the \overline{RAS} and \overline{CAS} clocks can be selected by either of the following two methods:

- The delay time from RAS to CAS t_{d (RAS-CAS)} is set between the minimum and maximum values of the limits. In this case, the internal CAS control signals are inhibited almost until t_{d(RAS-CAS)} max ('gated CAS' operation). The external CAS signal can be applied with a margin not affecting the on-chip circuit operations, e.g. access time, and the address inputs can be easily changed from row address to column address.
- 2. The delay time $t_{d(RAS-CAS)}$ is set larger than the maximum value of the limits. In this case the internal inhibition of \overline{CAS} has already been released, so that the internal \overline{CAS} control signals are controlled by the externally applied \overline{CAS} , which also controls the access time.

Data Input

Data to be written into a selected cell is strobed by the later of the two negative transitions of \overline{W} input and \overline{CAS} input. Thus when the \overline{W} input makes its negative transition prior to \overline{CAS} input (early write), the data input is strobed by \overline{CAS} , and the negative transition of \overline{CAS} is set as the

reference point for set-up and hold times. In the read-write or read-modify-write cycles, however, when the \overline{W} input makes its negative transition after \overline{CAS} , the \overline{W} negative transition is set as the reference point for setup and hold times.

Data Output Control

The output of the M5M4256L is in the high-impedance state when \overline{CAS} is high. When the memory cycle in progress is a read, read-modify-write, or a delayed-write cycle, the data output will go from the high-impedance state to the active condition, and the data in the selected cell will be read. This data output will have the same polarity as the input data. Once the output has entered the active condition, this condition will be maintained until \overline{CAS} goes high, irrespective of the condition of \overline{RAS} .

The output will remain in the high-impedance state throughout the entire cycle in an early-write cycle.

These output conditions, of the M5M4256L, which can readily be changed by controlling the timing of the write pulse in a write cycle, and the width of the CAS pulse in a read cycle, offer capabilities for a number of applications, as follows.

1. Common I/O Operation

If all write operations are performed in the early-write mode, input and output can be connected directly to give a common I/O data bus.

2 Data Output Hold

The data output can be held between read cycles, without lengthening the cycle time. This enables extremely flexible clock-timing settings for RAS and CAS.

262 144-BIT (262 144-WORD BY 1-BIT) DYNAMIC RAM

3. Two Methods of Chip Selection

Since the output is not latched, \overline{CAS} is not required to keep the outputs of selected chips in the matrix in a highimpedance state. This means that \overline{CAS} and/or \overline{RAS} can both be decoded for chip selection.

4. Extended-Page Boundary

By decoding \overline{CAS} , the page boundary can be extended beyond the 512 column locations in a single chip. In this case, \overline{RAS} must be applied to all devices.

Page-Mode Operation

This operation allows for multiple-column addressing at the same row address, and eliminates the power dissipation associated with the negative-going edge of \overline{RAS} , because once the row address has been strobed, \overline{RAS} is maintained. Also, the time required to strobe in the row address for the second and subsequent cycles is eliminated, thereby decreasing the access and cycle times.

Refresh

Each of the 256 rows ($A_0 \sim A_7$) of the M5M4256L must be refreshed every 4 ms to maintain data. The methods of refreshing for the M5M4256L are as follows.

1. Normal Refresh

Read cycle and Write cycle (early write, delayed write or read-modify-write) refresh the selected row as defined by the low order (\overline{RAS}) addresses. Any write cycle, of course, may change the state of the selected cell. Using a read, write, or read-modify-write cycle for refresh is not recommended for systems which utilize "wired-OR" outputs since output bus contention will occur.

2. RAS Only Refresh

In this refresh method, the \overline{CAS} clock should be at a V_{IH} level and the system must perform \overline{RAS} Only cycle on all 256 row address every 4 ms. The sequential row addresses from an external counter are latched with the \overline{RAS} clock and associated internal row locations are refreshed. A \overline{RAS} Only Refresh cycle maintains the output in the high impedance state with a typical power reduction of 20% over a read or write cycle.

3. CAS before RAS Refresh

If \overline{CAS} falls $t_{SUR}(CAS-RAS)$ earlier than \overline{RAS} and if \overline{CAS} is kept low by $t_{hR}(RAS-CAS)$ after \overline{RAS} falls, \overline{CAS} before \overline{RAS} Refresh is initiated. The external address is ignored and the refresh address generated by the internal 8-bit counter is put into the address buffer to refresh the corresponding row. The output will stay in the high impedance state.

If \overline{CAS} is kept low after the above operation, \overline{RAS} cycle initiates \overline{RAS} Only Refresh with internally generated refresh address (Automatic refresh). The output will again stay in the high impedance state.

Bringing \overline{RAS} high and then low while \overline{CAS} remains high initiates the normal \overline{RAS} Only Refresh using the external address.

If \overline{CAS} is kept low after the normal read/write cycle, RAS cycle initiates the RAS Only Refresh using the internal refresh address and especially after the normal read cycle, it becomes Hidden Refresh with internal address. The output is available unit \overline{CAS} is brought high.

4. Hidden Refresh

A feature of the M5M4256L is that refresh cycles may be performed while maintaining valid data at the output pin by extending the \overline{CAS} active time from a previous memory read cycle. This feature is referred to as hidden refresh.

Hidden refresh is performed by holding \overline{CAS} at V_{1L} and taking \overline{RAS} high and after a specified precharge period, executing a \overline{RAS} -only cycling, but with \overline{CAS} held low.

The advantage of this refresh mode is that data can be held valid at the output data port indefinitely by leaving the CAS asserted. In many applications this eliminates the need for off-chip latches.

Power Dissipation

Most of the circuitry in the M5M4256L is dynamic, and most of the power is dissipated when addresses are strobed. Both \overline{RAS} and \overline{CAS} are decoded and applied to the M5M4256L as chip-select in the memory system, but if \overline{RAS} is decoded, all unselected devices go into stand-by independent of the \overline{CAS} condition, minimizing system power dissipation.

Power Supplies

The M5M4256L operates on a single 5V power supply.

A wait of some 500μ s and eight or more dummy cycles is necessary after power is applied to the device before memory operation is achieved.

262 144-BIT (262 144-WORD BY 1-BIT) DYNAMIC RAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Limits	Unit
Vcc	Supply voltage		-1-7	V
Vi	Input voltage	With respect to V _{SS}	-1-7	V
Vo	Output voltage		-1~7	V
10	Output current		50	mA
Pd	Power dissipation	Ta = 25°C	1000	mW
Topr	Operating free-air temperature range		0~70	°C
Tstg	Storage temperature range		- 65 ~ 150	°C

RECOMMENDED OPERATING CONDITIONS (Ta = 0 ~ 70°C, unless otherwise noted) (Note 1)

			Limits		Unit
Symbol	Parameter	Min	Nom	Max	Unit
Vcc	Supply voltage	4.5	5	5.5	v
Vss	Supply voltage	0	0	0	v
VIH	High-level input voltage, all inputs	2.4		6.5	V
VIL	Low-level input voltage, all inputs	-2		0.8	V

Note 1: All voltage values are with respect to VSS

Symbol			Test conditions		Limits		
Symbol	Parameter		Test conditions	Min	Тур	Max	Unit
Voн	High-level output voltage		I _{OH} =-5mA	2.4		Vcc	V
VOL	Low-level output voltage		I _{OL} =4.2mA	0		0.4	V
loz	Off-state output current		Q floating $0V \leq V_{OUT} \leq 5.5V$	-10		10	μA
h.	Input current		$0V \leq V_{IN} \leq V_{CC}$, Other input pins = $0V$	-10		10	μA
		M5M4256L-12	RAS, CAS cycling			65	mA
CC1(AV)	Average supply current from V _{CC} , operating (Note 3, 4)	M5M4256L-15	,			60	mA
		M5M4256L-20	$t_{CR} = t_{CW} = min$, output open			50	mA
I _{CC2}	Supply current from V _{CC} , standby	• • • • • • • • • • • • • • • • • • • •	$\overline{RAS} = \overline{CAS} = V_{IH}$ output open			4.5	mA
		M5M4256L-12				55	mA
1 CC3 (AV)	Average supply current from V _{CC} , refreshing (Note 3)	M5M4256L-15	\overrightarrow{RAS} cycling $\overrightarrow{CAS} = \overrightarrow{V}_{IH}$			50	mA
	reneshing (Note 5)	M5M4256L-20	t _{C(RAS)} = min, output open			40	mA
		M5M4256L-12	515 V 016 V			50	mA
ICC4 (AV)	Average supply current from V _{CC} , page mode (Note 3, 4)	M5M4256L-15	$\overline{RAS} = V_{1L}$, \overline{CAS} cycling			45	mA
	page mode (Note 3, 4)	M5M4256L-20	t _{CPG} = min, output open			40	mA
	Average supply current from V _{CC} ,	M5M4256L-12	CAS before RAS refresh cycling			60	mA
ICC6(AV)	CAS before RAS refresh mode	M5M4256L-15	$t_c(RAS) = min, output open$			55	mA
	(Note 3)	M5M4256L-20	C(RAS) - min, output open			45	mA
C _{I (A)}	Input capacitance, address inputs	·····				5	pF
C _{I (D)}	Input capacitance, data input		VI=VSS			5	pF
C _{I (W)}	Input capacitance, write control input	I	f=1MHz			7	pF
CI (RAS)	Input capacitance, RAS input		Vi=25mVrms			10	pF
CI (CAS)	Input capacitance, CAS input					10	pF
Co	Output capacitance		$V_0 = V_{SS}$, f=1MHz, V _i =25mVrms			7	pF

Note 2: Current flowing into an IC is positive , out is negative.

3 ICC1(AV), ICC3(AV), ICC4(AV) and ICC6(AV) are dependent on cycle rate. Maximum current is measured at the fastest cycle rate.

4: ICC1(AV) and ICC4(AV) are dependent on output loading. Specified values are obtained with the output open.

262 144-BIT (262 144-WORD BY 1-BIT) DYNAMIC RAM

TIMING REQUIREMENTS (For Read, Write, Read-Modify-Write, Refresh, and Page-Mode Cycle)

(Ta = 0 \sim 70°C, V_{CC} = 5V \pm 10%, V_{SS} = 0V, unless otherwise noted. See notes 5, 6 and 7.) Limits Alternative Symbol M5M4256L-12 M5M4256L-15 M5M4256L-20 Parameter Unit Symbol Min Min Max Min Max Max t_{CRF} Refresh cycle time tREF ٨ 4 A ms RAS high pulse width 100 100 120 ns tw(RASH) t_{RP} RAS low pulse width 120 10000 150 10000 200 10000 ns tw(RASL) tRAS CAS low pulse width tCAS 60 75 100 ns tw(CASL) CAS high oulse width (Note 8) t _{CPN} 30 35 40 ns tw(CASH) th (RAS-CAS) CAS hold time after RAS t_{CSH} 120 150 200 ns RAS hold time after CAS t _{RSH} 60 75 100 ns th (CAS-RAS) 30 30 40 ns td (CAS-RAS) Delay time, CAS to RAS (Note 9) t_{CBP} Delay time, RAS to CAS (Note 10) 25 60 25 75 30 100 ns td (RAS-CAS) t _{RCD} 0 0 0 Bow address setup time before BAS t ASR ns tsu(RA-RAS) tsu(CA-CAS) Column address setup time before CAS tASC 0 -5 - 5 ns Row address hold time after RAS 15 20 25 th (BAS-BA) t _{RAH} ns Column address hold time after CAS 20 25 35 th(CAS-CA) t _{CAH} ns Column address hold time after RAS 80 135 th (BAS-CA) t AR 100 ns t_{тні} tт 3 50 3 Transition time 3 50 50 ns t_{TIH}

Note 5: An initial pause of 500 us is required after power-up followed by any eight RAS or RAS/CAS cycles before proper device operation is achieved.

The switching characteristics are defined as $t_{THI} = t_{TLH} = 5$ ns. 6

Reference levels of input signals are VIH min. and VIL max. Reference levels for transition time are also between VIH and VIL. 7

8 Except for page-mode.

9 td (CAS-RAS) requirement is applicable for all RAS/CAS cycles.

10: Operation within the td (RAS-CAS) max limit insures that ta (RAS) max can be met. td (RAS-CAS) max is specified reference point only; if td (RAS-CAS) is greater than the specified td (RAS-CAS) max limit, then access time is controlled exclusively by ta (CAS). $t_d (RAS-CAS)min = t_h (RAS-RA)min + 2t_{THL} (t_{TLH}) + t_{SU} (CA-CAS)min.$

SWITCHING CHARACTERISTICS (Ta = $0 \sim 70^{\circ}$ C, V_{CC}=5V ± 10%, V_{SS}=0V, unless otherwise noted) **Read Cycle**

			Alternative							
Symbol	Parameter	Parameter		M5M42	M5M4256L-12		256∟-15	M5M4256L-20		Unit
						Min	Max	Min	Max	
t _{CR}	Read cycle time		t _{RC}	230		260		330		ns
t _{su (R-CAS)}	Read setup time before CAS		t _{RCS}	0		0		0		ns
th(CAS-R)	Read hold time after CAS	(Note 11)	t _{RCH}	0		0		0		ns
th(RAS-R)	Read hold time after RAS	(Note 11)	t RRH	20		20		25		ns
tdis (CAS)	Output disable time	(Note 12)	t _{OFF}	0	35	0	40	0	50	ns
ta (CAS)	CAS access time	(Note 13)	t _{CAC}		60		75		100	ns
ta (RAS)	RAS access time	(Note 14)	t _{RAC}		120		150		200	ns

Note 11: Either th (RAS-R) or th (CAS-R) must be satisfied for a read cycle.

to Is (CAS) max defines the time at which the output achieves the open circuit condition and is not reference to VOH or VOL 12

13:

This is the value when $l_d(RAS-CAS) \ge l_d(RAS-CAS)max$. Test conditions : Load = 2TTL, C_L = 100pF. This is the value when $l_d(RAS-CAS) < l_d(RAS-CAS)max$. When $l_d(RAS-CAS) \ge l_d(RAS-CAS)max$, $l_a(RAS)$ will increase by the amount that 14: td(RAS-CAS) exceeds the value shown. Test conditions ; Load = 2TTL CL = 100pF

Write Cycle

		Alternative	Limits							
Symbol	Parameter	Symbol	M5M4256L-12		M5M4256L-15		M5M4256L-20		Unit	
		Symbol	Min	Max	Min	Max	Min	Max		
t _{cw}	Write cycle time	t _{RC}	230		260		330		ns	
tsu(w-CAS)	Write setup time before CAS (Note 17)	twcs	-5		-10		-10		ns	
th(CAS-W)	Write hold time after CAS	t wCH	40		45		55		ns	
th(RAS-W)	Write hold time after RAS	t wCR	100		120		155		ns	
th(w-RAS)	RAS hold time after write	t _{RWL}	40		45		55		ns	
th(w-CAS)	CAS hold time after write	tcwL	40		45		55		ns	
t _{w(w)}	Write pulse width	twp	40		45		55		ns	
t _{su(D-CAS)}	Data-in setup time before CAS	t _{DS}	0		0		0		ns	
th(CAS-D)	Data-in hold time after CAS	t _{DH}	30		35		40		ns	
th(RAS-D)	Data-in hold time after RAS	t DHR	90		110		140		ns	

262 144-BIT (262 144-WORD BY 1-BIT) DYNAMIC RAM

			Alternative	Limits							
Symbol	Parameter	Parameter Symbol		M5M42	256∟-12	M5M42	M5M42	56∟-20	Unit		
			3911001	Min	Max	Min	Max	Min	Max		
t _{CRW}	Read-write cycle time	(Note 15)	t _{RWC}	260		295		370		ns	
tormw	Read-modify-write cycle time	(Note 16)	t _{RMWC}	275		310		390		ns	
th(w·RAS)	RAS hold time after write		t _{RWL}	40		45		55		ns	
th(w-CAS)	CAS hold time after write		tcwL	40		45		55		ns	
tw(w)	Write pulse width		twp	40		45		55		ns	
tsu (R-CAS)	Read setup time before CAS		t _{RCS}	0		0		0		ns	
td(RAS-W)	Delay time, RAS to write	(Note 17)	t _{RWD}	110		135		180		ns	
td(CAS-W)	Delay time, CAS to write	(Note 17)	t _{CWD}	50		60		80		ns	
tsu(D-W)	Data-in set-up time before write		t _{DS}	0		0		0		ns	
th(w-D)	Data-in hold time after write		t _{DH}	40		45		55		ns	
tdis (CAS)	Output disable time		t _{OFF}	0	35	0	40	0	50	ns	
ta(CAS)	CAS access time	(Note 13)	t _{CAC}		60		75		100	ns	
ta (BAS)	RAS access time	(Note 14)	t BAC		120		150		200	ns	

Read, Write and Read-Modify-Write Cycles

Note 15 t_{CRW} min is defined as t_{CRW} min = t_{d} (RAS-CAS) max + t_{d} (CAS-W) min + t_{h} (W-RAS) + t_{W} (RASH) + $3t_{TLH}$ (the)

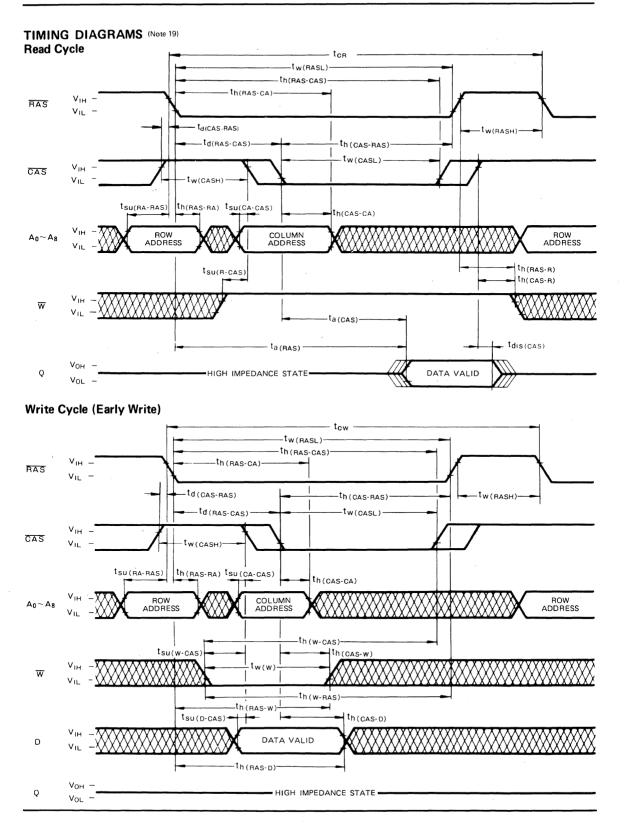
16 t CRMW min is defined as t CRMW min = ta (RAS) max + th (W-RAS) + tw (RAS H) + 3t TLH(tTHL)

17 t_{SU}(w-CAS), t_d(RAS-w), and t_d(CAS-w) do not define the limits of operation, but are included as electrical characteristics only. When t_{SU}(w-CAS)≧t_{SU}(w-CAS)min, an early-write cycle is performed, and the data output keeps the high-impedance state. When t_d(RAS-w)≧t_d(RAS-w)min, and t_d(CAS-w)≧t_{SU}(w-CAS)min a read-write cycle is performed, and the data of the selected address will be read out on the data output.

For all conditions other than those described above, the condition of data output (at access time and until CAS goes back to VIH) is not defined.

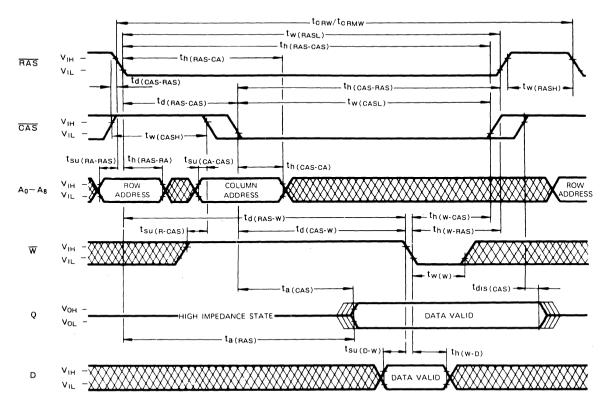
Page-Mode Cycle

		1							
Symbol	Symbol Parameter	Alternative Symbol		M5M4256L-12		M5M4256L-15		256∟-20	Unit
		3,11001	Min	Max	Min	Max	Min	Max	
t _{CPG}	Page-mode cycle time	t PC	125		145		190		ns
tw (CASH)	CAS high pulse width	t CP	55		60		80	·	ns
tcpgRW	Page-mode RMW cycle time	t _{PCRW}	160		180		230		ns
t _{CPGRMW}	Page-mode RMW cycle time	t _{PCRMW}	170		195		250		ns

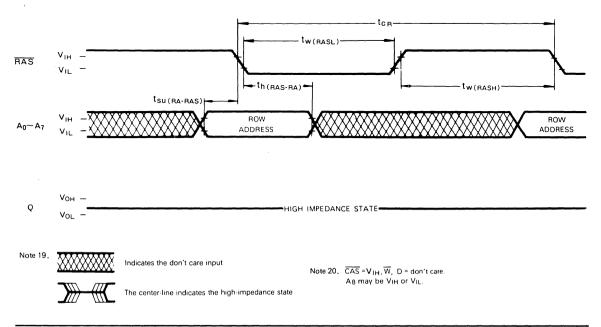

CAS before RAS Refresh Cycle (Note 18)

Symbol Parameter	Alternative Symbol	M5M4256L-12		M5M4256L-15		M5M4256L-20		Unit	
		- Symbol	Min	Max	Min	Max	Min	Max	
t _{sur} (cas-ras)	CAS setup time for auto refresh	t _{CSR}	30		30		40		ns
thr (ras-cas)	CAS hold time for auto refresh	t _{CHR}	50		50		50		ns
t _{dr(ras-cas)}	Precharge to CAS active time	t _{RPC}	0		0		0		ns

Note 18. Eight or more CAS before RAS cycles is necessary for proper operation of CAS before RAS refresh mode.

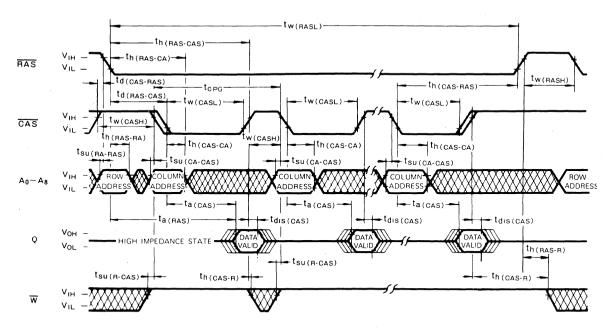


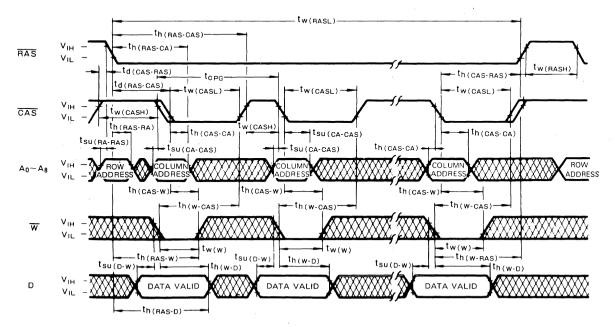
262 144-BIT (262 144-WORD BY 1-BIT) DYNAMIC RAM



262 144-BIT (262 144-WORD BY 1-BIT) DYNAMIC RAM

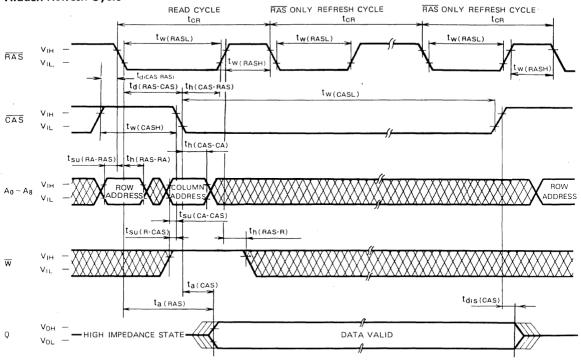
Read-Write and Read-Modify-Write Cycles


RAS-Only Refresh Cycle (Note 20)

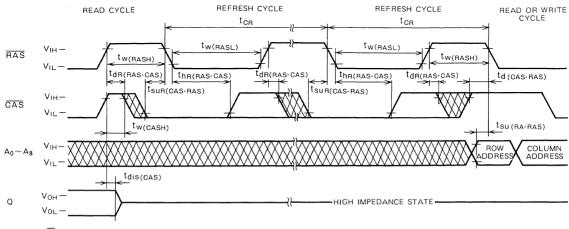


262 144-BIT (262 144-WORD BY 1-BIT) DYNAMIC RAM

Page-Mode Read Cycle

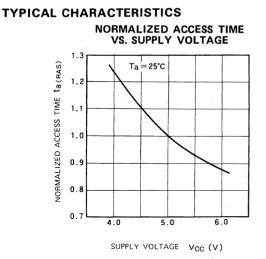


Page-Mode Write Cycle

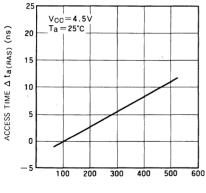


262 144-BIT (262 144-WORD BY 1-BIT) DYNAMIC RAM

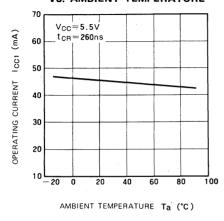
Hidden Refresh Cycle


CAS before RAS Refresh Cycle (Note 21)

Note 21: \overline{W} , D = don't care.

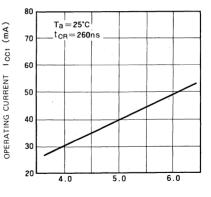


262 144-BIT (262 144-WORD BY 1-BIT) DYNAMIC RAM


ACCESS TIME VS. LOAD

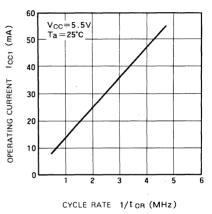
LOAD CAPACITANCE CL (pF)

OPERATING CURRENT VS. AMBIENT TEMPERATURE

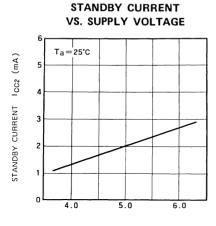


VS. AMBIENT TEMPERATURE 1 3 ta(AAS) $V_{CC} = 5.0V$ 1.2 VORMALIZED ACCESS TIME 1.1 1.0 0.9 0.8 0.7 - 20 'n 20 40 60 80 100

NORMALIZED ACCESS TIME

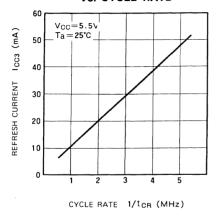

AMBIENT TEMPERATURE Ta (°C)

OPERATING CURRENT VS. SUPPLY VOLTAGE


SUPPLY VOLTAGE VCC (V)

OPERATING CURRENT VS. CYCLE RATE

262 144-BIT (262 144-WORD BY 1-BIT) DYNAMIC RAM

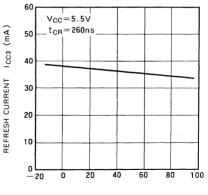


SUPPLY VOLTAGE V_{CC} (V)

REFRESH CURRENT

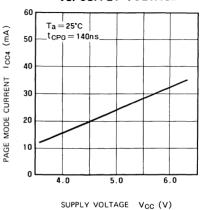
VS. SUPPLY VOLTAGE 80 Ta = 25°C Icca (mA) t_{CR} = 260ns 70 60 REFRESH CURRENT 50 40 30 20 4.0 5.0 6.0 SUPPLY VOLTAGE VCC (V)

REFRESH CURRENT VS. CYCLE RATE

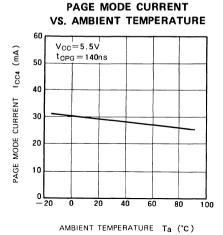


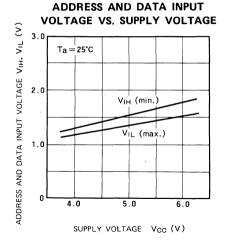
VS. AMBIENT TEMPERATURE 6 Vcc=5.5V (W) 5 l cc2 (4 STANDBY CURRENT 3 2 1 0 - 20 ò 20 40 60 80 100

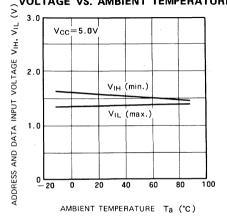
STANDBY CUBBENT

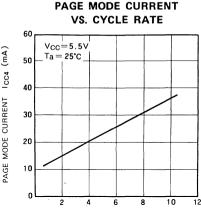

AMBIENT TEMPERATURE Ta (°C)

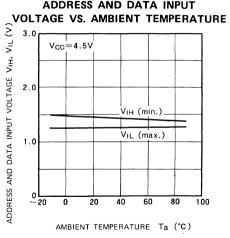
REFRESH CURRENT VS. AMBIENT TEMPERATURE


AMBIENT TEMPERATURE Ta (°C)

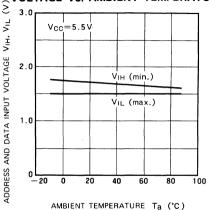

PAGE MODE CURRENT VS. SUPPLY VOLTAGE



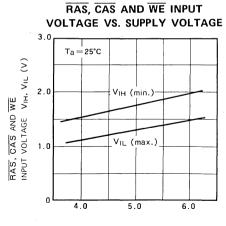

262 144-BIT (262 144-WORD BY 1-BIT) DYNAMIC RAM



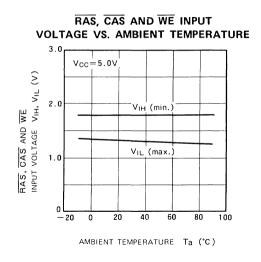
ADDRESS AND DATA INPUT VOLTAGE VS. AMBIENT TEMPERATURE



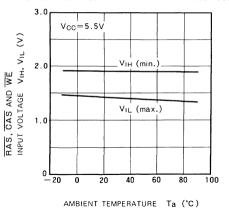
CYCLE RATE 1/t CPG (MHz)


ADDRESS AND DATA INPUT

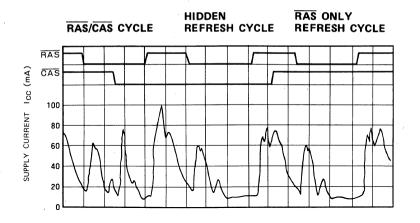
VOLTAGE VS. AMBIENT TEMPERATURE



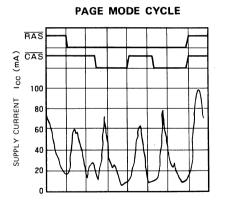
262 144-BIT (262 144-WORD BY 1-BIT) DYNAMIC RAM


SUPPLY VOLTAGE V_{CC} (V)

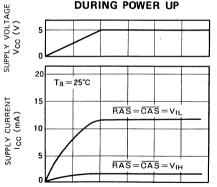
RAS. CAS AND WE INPUT VOLTAGE VS. AMBIENT TEMPERATURE 3.0 V_{CC}=4.5V RAS, CAS AND WE INPUT VOLTAGE VIH, VIL (V) 2.0 . Viн (min.) 1.0 Vii (max.) 0 - 20 'n 20 40 60 80 100


AMBIENT TEMPERATURE Ta (°C)

RAS, CAS AND WE INPUT VOLTAGE VS. AMBIENT TEMPERATURE



262 144-BIT (262 144-WORD BY 1-BIT) DYNAMIC RAM



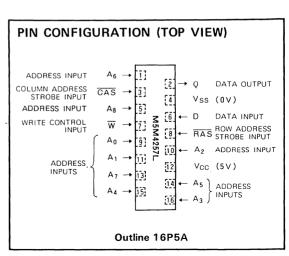
50ns/DIVISION

50ns/DIVISION

CURRENT WAVEFORM DURING POWER UP

50µs/DIVISION

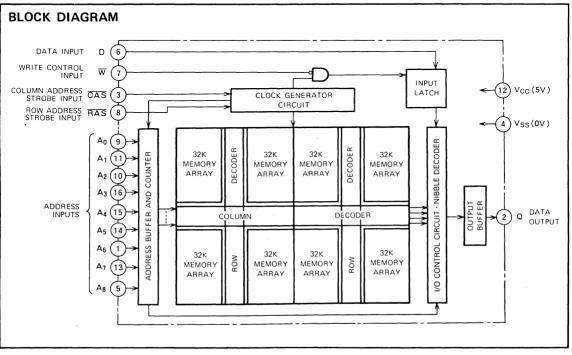
262 144-BIT (262 144-WORD BY 1-BIT) DYNAMIC RAM


DESCRIPTION

This is a family of 262 144-word by 1-bit dynamic RAMs, fabricated with the high performance N-channel silicon gate MOS process, and is ideal for large-capacity memory systems where high speed, low power dissipation, and low costs are essential. The use of double-layer polysilicon process combined with silicide technology and a single-transistor dynamic storage cell provide high circuit density at reduced costs, and the use of dynamic circuitry including sense amplifiers assures low power dissipation. Multiplexed address inputs permit both a reduction in pins to the 16 pin zigzag inline package configuration and an increase in system densities. In addition to the RAS only refresh mode, the Hidden refresh mode and CAS before RAS refresh mode are available.

FEATURES

Type name	Access time (max) (ns)	Cycle time (min) (ns)	Power dissipation (typ) (mW)
M5M4257L-12	120	230	260
M5M4257L-15	150	260	230
M5M4257L-20	200	330	190


- 16 pin zigzag inline package
- Single 5V±10% supply
- Low standby power dissipation: 25mW (max)
- Low operating power dissipation:
- Unlatched output enables two-dimensional chip selection

- Early-write operation gives common I/O capability
- Read-modify-write, RAS-only-refresh, Nibble-mode capabilities. (Pin 1 is used for nibble mode)
- CAS before RAS refresh mode capability
- All input terminals have low input capacitance and are directly TTL-compatible
- Output is three-state and directly TTL-compatible
- 256 refresh cycles every 4ms. Pin 1 is not needed for refresh.
- CAS controlled output allows hidden refresh

APPLICATION

- Main memory unit for computers
- Microcomputer memory

FUNCTION

The M5M4257L provides, in addition to normal read, write, and read-modify-write operations, a number of other functions, e.g., nibble mode, RAS-only refresh, and delayed-write. The input conditions for each are shown in Table 1.

Table 1 Input conditions for each mode

			Inp	uts			Output		
Operation	RAS	CAS	w	D	Row address	Column address	Q	Refresh	Remarks
Read	ACT	ACT	NAC	DNC	APD	APD	VLD	YES	*
Write	ACT	ACT	ACT	VLD	APD	APD .	OPN	YES	
Read-modify-write	ACT	ACT	ACT	VLD	APD	APD	VLD	YES	
RAS-only refresh	ACT	NAC	DNC	DNC	APD	DNC	OPN	YES	
Hidden refresh	ACT	ACT	DNC	DNC	DNC	DNC	VLD	YES	
CAS before RAS refresh	ACT	ACT	DNC	DNC	DNC	DNC	OPN	YES	
Standby	NAC	DNC	DNC	DNC	DNC	DNC	OPN	NO	

Note: ACT: active, NAC: nonactive, DNC: don't care, VLD: valid, APD: applied, OPN: open.

* : Nibble mode identical except refresh is No, and Nibble mode column address is DNC while togging CAS.

SUMMARY OF OPERATIONS

Addressing

To select one of the 262 144 memory cells in the M5M4257L the 18-bit address signal must be multiplexed into 9 address signals, which are then latched into the on-chip latch by two externally-applied clock pulses. First, the negative-going edge of the row-address-strobe pulse (\overline{RAS}) latches the 9 row-address bits; next, the negative-going edge of the column-address-strobe pulse (\overline{CAS}) latches the 9 column-address bits. Timing of the \overline{RAS} and \overline{CAS} clocks can be selected by either of the following two methods:

- 1. The delay time from \overrightarrow{RAS} to \overrightarrow{CAS} t_d (RAS-CAS) is set between the minimum and maximum values of the limits. In this case, the internal \overrightarrow{CAS} control signals are inhibited almost until t_d(RAS-CAS) max ('gated $\overrightarrow{CAS'}$ operation). The external \overrightarrow{CAS} signal can be applied with a margin not affecting the on-chip circuit operations, e.g. access time, and the address inputs can be easily changed from row address to column address.
- 2. The delay time $t_{d(RAS-CAS)}$ is set larger, than the maximum value of the limits. In this case the internal inhibition of \overline{CAS} has already been released, so that the internal \overline{CAS} control signals are controlled by the externally applied \overline{CAS} , which also controls the access time.

Data Input

Data to be written into a selected cell is strobed by the later of the two negative transitions of \overline{W} input and \overline{CAS} input. Thus when the \overline{W} input makes its negative transition prior to \overline{CAS} input (early write), the data input is strobed by \overline{CAS} , and the negative transition of \overline{CAS} is set as the

reference point for set-up and hold times. In the read-write or read-modify-write cycles, however, when the \overline{W} input makes its negative transition after \overline{CAS} , the \overline{W} negative transition is set as the reference point for setup and hold times.

Data Output Control

The output of the M5M4257L is in the high-impedance state when \overline{CAS} is high. When the memory cycle in progress is a read, read-modify-write, or a delayed-write cycle, the data output will go from the high-impedance state to the active condition, and the data in the selected cell will be read. This data output will have the same polarity as the input data. Once the output has entered the active condition, this condition will be maintained until \overline{CAS} goes high, irrespective of the condition of \overline{RAS} .

The output will remain in the high-impedance state throughout the entire cycle in an early-write cycle.

These output conditions, of the M5M4257L, which can readily be changed by controlling the timing of the write pulse in a write cycle, and the width of the CAS pulse in a read cycle, offer capabilities for a number of applications, as follows.

1. Common I/O Operation

If all write operations are performed in the early-write mode, input and output can be connected directly to give a common I/O data bus.

2 Data Output Hold

The data output can be held between read cycles, without lengthening the cycle time. This enables extremely flexible clock-timing settings for \overline{RAS} and \overline{CAS} .

262 144-BIT (262 144-WORD BY 1-BIT) DYNAMIC RAM

3. Two Methods of Chip Selection

Since the output is not latched, \overline{CAS} is not required to keep the outputs of selected chips in the matrix in a highimpedance state. This means that \overline{CAS} and/or \overline{RAS} can both be decoded for chip selection.

4. Extended-Page Boundary

By decoding \overline{CAS} , the page boundary can be extended beyond the 512 column locations in a single chip. In this case, \overline{RAS} must be applied to all devices.

Nibble-Mode Operation

The M5M4257L is designed to allow high speed serial read, write or read-modify-write access of 4 bits of data. The first of 4 nibble bits is accessed by the normal mode with read data coming out at $t_{a(CAS)}$ time. Next 2, 3 or 4 nibble bits is read or writen by bringing CAS high then low (toggle) while RAS remains low. Thus the time required to strobe in not only the row address but also the column address is eliminated, thereby faster access and shorter cycle time than that of Page-Mode is achieved.

Address on pin 1 (row address A8 and column address A8) is used to select 1 of the 4 nibble bits for initial access. Toggling CAS causes row A8 and column A8 to be incremented by the internal shift register with A8 row being the least significant address and allows to access to the next nibble bit. If more than 4 bits are accessed during this mode the same address bit will be accessed cyclically. In Nibble-Mode, any combination of read, write and read-modify-write operation is possible (e.g. first bit read, second bit write, third bit read-modify-write, etc.).

Refresh

Each of the 256 rows ($A_0 \sim A_7$) of the M5M4257L must be refreshed every 4 ms to maintain data. The methods of refreshing for the M5M4257L are as follows.

1. Normal Refresh

Read cycle and Write cycle (early write, delayed write or read-modify-write) refresh the selected row as defined by the low order (RAS) addresses. Any write cycle, of course, may change the state of the selected cell. Using a read, write, or read-modify-write cycle for refresh is not recommended for systems which utilize "wired-OR" outputs since output bus contention will occur.

2. RAS Only Refresh

In this refresh method, the \overline{CAS} clock should be at a V_{IH} level and the system must perform \overline{RAS} Only cycle on all 256 row address every 4 ms. The sequential row addresses from an external counter are latched with the \overline{RAS} clock and associated internal row locations are refreshed. A \overline{RAS} Only Refresh cycle maintains the output in the high impedance state with a typical power reduction of 20% over a read or write cycle.

3. CAS before RAS Refresh

If \overline{CAS} falls $t_{SUR(CAS-RAS)}$ earlier than \overline{RAS} and if \overline{CAS} is kept low by $t_{hR(RAS-CAS)}$ after \overline{RAS} falls, \overline{CAS} before \overline{RAS} Refresh is initiated. The external address is ignored and the refresh address generated by the internal 8-bit counter is put into the address buffer to refresh the corresponding row. The output will stay in the high impedance state.

If \overline{CAS} is kept low after the above operation, \overline{RAS} cycle initiates \overline{RAS} Only Refresh with internally generated refresh address (Automatic refresh). The output will again stay in the high impedance state.

Bringing \overline{RAS} high and then low while \overline{CAS} remains high initiates the normal \overline{RAS} Only Refresh using the external address.

If \overline{CAS} is kept low after the normal read/write cycle, RAS cycle initiates the RAS Only Refresh using the internal refresh address and especially after the normal read cycle, it becomes Hidden Refresh with internal address. The output is available unit \overline{CAS} is brought high.

4. Hidden Refresh

A feature of the M5M4257L is that refresh cycles may be performed while maintaining valid data at the output pin by extending the \overline{CAS} active time from a previous memory read cycle. This feature is referred to as hidden refresh.

Hidden refresh is performed by holding \overline{CAS} at V_{1L} and taking \overline{RAS} high and after a specified precharge period, executing a \overline{RAS} -only cycling, but with \overline{CAS} held low.

The advantage of this refresh mode is that data can be held valid at the output data port indefinitely by leaving the \overline{CAS} asserted. In many applications this eliminates the need for off-chip latches.

Power Dissipation

Most of the circuitry in the M5M4257L is dynamic, and most of the power is dissipated when addresses are strobed. Both RAS and CAS are decoded and applied to the M5M4257L as chip-select in the memory system, but if RAS is decoded, all unselected devices go into stand-by independent of the CAS condition, minimizing system power dissipation.

Power Supplies

The M5M4257L operates on a single 5V power supply.

A wait of some 500μ s and eight or more dummy cycles is necessary after power is applied to the device before memory operation is achieved.

262 144-BIT (262 144-WORD BY 1-BIT) DYNAMIC RAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Limits	Unit
Vcc	Supply voltage		-1-7	V
VI	Input voltage	With respect to V _{SS}	- 1 - 7	V
Vo	Output voltage		-1~7	V
10	Output current		50	mA
Pd	Power dissipation	Ta = 25°C	1000	mW
Topr	Operating free-air temperature range		0~70	°C
Tstg	Storage temperature range		- 65 ~ 150	°C

RECOMMENDED OPERATING CONDITIONS (Ta = 0 ~ 70°C, unless otherwise noted) (Note 1)

6				Unit	
Symbol	Parameter	Min	Nom	Max	Unit
Vcc	Supply voltage	4.5	5	5.5	v
Vss	Supply voltage	0	0	0	v
VIH	High-level input voltage, all inputs	2.4		6.5	v
VIL	Low-level input voltage, all inputs	-2		0.8	v

Note 1 All voltage values are with respect to VSS

ELECTRICAL CHARACTERISTICS (Ta = $0 \sim 70^{\circ}$ C, V_{CC} = 5V ± 10%, V_{SS} = 0V, unless otherwise noted) (Note 2)

Symbol			Task and distant		Limits		
Symbol	Parameter		Test conditions	Min	Тур	Max	Unit
Voн	High-level output voltage		I _{OH} =-5mA	2.4		Vcc	V
VOL	Low-level output voltage		I _{OL} =4.2mA	0		0.4	V
loz	Off-state output current		Q floating 0V≤V _{OUT} ≤5.5V	-10		10	μA
I ₁	Input current		$0V \leq V_{IN} \leq V_{CC}$, Other input pins = $0V$	-10		10	μA
	Average supply current from Vcc.	M5M4257L-12				65	mA
ICC1(AV)	Average supply current from V_{CC} , operating (Note 3, 4)	M5M4257L-15				60	mA
	· · · · · · · · · · · · · · · · · · ·	M5M4257L-20	$t_{CR} = t_{CW} = min$, output open			50	mA
I _{CC2}	Supply current from V _{CC} , standby		$\overline{RAS} = \overline{CAS} = V_{IH}$ output open			4.5	mA
		M5M4257L-12				55	mA
ICC3 (AV)	Average supply current from V _{CC} , refreshing (Note 3)	M5M4257L-15	$\overrightarrow{RAS} \text{ cycling } \overrightarrow{CAS} = V_{IH}$			50	mA
	Terreating (Note 5)	treshing (Note 3) t C(RAS) = min, output open				40	mA
		M5M4257L-12	$\overline{RAS} = V_{IL}, \overline{CAS}$ cycling			30	mA
ICC5 (AV)	Average supply current from V _{CC} nibble mode	M5M4257L-15	$t_{CN} = min. output open$			25	mA
	mbble mbbe	M5M4257L-20	t CN = min, output open			23	mA
	Average supply current from Vcc.	M5M4257L-12	CAS before RAS refresh cycling			60	mA
CC6(AV)	CAS before RAS refresh mode	M5M4257L-15	$t_{c(RAS)} = min, output open$			55	mA
	(Note 3)	M5M4257L-20	(RAS) min, output open			45	mA
C _{I (A)}	Input capacitance, address inputs					5	pF
C _{1 (D)}	Input capacitance, data input		VI=VSS			5	pF
C _{I (W)}	Input capacitance, write control input		f=1MHz			7	pF
CI (RAS)	Input capacitance, RAS input		Vi=25mVrms			10	pF
CI (CAS)	Input capacitance, CAS input		1			10	pF
Co	Output capacitance		$V_0 = V_{SS}$, f=1MHz, Vi=25mVrms			7	pF

Note 2. Current flowing into an IC is positive , out is negative.

3 ICC1(AV), ICC3(AV), ICC5(AV) and ICC6(AV) are dependent on cycle rate. Maximum current is measured at the fastest cycle rate.

4. ICC1(AV) and ICC5(AV) are dependent on output loading. Specified values are obtained with the output open.

262 144-BIT (262 144-WORD BY 1-BIT) DYNAMIC RAM

TIMING REQUIREMENTS (For Read, Write, Read-Modify-Write, Refresh, and Nibble-Mode Cycle) $(Ta = 0 \sim 70^{\circ}C, V_{CC} = 5V \pm 10\%, V_{SS} = 0V, unless otherwise noted. See notes 5.6 and 7.)$

						Lin	nits			
Symbol	Parameter		Alternative	M5M4	257∟-12	M5M4	257∟-15	M5M4	257∟-20	Unit
			Symbol	Min	Max	Min	Max	Min	Max	
t _{CRF}	Refresh cycle time		t _{REF}		4		4		4	ms
t _{w(RASH})	RAS high pulse width		t _{RP}	100		100		120		ns
tw(RASL)	RAS low pulse width		t _{RAS}	120	10000	150	10000	200	10000	ns
tw(CASL)	CAS low pulse width		t _{CAS}	60		75		100		ns
tw(CASH)	CAS high pulse width	(Note 8)	t _{CPN}	30		35		40		ns
t _{h (RAS-CAS)}	CAS hold time after RAS		t _{CSH}	120		150		200		ns
th(CAS-RAS)	RAS hold time after CAS		t _{RSH}	60		75		100		ns
td(CAS-RAS)	Delay time, CAS to RAS	(Note 9)	t _{CRP}	30		30		40		ns
td(RAS-CAS)	Delay time, RAS to CAS	(Note 10)	t _{RCD}	25	60	25	75	30	100	ns
t _{su(RA-RAS})	Row address setup time before RAS		t _{ASR}	0		0		0		ns
t _{su(CA-CAS)}	Column address setup time before CAS		t ASC	0		- 5		- 5		ns
th(RAS-RA)	Row address hold time after RAS		t _{RAH}	15		20		25		ns
th(CAS-CA)	Column address hold time after \overline{CAS}		t _{CAH}	20		25		35		ns
th(RAS-CA)	Column address hold time after RAS		t _{AR}	80		100		135		ns
t _{THL}	Transition time		t _T	3	50	3	50	3	50	ns
t _{TLH}				3	50	Ĵ	50	3	50	115

Note 5 An initial pause of 500µs is required after power-up followed by any eight RAS or RAS/CAS cycles before proper device operation is achieved.

6

An initial page of soughts required after power op hower of how one of an end of the south of t 7

8. Except for nibble-mode.

9 td (RAS-CAS) requirement is applicable for all RAS/CAS cycles.

10 Operation within the td (BAS-CAS) max limit insures that ta (BAS) max can be met. td (BAS-CAS) max is specified reference point only, if t_{d} (RAS-CAS) is greater than the specified t_{d} (RAS-CAS) max limit, then access time is controlled exclusively by t_{a} (CAS). $td(RAS-CAS)min = th(RAS-RA)min + 2t_{THL}(t_{TLH}) + t_{SU}(CA-CAS)min$.

SWITCHING CHARACTERISTICS (Ta = $0 \sim 70^{\circ}C$, $V_{CC} = 5V \pm 10\%$, $V_{SS} = 0V$, unless otherwise noted) **Read Cycle**

			Alternative							
Symbol	Parameter		Symbol	M5M42	257∟-12	M5M4	257∟-15	M5M42	257∟-20	Unit
			Symbol	Min	Max	Min	Max	Min	Max	
t _{CR}	Read cycle time		t _{RC}	230		260		330		ns
t _{su (R-CAS)}	Read setup time before CAS		t _{RCS}	0		0		0		ns
th(CAS-R)	Read hold time after CAS	(Note 11)	t _{RCH}	0		0		0		ns
th(RAS-R)	Read hold time after RAS	(Note 11)	tяян	20		20		25		ns
tdis (CAS)	Output disable time	(Note 12)	t OFF	0	35	0	40	0	50	ns
ta(CAS)	CAS access time	(Note 13)	t _{CAC}		60		75		100	ns
ta (RAS)	RAS access time	(Note 14)	t RAC		120		150		200	ns

Note 11. Either th (RAS-R) or th (CAS-R) must be satisfied for a read cycle.

 t_{dis} (CAS) max defines the time at which the output achieves the open circuit condition and is not reference to V_{OH} or V_{OL} 12:

13

This is the value when $t_d(RAS-CAS) \ge t_d(RAS-CAS)max$. Test conditions : Load = 2TTL, C_L = 100pF This is the value when $t_d(RAS-CAS) \le t_d(RAS-CAS)max$. When $t_d(RAS-CAS) \ge t_d(RAS-CAS)max$, $t_a(RAS)$ will increase by the amount that $t_d(RAS-CAS)$ exceeds the value shown. Test conditions : Load = 2TTL, C_L = 100pF 14

Write Cycle

		A.I			Lin	nits			
Symbol	Parameter	Alternative	M5M42	257∟-12	M5M42	257∟-15	M5M42	257∟-20	Unit
		Symbol	Min	Max	Min	Max	Min	Max	
t _{cw}	Write cycle time	t _{RC}	230		260		330		ns
t _{su (w-cas)}	Write setup time before CAS (Note 17)	t wcs	-5		-10		-10		ns
th (CAS-W)	Write hold time after CAS	t _{wCH}	40		45		55		ns
th(RAS-W)	Write hold time after RAS	t wcR	100		120		155		ns
th(w-RAS)	RAS hold time after write	t _{RWL}	40		45		55		ns
th(w-CAS)	CAS hold time after write	tcwl	40		45		55		ns
t _{w(w)}	Write pulse width	t _{WP}	40		45		55		ns
t _{su (D-CAS})	Data-in setup time before CAS	t _{DS}	0		0		0		ns
th(CAS-D)	Data-in hold time after CAS	t _{DH}	30		35		40		ns
th(RAS-D)	Data-in hold time after RAS	t _{DHR}	90		110		140		ns

262 144-BIT (262 144-WORD BY 1-BIT) DYNAMIC RAM

			Alternative		Limits										
Symbol	Parameter		Alternative Symbol	M5M42	257∟-12	M5M42	257∟-15	M5M42	Unit						
			Symbol	Min	Max	Min	Max	Min	Max						
t _{CRW}	Read-write cycle time	(Note 15)	t _{RWC}	260		295		370		ns					
tormw	Read-modify-write cycle time	(Note 16)	t _{RMWC}	275		310		390		ns					
th(w-RAS)	RAS hold time after write		t _{RWL}	40		45		55		ns					
th(w-CAS)	CAS hold time after write		t _{cwL}	40		45		55		ns					
tw(w)	Write pulse width		twp	40		45		55		ns					
tsu (R-CAS)	Read setup time before CAS		t _{RCS}	0		0		0		ns					
td(RAS-W)	Delay time, RAS to write	(Note 17)	t _{RWD}	110		135		180		ns					
td(CAS-W)	Delay time, CAS to write	(Note 17)	t _{CWD}	50		60		80		ns					
tsu(D-W)	Data-in set-up time before write		t _{DS}	0		0		0		ns					
th(w-D)	Data-in hold time after write		t _{DH}	40		45		55		ns					
tdis (CAS)	Output disable time		t OFF	0	35	0	40	0	50	ns					
ta(CAS)	CAS access time	(Note 13)	t _{CAC}		60		75		100	ns					
ta(RAS)	RAS access time	(Note 14)	t RAC		120		150		200	ns					

Read, Write and Read-Modify-Write Cycles

Note 15 t_{CRW} min is defined as t_{CRW} min = $t_{d}(RAS-CAS)max + t_{d}(CAS-W)min + t_{h}(W-RAS) + t_{W}(RASH) + 3t_{TLH}(t_{THL})$

16 t_{CRMW} min is defined as t_{CRMW} min = $t_a (RAS) max + t_h (W-RAS) + t_W (RAS-H) + 3t_TLH (t_{THL})$

17 tsu (w-CAS), td (RAS-w), and td (CAS-w) do not define the limits of operation, but are included as electrical characteristics only.

When $t_{su(w-CAS)} \ge t_{su(w-CAS)min}$, an early-write cycle is performed, and the data output keeps the high-impedance state.

When $t_{d(RAS-w)} \ge t_{d(RAS-w)min}$ and $t_{d(CAS-w)} \ge t_{SU(w-CAS)min}$ a read-write cycle is performed, and the data of the selected address will be read out on the data output.

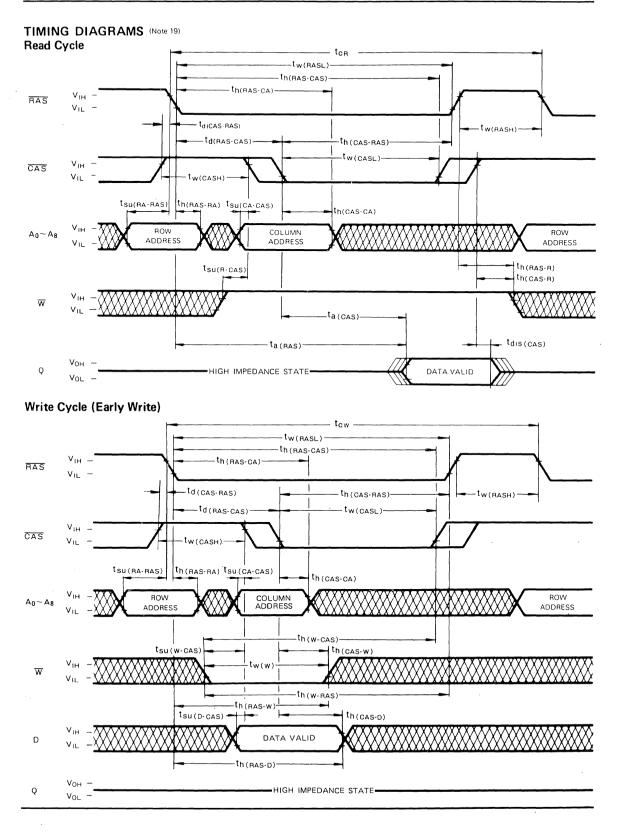
For all conditions other than those described above, the condition of data output (at access time and until CAS goes back to VIH) is not defined.

Nibble-Mode Cycle

					Li	mits ·			
Symbol	Parameter	Alternative Symbol	M5M42	257∟-12	M5M4	257∟-15	M5M42	257∟-20	Unit
	·	Symbol	Min	Max	Min	Max	Min	Max	
t _{cN}	Nibble mode cycle time	t _{NC}	55		70		90		ns
tan (CAS)	Nibble mode access time	t _{NAC}		30		40		50	ns
twn (CASL)	Nibble mode CAS low pulse width	t _{NCAS}	30		40		50		ns
twn(cash)	Nibble mode precharge time	t _{NP}	15		20		30		ns
thn (CAS-RAS)	Nibble mode RAS hold time	t _{NRSH}	30		40		50		ns
tdN (CAS-W)	Nibble mode CAS to WRITE delay	t NCWD	30		40		50		ns
twnRMW (CASL)	Nibble mode RMW CAS pulse width	t _{NCRW}	65		85		105		ns
thNRMW(W-CAS)	Nibble mode WRITE to CAS lead time	t _{NCWL}	30		40		50		ns
t _{sun(w-cas)}	Nibble mode WRITE setup time before CAS	t _{NWCS}	0		0		0		ns

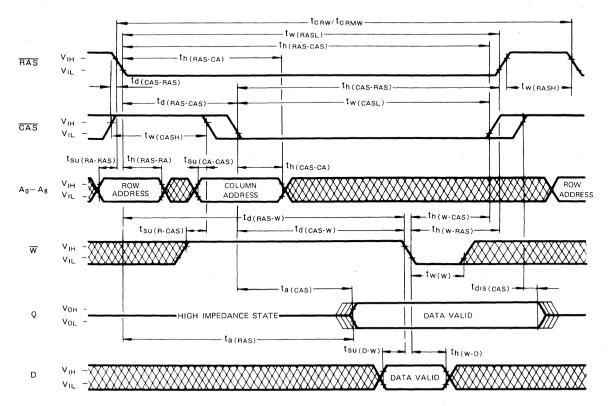
CAS before RAS Refresh Cycle (Note 18)

Symbol	Parameter	Alternative Symbol	M5M42	257∟-12	M5M42	257∟-15	M5M42	257∟-20	Unit
		. Symbol	Min	Max	Min	Max	Min	Max	
tsur (CAS-RAS)	CAS setup time for auto refresh	t _{CSR}	30		30		40		ns
thr(ras-cas)	CAS hold time for auto refresh	t _{CHR}	50		50		50		ns
tdr(ras-cas)	Precharge to CAS active time	t _{RPC}	0		0		0		ns

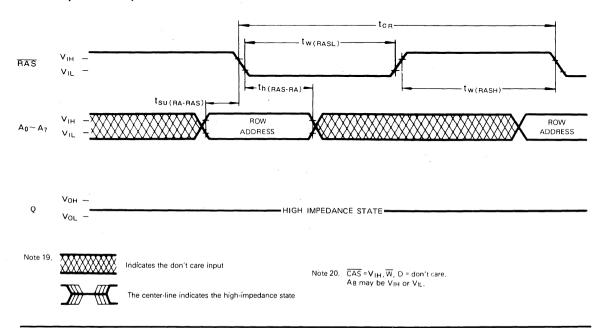

Note 18. Eight or more CAS before RAS cycles is necessary for proper operation of CAS before RAS refresh mode.

Nibble Mode Addressing Sequence Example

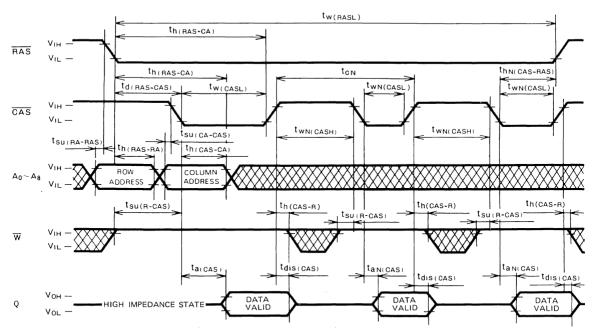
Sequence	Nibble bit	Column address Row address																		
Sequence	NIDDIE DIT	A ₀	Α1	A ₂	A_3	Α4	A_5	A ₆	Α7	Α8	A ₀	Aı	A ₂	A_3	A4	A_5	A_6	Α7	Α8	
RAS/CAS	1	0	1	0	1	0	1	0	1	0	0	1	0	1	0	1	0	1	0	External address
toggle CAS	2	0	1	0	1	0	1	0	1	0	0	1	0	1	0	1	0	1	1	1
toggle CAS	3	0	1	0	1	0	1	0	1	1	0	1	0	1 -	0	1	0	1	0	> Internally generated address
toggle CAS	4	0	1	0	1	0	1	0	1	1	0	1	0	1	0	1	0	1	1	> Internally generated address
toggle CAS	1	0	1	0	1	0	1	0	1	0	0	1	0	1	0	1	0	1	0)



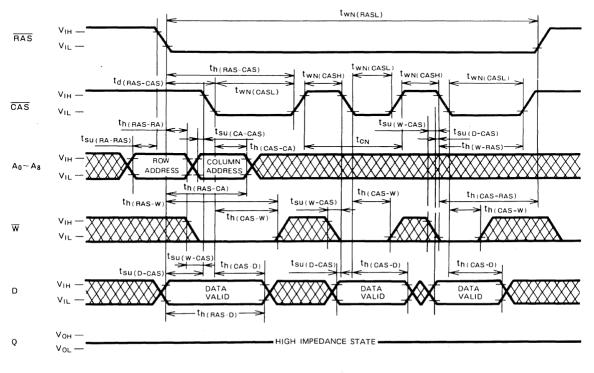
262 144-BIT (262 144-WORD BY 1-BIT) DYNAMIC RAM



262 144-BIT (262 144-WORD BY 1-BIT) DYNAMIC RAM

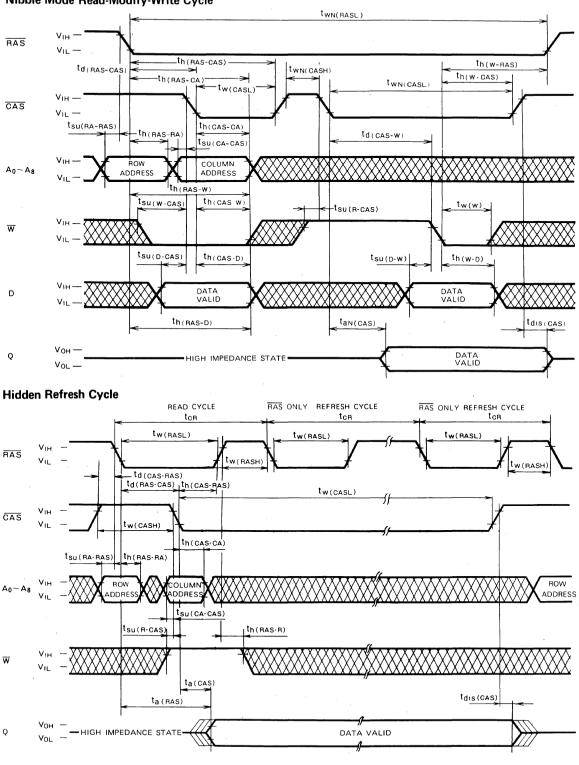

Read-Write and Read-Modify-Write Cycles

RAS-Only Refresh Cycle (Note 20)

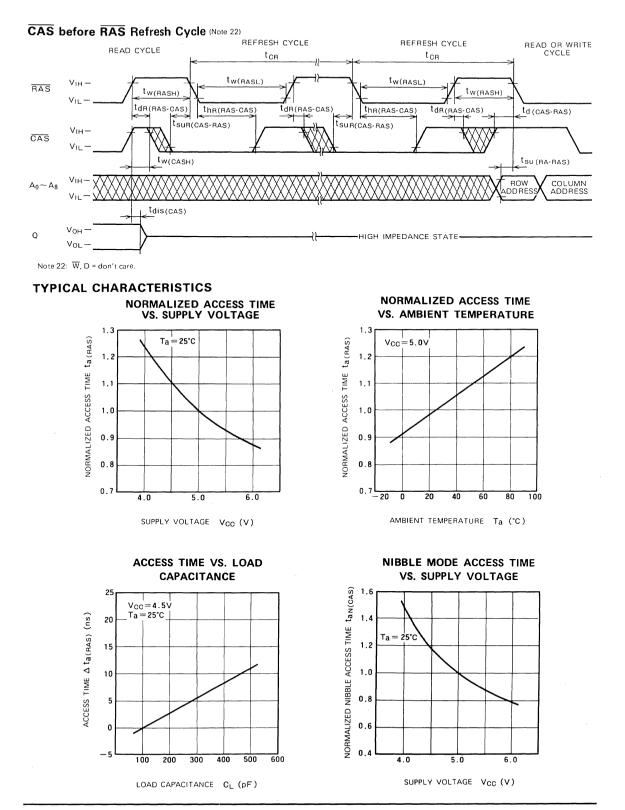


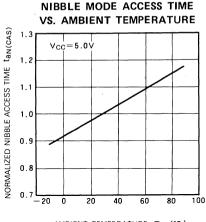
262 144-BIT (262 144-WORD BY 1-BIT) DYNAMIC RAM

Nibble Mode Read Cycle (Note 21)

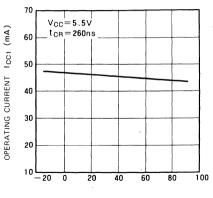

Note 21. Pin 1 at Row Time and Column Time Determines the Starting Address of the Nibble Cycle.

Nibble Mode Write Cycle (Early Write)

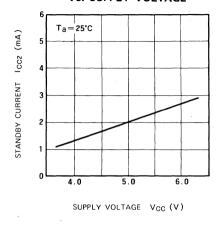

262 144-BIT (262 144-WORD BY 1-BIT) DYNAMIC RAM

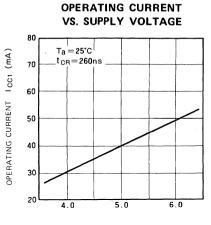


262 144-BIT (262 144-WORD BY 1-BIT) DYNAMIC RAM

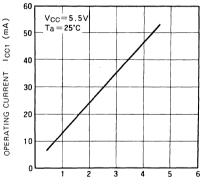


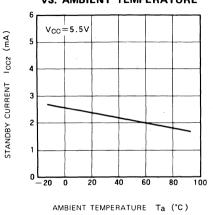
262 144-BIT (262 144-WORD BY 1-BIT) DYNAMIC RAM


AMBIENT TEMPERATURE Ta (°C)


OPERATING CURRENT VS. AMBIENT TEMPERATURE

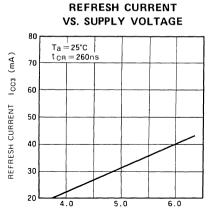
AMBIENT TEMPERATURE Ta (°C)

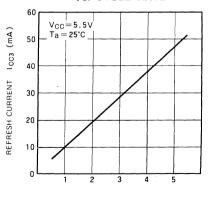

STANDBY CURRENT VS. SUPPLY VOLTAGE


SUPPLY VOLTAGE VCC (V)

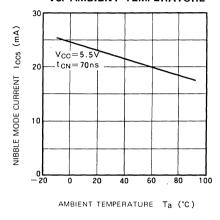
OPERATING CURRENT VS. CYCLE RATE

CYCLE RATE 1/1 CR (MHz)


STANDBY CURRENT VS. AMBIENT TEMPERATURE

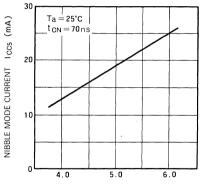

REFRESH CURRENT

262 144-BIT (262 144-WORD BY 1-BIT) DYNAMIC RAM

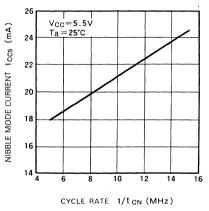

SUPPLY VOLTAGE VCC (V)

REFRESH CURRENT VS. CYCLE RATE

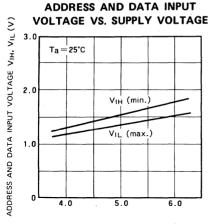
CYCLE RATE 1/tor (MHz)


NIBBLE MODE CURRENT VS. AMBIENT TEMPERATURE

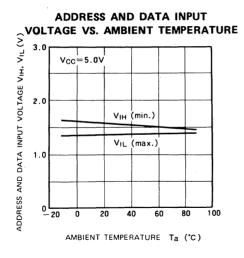
VS. AMBIENT TEMPERATURE 60 $V_{cc} = 5.5V$ t_{CR}=260ns 1_{CC3} (mA) 50 40 REFRESH CURRENT 30 20 10 0 40 80 - 20 0 20 60 100

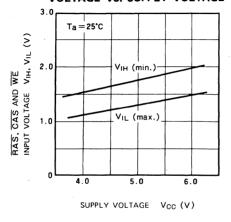

AMBIENT TEMPERATURE Ta (°C)

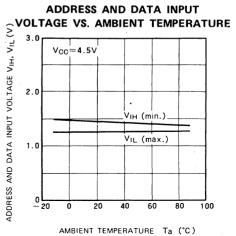
NIBBLE MODE CURRENT VS. SUPPLY VOLTAGE


SUPPLY VOLTAGE VCC (V)

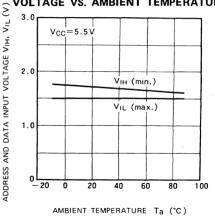
NIBBLE MODE CURRENT VS. CYCLE RATE



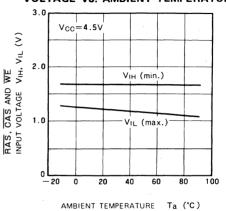

262 144-BIT (262 144-WORD BY 1-BIT) DYNAMIC RAM


SUPPLY VOLTAGE VCC (V)

RAS, CAS AND WE INPUT VOLTAGE VS. SUPPLY VOLTAGE

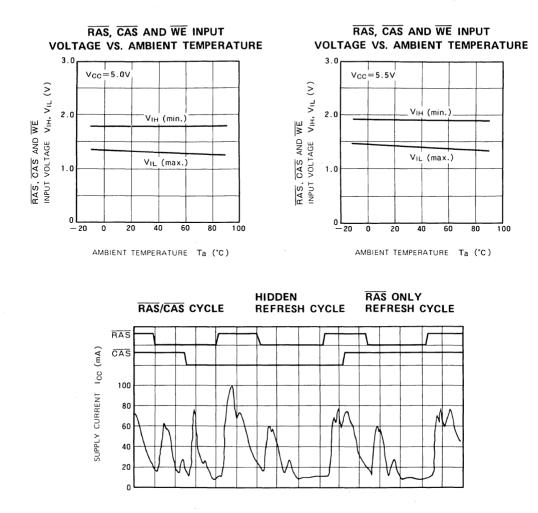


ADDRESS AND DATA INPUT

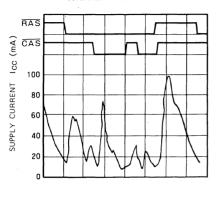


AMBIENT TEMPERATURE Ta (°C)

ADDRESS AND DATA INPUT VOLTAGE VS. AMBIENT TEMPERATURE

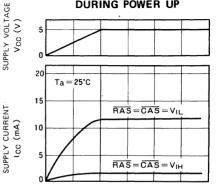


RAS, CAS AND WE INPUT VOLTAGE VS. AMBIENT TEMPERATURE



262 144-BIT (262 144-WORD BY 1-BIT) DYNAMIC RAM

50ns/DIVISION


NIBBLE MODE CYCLE

50ns/DIVISION

DURING POWER UP

CURRENT WAVEFORM

50µs/DIVISION

MITSUBISHI LSIS M5M4464P-12, -15

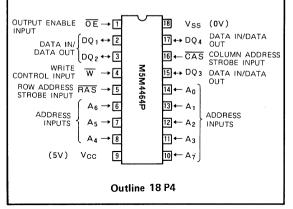
262 144-BIT (65 536-WORD BY 4-BIT) DYNAMIC RAM

DESCRIPTION

This is family of 65536-word by 4-bit dynamic RAMs, fabricated with the high performance N-channel silicon-gate MOS process, and is ideal for large-capacity memory systems where high speed, low power dissipation, and low costs are essential. The use of double-layer polysilicon process technology and a single-transistor dynamic storage cell provide high circuit density at reduced costs, and the use of dynamic circuitry including sense amplifiers assures low power dissipation. Multiplexed address inputs permit both a reduction in pins to the standard 18-pin package configuration and an increase in system densities. The M5M4464P operates on a 5V power supply using the on-chip substrate bias generator.

FEATURES

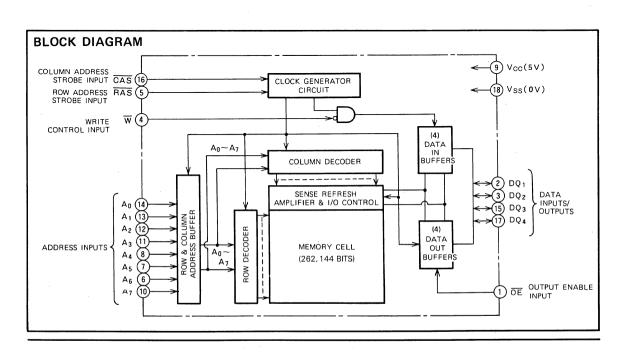
Performance ranges


Type name	Access time (max) (ns)	Cycle time (min) (ns)	Power dissipation (typ) (mW)
M5M4464P-12	120	220	260
M5M4464P-15	150	260	230

65536 x 4 Organization

- Industry standard 18-pin dual in line package
- Single 5V ±10% supply
- Low standby power dissipation:
- 22mW (max)
- Low operating power dissipation:

M5M4464P-12 M5M4464P-15


360mW (max) 330mW (max) PIN CONFIGURATION (TOP VIEW)

- All Inputs, outputs TTL compatible and low capacitance
- 3-State unlatched outputs
- 256 refresh cycles/4ms
- Early write or OE to control output buffer impedance
- Read-Modify-Write, RAS-only refresh, Hidden refresh and Page mode capabilities
- Wide RAS pulse width for Page mode 30µs max

APPLICATION

- Refresh memory for CRT
- Micro computer memory

MITSUBISHI LSIS M5M4464P-12,-15

FUNCTION

The M5M4464P provides, in addition to normal read, write, and read-modify-write operations, a number of other functions, e.g., page mode, \overrightarrow{RAS} -only refresh, hidden refresh, and delayed-write. The input conditions and output states for each are shown in Table 1.

 Table 1 Input conditions for each mode

			Ing	outs			Input/	Output			
Operation	RAS	CAS	w	ŌE	Row	Column	Input	Output	Refresh	Remarks	
	MAG	UAS	**		address	adress	DQ	DQ			
Read	ACT	ACT	NAC	ACT	APD	APD	OPN	VLD	YES		
Write (Early Write)	ACT	ACT	ACT	DNC	APD	APD	VLD	OPN	YES	Page mode identical	
Read-modify-write	ACT	ACT	ACT	ACT	APD	APD	VLD	VLD	YES		
RAS-only retfesh	ACT	NAC	DNC	DNC	APD	DNC	DNC	OPN	YES		
Hidden refresh	ACT	ACT	DNC	ACT	APD	DNC	OPN	VLD	YES		
Standby	NAC	DNC	DNC	DNC	DNC	DNC	DNC	OPN	NO		

Note. ACT active, NAC nonacitive, DNC don't care, VLD valid, APD applied, OPN open.

SUMMARY OF OPERATIONS

Addressing

To select one of the 262144 memory cells in the M5M4464P the 16-bit address signal must be multiplexed into 8 address signals, which are then latched into the on-chip latch by two externally-applied clock pulses. First, the negative-going edge of the row-address-strobe pulse (\overline{RAS}) latches the 8 row-address bits; next, the negative-going edge of the column-address-strobe pulse (\overline{CAS}) latches the 8 column-address bits. Timing of the \overline{RAS} and \overline{CAS} clocks can be selected by either of the following two methods:

- 1. The delay time from \overline{RAS} to CAS $t_{d(RAS-CAS)}$ is set between the minimum and maximum values of the limits. In this case, the internal \overline{CAS} control signals are inhibited almost until $t_{d(RAS-CAS)max}$ ('gated $\overline{CAS'}$ operation). The external \overline{CAS} signal can be applied with a margin not affecting the on-chip circuit operations, e.g. access time, and the address inputs can be easily changed from row address to column address.
- 2. The delay time $t_{d(RAS-CAS)}$ is set larger than the maximum value of the limits. In this case the internal inhibition of \overline{CAS} has already been released, so that the internal \overline{CAS} control signals are controlled by the externally applied \overline{CAS} , which also controls the access time.

write enable (W)

The read or write mode is selected through the write enable (\overline{W}) input. A logic high on the \overline{W} input selects the read mode and a logic low selects the write mode. The write enable terminal can be driven from standard TTL circuits without a pull-up resistor. The data input is disabled when the read mode is selected. When \overline{W} goes low prior to \overline{CAS} ,

data-out will remain in the high-impedance state allowing a write cycle with $\overline{\text{OE}}$ grounded.

data-in (DQ1 through DQ4)

Data is written during a write or read-modify write cycle. Depending on the mode of operation, the falling edge of \overline{CAS} or \overline{W} strobes data into the on-chip data latches. These latches can be driven from standard TTL circuits without a pull-up resistor. In an early-write cycle, \overline{W} is brought low prior to \overline{CAS} and the data is strobed in by \overline{CAS} with setup and hold times referenced to this signal. In a delayed write or read-modify-write cycle, \overline{CAS} will already be low, thus the data will be strobed in by \overline{W} with setup and hold times referenced to this signal. In delayed prive, \overline{OE} must be high to bring the output buffers to high impedance prior to impressing data on the I/O lines.

data-out (DQ1 through DQ4)

The three-state output buffer provides direct TTL compatibility (no pull-up resistor required) with a fan-out of two Series 74 TTL loads. Data-out is the same polarity as data-in. The output is in the high-impedance (floating) state until CAS is brought low. In a read cycle the output goes active after the access time interval $t_a(C)$ that begins with the negative transition of \overline{CAS} as long as $t_{a}(R)$ and $t_{a}(OE)$ are satisfied. The output becomes valid after the access time has elapsed and remains valid while \overline{CAS} and \overline{OE} are low. CAS or OE going high returns it to a high impedance state. In an early-write cycle, the output is always in the high-impedance state. In a delayed-write or read-modifywrite cycle, the output must be put in the high impedance state prior to applying data to the DQ input. This is accomplished by bringing \overline{OE} high prior to applying data, thus satisfying toeho

output enable (OE)

The \overline{OE} controls the impedance of the output buffers. When \overline{OE} is high, the buffers will remain in the high impedance state. Bringing \overline{OE} low during a normal cycle will activate the output buffers putting them in the low impedance state. It is necessary for both \overline{RAS} and \overline{CAS} to be brought low for the output buffers to go into the low impedance state. Once in the low impedance state, they will remain in the low impedance state until \overline{OE} or \overline{CAS} is brought high.

Page-Mode Operation

This operation allows for multiple-column operating at the same row address, and eliminates the power dissipation associated with the cycling of \overline{RAS} , because once the row address has been strobed, \overline{RAS} is maintained. Also, the time required to strobe in the row address for the second and subsequent cycles is eliminated, thereby decreasing the access and cycle times.

Refresh

Each of the 256 rows ($A_0 \sim A_7$) of the M5M4464P must be refreshed every 4 ms to maintain data. The methods of refreshing for the M5M4464P are as follows.

1. Normal Refresh

Read cycle and Write cycle (early write, delayed write or read-modify-write) refresh the selected row as defined by the low order (\overline{RAS}) addresses. Any write cycle, of course, may change the state of the selected cell. Using a read, write, or read-modify-write cycle for refresh is not recommended for systems which utilize "wired-OR" outputs since output bus contention will occur.

2. RAS Only Refresh

In this refresh method, the \overline{CAS} clock should be at a V_{IH} level and the system must perform \overline{RAS} Only cycle on all 256 row address every 4 ms. The sequential row addresses from an external counter are latched with the \overline{RAS} clock and associated internal row locations are refreshed. A \overline{RAS} Only Refresh cycle maintains the output in the high impedance state with a typical power reduction of 20% over a read or write cycle.

3. CAS before RAS Refresh

If CAS falls $t_{SUR(CAS-RAS)}$ earlier than RAS and if CAS is kept low by $t_{hR(RAS-CAS)}$ after RAS falls, CAS before RAS Refresh is initiated. The external address is ignored and the refresh address generated by the internal 8-bit counter is put into the address buffer to refresh the corresponding row. The output will stay in the high impedance state.

If \overline{CAS} is kept low after the above operation, \overline{RAS} cycle initiates \overline{RAS} Only Refresh with internally generated refresh address (Automatic refresh). The output will again stay in the high impedance state.

Bringing \overline{RAS} high and then low while \overline{CAS} remains high initiates the normal \overline{RAS} Only Refresh using the external address.

*If \overline{CAS} is kept low after the normal read/write cycle, RAS cycle initiates the RAS Only Refresh using the internal refresh address and especially after the normal read cycle, it becomes Hidden Refresh with internal address. The output is available unit \overline{CAS} is brought high.

4. Hidden Refresh

A feature of the M5M4464P is that refresh cycles may be performed while maintaining valid data at the output pin by extending the \overline{CAS} active time from a previous memory read cycle. This feature is referred to as hidden refresh.

Hidden refresh is performed by holding \overline{CAS} at V_{IL} and taking \overline{RAS} high and after a specified precharge period, executing a \overline{RAS} -only cycling, but with \overline{CAS} held low.

The advantage of this refresh mode is that data can be held valid at the output data port indefinitely by leaving the CAS asserted. In many applications this eliminates the need for off-chip latches.

Power Dissipation

Most of the circuitry in the M5M4464P is dynamic, and most of the power is dissipated when addresses are strobed. Both \overline{RAS} and \overline{CAS} are decoded and applied to the M5M4464P as chip-select in the memory system, but if \overline{RAS} is decoded, all unselected devices go into stand-by independent of the \overline{CAS} condition, minimizing system power dissipation.

Power Supplies

The M5M4464P operates on a single 5V power supply.

A wait of some 500μ s and eight or more dummy cycles is necessary after power is applied to the device before memory operation is achieved.

MITSUBISHI LSIs M5M4464P-12.-15

262 144-BIT (65 536-WORD BY 4-BIT) DYNAMIC RAM

ABSOLUTE MAXIMUM BATINGS

Symbol	parameter	Condtions	Limits	Unit
Vcc	Supply volrage		-1~7	V
V1	Input voltage	With respect to V _{SS}	-1~7	V
Vo	Output voltage	7	-1~7	V
I ₀	Output current		50	mA
Pd	Power dissipation	Ta=25°C	1000	mW
Topr	Operating free-air temperature range		0~70	°C
Tstg	Storage temperature range	•	-65~150	°C

RECOMMENDED OPERATING CONDITIONS (Ta = 0~70°C, unless otherwise noted) (Note 1)

Symbol			Limits				
Symbol	Parameter	Min	Nom	Max	Unit		
V _{CC}	Supply voltage	4.5	5	5.5	V		
V _{SS}	Supply voltage	0	0	0	V		
VIH	High-level input voltage, all inputs	2.4		6.5	V		
VIL	Low-level input voltage, all inputs	-2.0		0.8	V		

Note 1: All voltage values are with respect to VSS

ELECTRICAL CHARACTERISTICS ($T_a = 0 \sim 70^{\circ}C$, $V_{CC} = 5V \pm 10\%$, $V_{SS} = 0V$, unless otherwise noted)(Note 2)

Symbol	0		Test conditions		Limits		Unit	
SYMDOL	Parameter		lest conditions	Min	Тур	Max	Unit	
V _{OH}	High-level output voltage		I _{OH} =-2mA	2.4		Vcc	V	
VOL	Low-level output voltage		I _{OL} =4.2mA	0		0.4	V	
I _{OZ}	Off-state output current		Q floating $0V \leq V_{OUT} \leq 5.5V$	-10		10	μA	
I _I	Input current		$0V \leq V_{IN} \leq 6.5V$, All other pins = $0V$	-10		10	μA	
1	Average supply current from V_{cc} ,	M5M4464P-12	RAS, CAS cycling			65	mA	
CC1(AV)	CC1(AV) operating (Note 3,4) M5		$t_{c}(rd) = t_{c}(w) = min \text{ output open}$			60	mA	
I _{CC2}	Supply current from V _{cc} , standby		RAS=VIH output open			4	mA	
1	Average supply current from V _{cc} ,	M5M4464P-12	RAS cycling CAS = VIH			55	mA	
CC3(AV)	retreshing (Note 3)	M5M4464P-15	tc (Prd) = min, output open			50	mA	
1	Average supply current from V _{cc} ,	M5M4464P-12	$\overline{RAS} = V_{1L}, \overline{CAS}$ cycling			50	mA	
CC4(AV)	page mode (Note 3,4)	M5M4464P-15	t_{C} (Prd) = min, output open			45	mA	
	Average supply current from V _{cc} ,	M5M4464P-12	CAS before RAS refresh cycling			60	mA	
CC6 (AV)	CAS before RAS refresh mode (Note 3)	M5M4464P-15	tc (RAS) = min, output open			55	mA	

Note 2: Current flowing into an IC is positive, out is negative.
 3: Icc1(AV), Icc3(AV), and Icc4(AV) are dependent on cycle rate. Maximum current is measured at the fastest cycle rate.
 4: Icc1(AV) and Icc4(AV) are dependent on output loading. Specified values are obtained with the output open.

$\label{eq:capacity} \textbf{CAPACITANCE} \; (\texttt{T}_a \!=\! 0 \!\sim\! 70^\circ \texttt{C} \;, \; \texttt{V}_{\texttt{CC}} \!=\! 5 \, \texttt{V} \pm 10\% \;, \; \texttt{V}_{\texttt{SS}} \!=\! 0 \; \texttt{V} \;, \; \texttt{unless otherwise noted} \;)$

					Unit	
Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
C _{1 (A)}	Input capacitance, address inputs				5	, pF
CI(OE)	Input capacitance, OE input	V _I =V _{SS}			7	pF
C1(W)	Input capacitance, write control input	f=1MHz			7	pF
CI (RAS)	Input capacitance, RAS input	Vi=25mVrms			10	pF
CI (CAS)	Input capacitance, CAS input	1			10	pF
C1/0	Input/Output capacitance, data ports				10	pF

MITSUBISHI LSIs M5M4464P-12.-15

262 144-BIT (65 536-WORD BY 4-BIT) DYNAMIC RAM

SWITCHING CHARACTERISTICS (Ta=0~70°C, V_{CC}=5V±10%, V_{SS}=0V, unless otherwise noted) (Note 5)

Symbol	Parameter		Alternative Symbol	M5M4464P-12		M5M4464P-15 Limits		Unit
	ta(C)	Access time from CAS	(Note 6,7)	t _{CAC}		60		75
ta(R)	Access time from RAS	(Note 6,8)	t _{RAC}		120		150	ns
ta (OE)	Access time from OE	(Note 6)	-		30		40	ns
tdis(CH)	Output disable time after CAS high	(Note 9)	t _{OFF}	0	25	0	30	ns
tdis(OE)	Output disable time after OE high	(Note 9)		0	25	0	30	ns

Note 5: An initial pause of 500 µs is required after power-up followed by any 8 RAS or RAS/CAS cycles before proper device operation is achieved. Note that RAS may be cycled during the initial pause.

And any 8 RAS or RAS/CAS cycles are required after prolonged periods (areater than 2ms) of RAS inactivity before proper device operation is achieved. 6: Measured with a load circuit equivalent to 2TTL loads and 100pF.

7: Assume that $t_{RCCL} \ge t_{RLCL}$ max.

8: Assume that tALCL < tALCL max. If tALCL is greater than tALCL max then ta(A) will increase by the amount that tALCL exceeds tALCL max.

9: tdis(CH) max and tdis(OE) max define the time at which the output achieves the high impedance state (IOUT = 1±10µA|) and are not reference to VOH min or VOL max.

TIMING REQUIREMENTS (For Read, Write, Read-Modify-Write, Refresh, and Page-Mode Cycles)

 $(T_a = 0 \sim 70^{\circ}C, V_{CC} = 5V \pm 10\%, V_{SS} = 0V, unless otherwise noted, See notes 10,11)$

	Parameter		Alternative Symbol	M5M44	64P-12	M5M44	64P-15	
Symbol				Limits		Limits		Uniț
				Min	Max	Min	Max	
t _{C(RF)}	Refresh cycle time		t _{REF}		4		4	ms
tw(RH)	RAS high pulse width		t _{RP}	90		100		ns
t RLCL	Delay time, RAS low to CAS low	(Note 12)	t _{RCD}	25	60	30	75	ns
t CHRL	Delay time, CAS high to RAS low	(Note 13)	t _{CRP}	10		10		ns
t _{su(RA)}	Row address setup time before RAS low		t _{ASR}	0		0		ns
tsu(CA)	Column address setup time before CAS low		tASC	0		0		ns
th(RA)	Row address hold time after RAS low		t _{RAH}	15		20		ns
th(CLCA)	Column address hold time after CAS low		t _{CAH}	20		25		ns
th(RLCA)	Column address hold time after RAS low		t _{AR}	80		100		ns
t _T	Transition time (rise and fall)	(Note 14)	t _T	3	50	3	50	ns

Note 10: The timing requirements are assumed t_T=5ns.

11: VIH min and VIL max are reference levels for measuring timing of input signals.

12: tRLCL max is specified as a reference point only; if tRLCL is less than tRLCL max, access time is ta(R), if tRLCL is greater than tRLCL max, access time is tRLCL + ta (C). tRLCL min is specified as tRLCL min. = th (RA) + 2 tr + tsu(CA).
 tCHL requirement is only applicable for RAS/CAS cycles preceded by a CAS only cycle (i.e., For systems where CAS has not been decoded with RAS).

14: t_T is measured between VIH min and VII max.

Read and Refresh Cycles

			M5M4	464P-12	M5M4	464P-15	
Symbol	Parameter	Alternative Symbol	Lir	nits	Lir	nits	Unit
		- Cymbol	Min	Max	Min	Max	
tc(rd)	Read cycle time	t _{RC}	220		260		ns
tw(RL)	RAS low pulse width	t _{RAS}	120	10000	150	10000	ns
tw(CL)	CAS low pulse width	t _{CAS}	60		75		ns
t _{w(CH)}	CAS high pulse width	t _{CPN}	30		35		ns
th(RLCH)	CAS hold time after RAS low	t _{CSH}	120		150		ns
th(CLRH)	RAS hold time after CAS low	t _{RSH}	60		75		ns
tsu(rd)	Read setup time before CAS low	t _{RCS}	0		0		ns
t _{h(CHrd)}	Read hold time after CAS high (Note 15)	t _{RCH}	0		0		ns
t _{h (RHrd})	Read hold time after RAS high (Note 15	t _{RRH}	10		10		ns
th(OECH)	CAS hold time after OE low	-	30		40		ns
th(OERH)	RAS hold time after OE low	-	30		40		ns,
th(CLOE)	OE hold time after CAS low	-	60		75		ns
th(RLOE)	OE hold time after RAS low		120		150		ns
t _{DOEL}	Delay time, Data to OE low	-	0		0		ns
t _{OEHD}	Delay time, OE high to Data		25		30		ns
t _{RHCL}	Delay time, RAS high to CAS low	-	. 0		0		ns

Note 15: Either th(CHrd) or th(RHrd) must be satisfied for a read cycle.

MITSUBISHI LSIS M5M4464P-12, -15

262 144-BIT(65 536-WORD BY 4-BIT) DYNAMIC RAM

Write Cycles (Early Write and Delayed Write)

			M5M44	164P-12	M5M44	164P-15	
Symbol	Parameter	Alternative Symbol	Lir	nits			Unit
		6,	Min	Max	Min	Max	
t _{c(w)}	Write cycle time	t _{RC}	220		260		ns
t _{w(RL)}	RAS low pulse width	t _{RAS}	120	10000	150	10000	ns
tw(CL)	CAS low pulse width	t _{CAS}	60		75		ns
t _{w(CH)}	CAS high pulse width	t _{CPN}	30		35		ns
th(RLCH)	CAS hold time after RAS low	t _{CSH}	120		150		ns
th (CLRH)	RAS hold time after CAS low	t _{RSH}	60		75		ns
t _{su(WCL)}	Write setup time before CAS low (Note 17)	twcs	-5		-5		ns
th(CLW)	Write hold time after \overline{CAS} low	t _{WCH}	40		45		ns
th(RLW)	Write hold time after RAS low	twcr	100		120		ns
th(WCH)	CAS hold time after Write low	t _{CWL}	40		45		ns
th(WRH)	RAS hold time after Write low	t _{RWL}	40		45		ns
tw(w)	Write pulse width	twp	40		45		ns
t _{su(D)}	Data setup time	t _{DS}	0		0		ns
th(WLD)	Data hold time after Write low	t _{DH}	30		35		ns
th(CLD)	Data hold time after CAS low	t _{DH}	30		35		ns
th(RLD)	Data hold time after RAS low	t _{DHR}	90		110		ns
t OEHD	Delay time, OE high to Data	-	25		30		ns
th(WOE)	OE hold time after Write low	_	25		30		ns

Read-Write and Read-Modify-Write Cycles

[M5M44	464P-12	M5M44	164P-15	
Symbol	Parameter	Alternative Symbol	Lir	mits	Lir	nits	Unit
			Min	Max	Min	Max	
t _{c(rdW)}	Read write/read modify write cycle time (Note	6) t _{RWC}	295		345	,	ns
tw(RL)	RAS low pulse width	t _{RAS}	195	10000	255	10000	ns
t _{w(CL)}	CAS low pulse width	t _{CAS}	135		180		ns
th(RLCH)	CAS hold time after RAS low	t _{CSH}	195		255		ns
th(CLRH)	RAS hold time after CAS low	t _{RSH}	135		180		ns
t _{w(CH)}	CAS high pulse width	t _{CPN}	30		35		ns
t _{su(rd)}	Read setup time before CAS low	t _{RCS}	0		0		ns
t _{CLWL}	Delay time, CAS low to Write low (Note	7) t _{cwD}	90		110		ns
t _{RLWL}	Delay time, RAS low to Write low (Note	7) t _{RWD}	150		185		ns
th(WCH)	CAS hold time after Write low	t _{CWL}	40		45		ns
t _{h(WRH)}	RAS hold time after Write low	t _{RWL}	40		45		ns
t _{w(w)}	Write pulse width	twp	40		45		ns
t _{su(D)}	Data setup time	t _{DS}	0		0		ns
th(WLD)	Data hold time after Write low	t _{DH}	40	1	45		ns
th(CLOE)	DE hold time after CAS low	-	60		75		ns
th(RLOE)	OE hold time after RAS low	-	120		150		ns
t _{DOEL}	Delay time, Data to OE low	-	0		0		ns
t _{oehd}	Delay time, OE high to Data	-	25		30		ns

Note 16: t_{C(rdw)} is specified as t_{C(rdw)} min = t_{a(R)} max + t_{OEHD} min + t_{h(wRH)} min + t_{w(RH)} min + 4 t_T.

17: $t_{SU(WCL)}$, t_{CLWL} and t_{RLWL} are specified as reference points only. If $t_{SU(WCL)} \ge t_{SU(WCL)}$ min, the cycle is an early write cycle and the DQ pins will remain high impedance throughout the entire cycle. If $t_{CLWL} \ge t_{CLWL}$ min and $t_{RLWL} \ge t_{RLWL}$ min, the cycle is a read-modify-write cycle and the DQ pins will contain the data read from the selected address. If neither of the above condition is satisfied, the condition of the DQ (at access time and until CAS or DE goes back to $V_{||}$) is indeterminate.

MITSUBISHI LSIs M5M4464P-12, -15

262 144-BIT (65 536-WORD BY 4-BIT) DYNAMIC RAM

Page-Mode Cycle (Note 18)

		Alternative Symbol	M5M4464P-12 Limits		M5M4464P-15 Limits		Unit	
Symbol	Parameter							
			Min	Max	Min	Max		
tc(Prd)	Read cycle time		t _{PC}	120		145		ns
tc(PW)	Write cycle time		t _{PC}	120		145		ns
tw(RL)	RAS low pulse width	(Note 19)	t _{RAS}	240	30000	295	30000	ns
tö(PrdW)	Read write/read modify write cycle time		_	195		250		ns
tw(RL)	RAS low pulse width	(Note 20)	t _{RAS}	390	30000	505	30000	ns
tw(CH)	CAS high pulse width		t _{CP}	50		60		ns

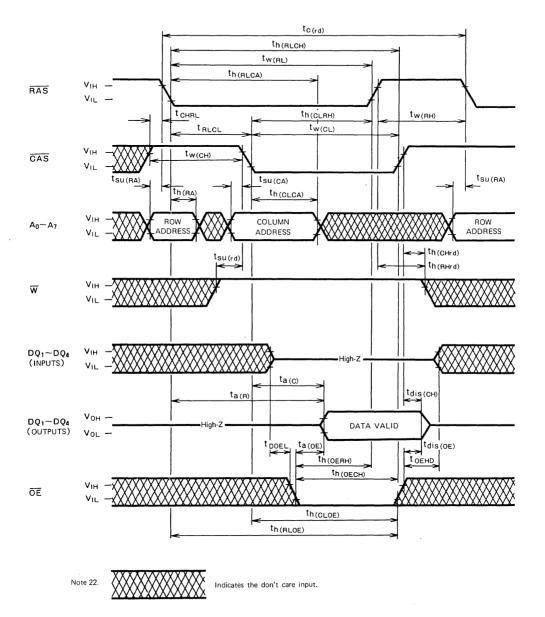
Note 18: All previously specified timing requirements and switching characteristics are applicable to their respective page mode timing.

An previously spectree timing requirements and sw
 Specified for read or write cycle,
 Specified for read-write or read-modify-write cycle,

CAS before RAS Refresh Cycle (Note 21)

			M5M4464P-12		M5M4464P-15		
Symbol	Parameter	Parameter Alternative Limits		Limits		Unit	
		Symbol	Min	Max	Min	Max	}
tsur(cas-ras)	CAS setup time for auto refresh	t _{CSR}	10		10		ns
thr(ras-cas)	CAS hold time for auto refresh	t _{CHR}	25		30		ns
td R (RAS-CAS)	Precharge to CAS active time	t _{RPC}	0		0		ns

Note 21: Eight or more CAS before RAS cycles is necessary for proper operation of CAS before RAS refresh mode.

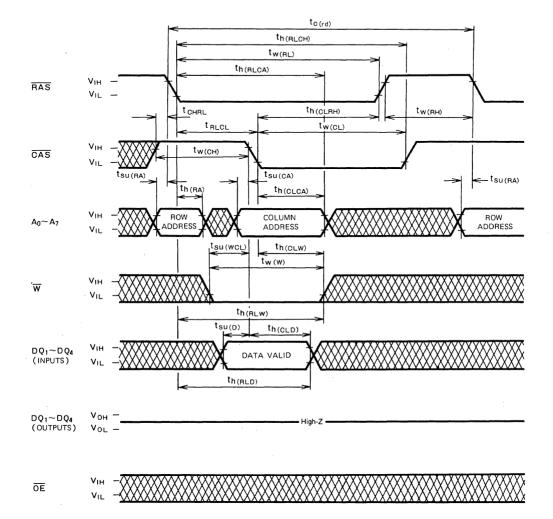


MITSUBISHI LSIS M5M4464P-12,-15

262 144-BIT(65 536-WORD BY 4-BIT) DYNAMIC RAM

TIMING DIAGRAMS (Note 22)

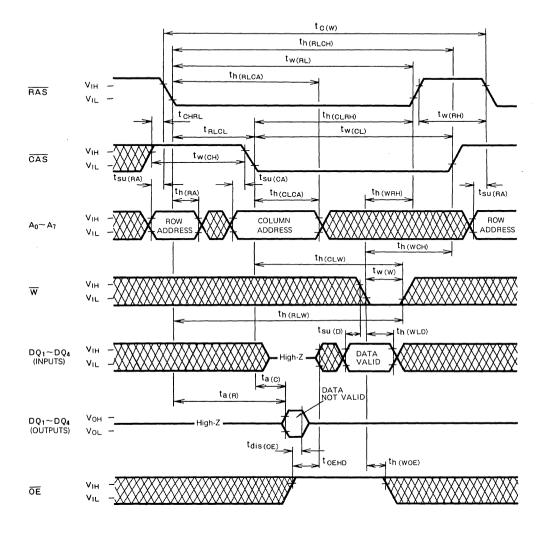
Read Cycle



MITSUBISHI LSIS M5M4464P-12.-15

262 144-BIT(65 536-WORD BY 4-BIT) DYNAMIC RAM

Write Cycle (Early Write)

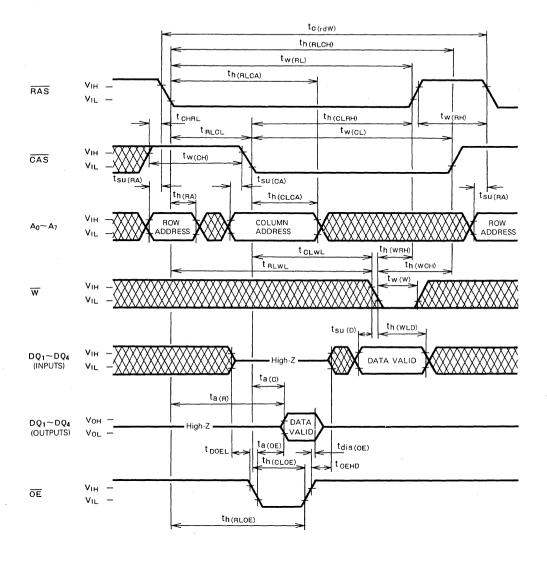


MITSUBISHI LSIs

M5M4464P-12,-15

262 144-BIT(65 536-WORD BY 4-BIT) DYNAMIC RAM

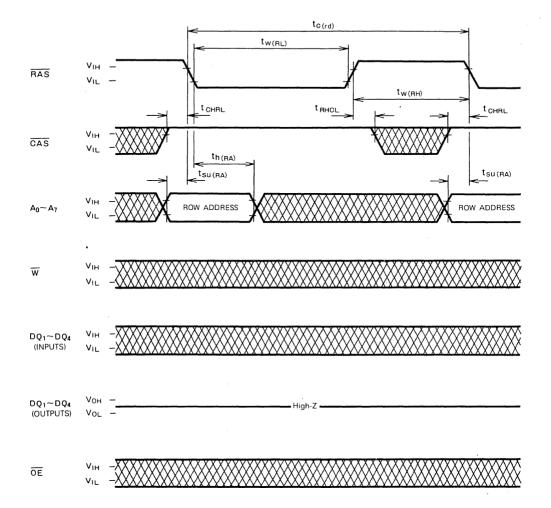
Write Cycle (Delayed Write)



MITSUBISHI LSIS M5M4464P-12,-15

262 144-BIT(65 536-WORD BY 4-BIT) DYNAMIC RAM

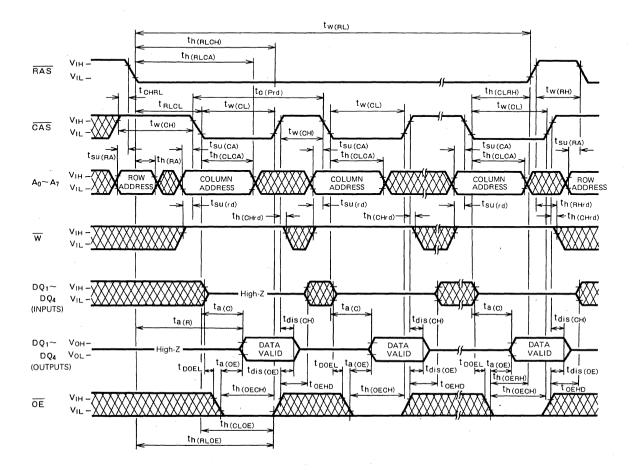
Read-Write and Read-Modify-Write Cycles



MITSUBISHI LSIS M5M4464P-12, -15

262 144-BIT(65 536-WORD BY 4-BIT) DYNAMIC RAM

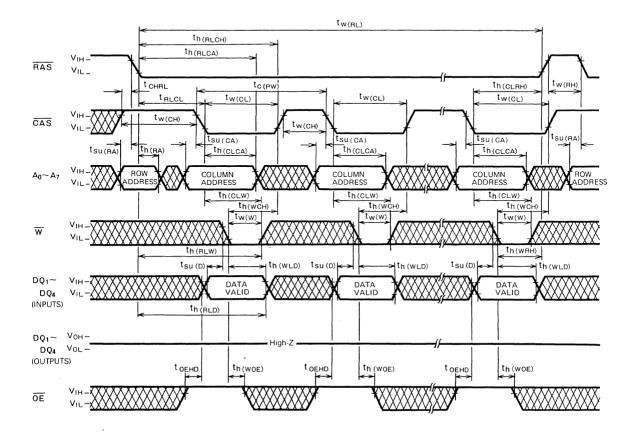
RAS-Only Refresh Cycle



MITSUBISHI LSIS M5M4464P-12,-15

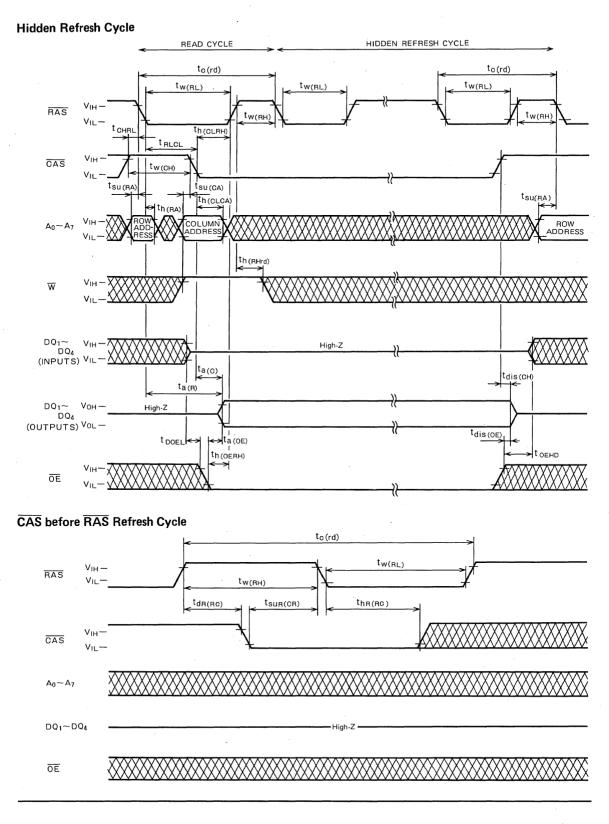
262 144-BIT (65 536-WORD BY 4-BIT) DYNAMIC RAM

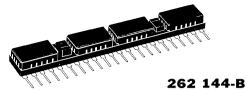
Page-Mode Read Cycle



MITSUBISHI LSIS M5M4464P-12, -15

262 144-BIT(65 536-WORD BY 4-BIT) DYNAMIC RAM


Page-Mode Write Cycle



MITSUBISHI LSIS M5M4464P-12,-15

262 144-BIT (65 536-WORD BY 4-BIT) DYNAMIC RAM

262 144-BIT (65 536-WORD BY 4-BIT) DYNAMIC RAM

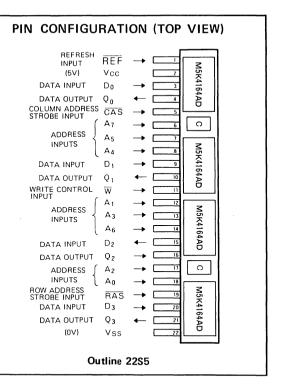
DESCRIPTION

The MH6404AD1 is 65 536-word x 4 bit dynamic RAM and consists of four industry standard 64 K x 1 dynamic RAMs in leadless chip carrier.

The mounting of leadless chip carriers on a ceramic single in-line package provides any application where high densities and large quantities of memory are required.

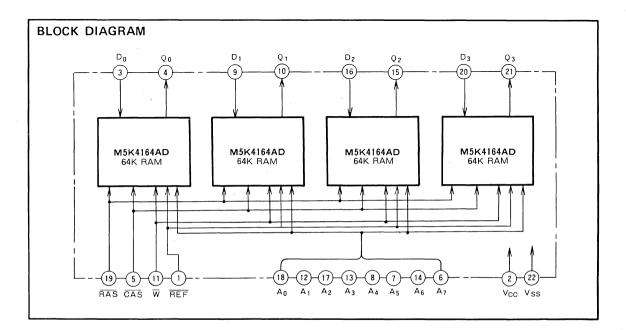
FEATURES

High speed


•

Type name	Access time	Cycle time	Power dissipation
	(max)	(min)	(typ)
	(ns)	(ns)	(mW)
MH6404AD1-15	MH6404AD1-15 150		600

- Utilizes industry standard 64K RAMs in leadless chip carriers
- 22 pin Single In-line Package
- Single +5V (±10%) supply operation
- Low operating power dissipation:


MH6404AD1-15 990mW(max)

- All inputs are directly TTL compatible
- All outputs are three-state and directly TTL compatible
- Includes (0.22µF x 2) decoupling capacitors
- 128 refresh cycles (every 2ms) A₇ Pin is not need for refresh
- Pin 1 controls automatic-and self-refresh mode

APPLICATION

- Main memory unit for computers
- Refresh memory for CRT

FUNCTION

The MH6404AD1 provides, in addition to normal read, write, and read-modify-write operations, a number of other functions, e.g., page mode, RAS-only refresh, and delayed-write. The input conditions for each are shown in Table 1.

 Table 1 Input conditions for each mode

				Inputs				Output		
Operation	RAS	CAS	w	D	Row address	Column address	REF	Q	Refresh	Remarks
Read	ACT	ACT	NAC	DNC	APD	APD	NAC	VLD	YES	Page mode
Write	ACT	ACT	ACT	VLD	APD	APD	NAC	OPN	YES	identical
Read-modify-write	ACT	ACT	ACT	VLD	APD	APD	NAC	VLD	YES	
RAS-only refresh	ACT	NAC	DNC	DNC	APD	DNC	NAC	OPN	YES	
Hidden refresh	ACT	ACT	DNC	DNC	APD	DNĊ	NAC	VLD	YES	
Automatic refresh	NAC	DNC	DNC	DNC	DNC	DNC	ACT	OPN	YES	
Self refresh	NAC	DNC	DNC	DNC	DNC	DNC	ACT	OPN	YES	
Hidden automatic refresh	NAC	ACT	DNC	DNC	DNC	DNC	ACT	VLD	YES	
Hidden self refresh	NAC	ACT	DNC	DNC	DNC	DNC	ACT	VLD	YES	
Standby	NAC	DNC	DNC	DNC	DNC	DNC	NAC	OPN	NO	

Note: ACT : active, NAC : nonactive, DNC : don't care, VLD : valid, APD : applied, OPN : open.

SUMMARY OF OPERATIONS Addressing

To select 4 of the 262144 memory cells in the MH6404AD1 the 16-bit address signal must be multiplexed into 8 address signals, which are then latched into the on-chip latch by two externally-applied clock pulses. First, the negative-going edge of the row-address-strobe pulse (\overline{RAS}) latches the 8 row-address bits; next, the negative-going edge of the column-address-strobe pulse (\overline{CAS}) latches the 8 column-address bits. Timing of the \overline{RAS} and \overline{CAS} clocks can be selected by either of the following two methods:

- 1. The delay time from \overline{RAS} to $\overline{CAS} t_{d(RAS\cdot CAS)}$ is set between the minimum and maximum values of the limits. In this case, the internal \overline{CAS} control signals are inhibited almost until $t_{d(RAS\cdot CAS)}$ max ('gated $\overline{CAS'}$ operation). The external \overline{CAS} signal can be applied with a margin not affecting the on-chip circuit operations, e.g. access time, and the address inputs can be easily changed from row address to column address.
- 2. The delay time $t_{d(RAS-CAS)}$ is set larger than the maximum value of the limits. In this case the internal inhibition of \overline{CAS} has already been released, so that the internal \overline{CAS} control signals are controlled by the externally applied \overline{CAS} , which also controls the access time.

Data Input

Date to be written into a selected cell is strobed by the later of the two negative transitions of \overline{W} input and \overline{CAS} input. Thus when the \overline{W} input makes its negative transition prior to \overline{CAS} input (early write), the data input is storobed by

 \overline{CAS} , and the negative transition of \overline{CAS} is set as the reference point for set-up and hold times. In the read-write or read-modify-write cycles, however, when the \overline{W} input makes its negative transition after \overline{CAS} , the \overline{W} negative transition is set as the reference point for set-up and hold times.

Data Output Control

The outputs of the MH6404AD1 are in the high-impedance state when \overline{CAS} is high. When the are memory cycle in progress is a read, read-modify-write, or a delayed-write cycle, the data output will go from the high-impedance state to the active condition, and the data in the selected cell will be read. This data output will have the same polarity as the input data. Once the outputs entered the active condition, this condition will be maintained until \overline{CAS} goes high, irrespective of the condition of \overline{RAS} .

The outputs will remain in the high-impedance state throughout the entire cycle in an early-write cycle.

These output conditions, of the MH6404AD1, which can readily be changed by controlling the timing of the write pulse in a write cycle, and the width of the CAS pulse in a read cycle, offer capabilities for a number of applications, as follows.

1. Common I/O Operation

If all write operations are performed in the early-write mode, inputs and outputs can be connected directly to give a common I/O data bus.

2. Data Output Hold

The data outputs can be held between read cycles, without lenghening the cycle time. This enebles extremely flexible clock-timing settings for \overline{RAS} and \overline{CAS} .

3. Two Methods of Chip Selection

Since the output is not latched, \overline{CAS} is not required to keep the outputs of selected chips in the matrix in a highimpedance state. This means that \overline{CAS} and/or \overline{RAS} can both be decoded for chip selection.

4. Extended-Page Boundary

By decoding \overline{CAS} , the page boundary can be extended beyond the 256 column locations in a single chip. In this case, \overline{RAS} must be applied to all devices.

Page-Mode Operation

This operation allows for multiple-column addressing at the same row address, and eliminates the power dissipation associated with the negative-going edge of \overline{RAS} , because once the row address has been strobed, \overline{RAS} is maintained. Also, the time required to strobe in the row address for the second and subsequent cycles is eliminated, thereby decreasing the access and cycle times.

Refresh

Each of the 128 rows ($A_0 \sim A_6$) of the MH6404AD1 must be refreshed every 2 ms to maintain data. The methods of refreshing for the MH6404AD1 are as follows.

1. Normal Refresh

Read cycle and Write cycle (early write, delayed write or read-modify-write) refresh the selected row as defined by the low order (\overline{RAS}) addresses. Any write cycle, of course, may change the state of the selected cell. Using a read, write, or read-modify-write cycle for refresh is not recommended for systems which utilize "wire-OR" outputs since output bus contention will occur.

2. RAS Only Refresh

A \overline{RAS} -only refresh cycle is the recommended technique for most applications to provide for data retention. A \overline{RAS} -only refresh cycle maintains the outputs in the high-impedance state with a typical power reduction of 20% over a read or write cycle.

3. Automatic Refresh

Pin1 ($\overline{\text{REF}}$) has two special functions. The MH6404AD1 has a refresh address counter, refresh address multiplexer and refresh timer for these operations. Automatic refresh is initiated by bringing $\overline{\text{REF}}$ low after $\overline{\text{RAS}}$ has precharged and is used during standard operation just like $\overline{\text{RAS}}$ -only refresh, except that sequential row addresses from an external counter are no longer necessary.

At the end of automatic refresh cycle, the internal refresh address counter will be automatically incremented. The output state of the refresh address counter is initiated by some eight $\overline{\text{REF}}$, $\overline{\text{RAS}}$ or $\overline{\text{RAS}}/\overline{\text{CAS}}$ cycle after power is applied. Therefore, a special operation is not necessary to initiate it.

 \overline{RAS} must remain inactive during \overline{REF} activated cycles. Likewise, \overline{REF} must remain inactive during \overline{RAS} generated cycle.

4. Self-Refresh

The other function of pin 1 ($\overline{\text{REF}}$) is self-refresh. Timing for self-refresh is quite similar to that for automatic refresh. As long as $\overline{\text{RAS}}$ remains high and $\overline{\text{REF}}$ remains low, the MH6404AD1 will refresh itself. This internal sequence repeats a synchronously every 12 to 16 μ s. After 2 ms, the on-chip refresh address counter has advanced through all the row addresses and refreshed the entire memory. Self-refresh is primarily intended for trouble free powerdown operation.

For example, when battery backup is used to maintained data integrity in the memory. $\overrightarrow{\text{REF}}$ may be used to place the device in the self-refresh mode with no external timing signals necessary to keep the information alive.

In summary, the pin 1 (REF) refresh function gives the user a feature that if free, save him hardware on the board, and in fact, will simplify his battery backup procedures, increase his battery life, and save him overall cost while giving him improved system performance.

There is an internal pullup resister ($\approx 800 K\Omega$) on pin 1, so if the pin 1 (REF) function is not used, pin 1 may be left open (not connect) without affecting the normal operations.

5. Hidden Refresh

A features of the MH6404AD1 is that refresh cycle may be performed while maintaining valid data at the output pins by extending the \overline{CAS} active time from a previous memory read cycle. This feature is refered to as hidden refresh.

Hidden refresh is performed by holding \overline{CAS} at V_{IL} and taking \overline{RAS} high and after a specified precharge period, executing a \overline{RAS} -only cycling, automatic refresh and self-refresh, but with \overline{CAS} held low.

The advantage of this refresh mode is that data can be held valid at the output data ports indefinitely by leaving the \overline{CAS} asserted. In many applications this eliminates the need for off-chip latches.

Power Dissipation

Most of the circuitry in the MH6404AD1 is dynamic, and most of the power is dissipated when addresses are strobed. Both \overline{RAS} and \overline{CAS} are decoded and applied to the MH6404AD1 as chip-select in the memory system, but if \overline{RAS} is decoded, all unselected devices go into stand-by independent of the \overline{CAS} condition, minimizing system power dissipation.

Power Supplies

The MH6404AD1 operates on a single 5V power supply.

A wait of some 500µs and eight or more dummy cycle is necessary after power is applied to the device before memory operation is achieved.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	conditions	Limits	Unit
Vcc	Supply voltage		-1~7	V
VI	Input voltage	With respect to Vss	-1~7	v
Vo	Output voltage		-1-7	V ·
10	Output current		50	mA
Pd	Power dissipation	T _a =25 ℃	4000	mW
Topr	Operating free-air temperature range	· · · · · · · · · · · · · · · · · · ·	0~70	r
Tstg	Storage temperature range		-55~150	r
Tsld	Soldering temperature time		260 • 10	℃·sec

RECOMMENDED OPERATING CONDITIONS (Ta=0~70 °C, unless otherwise noted) (Note 1)

Symbol	Parameter		Unit		
	rarameter	Min	Min Nom Max		Unit
Vcc	Supply voltage	4.5	5	5.5	V
Vss	Supply voltage	0	0	0	V
VIH	High-level input voltage, all inputs	2.4		6.5	V
VIL	Low-level input voltage, all inputs	-2		0.8	V

Note 1. All voltage values are with respect to Vss

ELECTRICAL CHARACTERISTICS (Ta=0~70°C, V_{CC}=5V±10%, V_{SS}=0V, unless otherwise noted) (Note 2)

Symbol	Parameter		Test conditions		Limits		Unit
Symbol			rest conditions	Min	Тур	Max	Unit
V _{OH}	High-level output voltage		I _{OH} =-5mA	2.4		Vcc	V
VOL	Low-level output voltage		I _{OL} =4.2mA	0		0.4	V
loz	Off-state output current		Q floating $0V \leq V_{OUT} \leq 5.5V$	-10		10	μA
4	Input current		$0V \le V_{IN} \le 6.5V$, All other pins $= 0V$	-40		40	μA
CC1 (AV)	Average supply current from VCC, operating (Note3, 4)	MH6404AD1-15	\overline{RAS} , \overline{CAS} cycling t _{CR} =t _{CW} = min output open			180	mA
I CC2	Supply current from VCC, stand	by	RAS=VIH output open			16	mA
I CC3(AV)	Average supply current from V _{CC} , refreshing (Note 3)	MH6404AD1-15	$\overrightarrow{RAS} \text{ cycling } \overrightarrow{CAS} = V_{IH}$ $t_{C(\overline{REF})} = \min, \text{ output open}$			140	mA
CC4 (AV)	Average supply current from V _{CC} , page mode (Note3, 4)	MH6404AD1-15	$\overline{RAS} = V_{1L}$, \overline{CAS} cycling t $_{CPG} = min$, output open			140	mA
I _{CC5 (AV)}	Average supply current from V _{CC} , automatic refreshing (Note 3)	MH6404AD1-15	$\overline{RAS} = V_{IH}, \overline{REF}$ cycling t _{C(REF)} = min, output open			140	mA
I CC6 (AV)	Average supply current from VCC	, self refreshing	RAS = VIH, REF = VIL output open			32	mA
C _{I (A)}	Input capacitance, address input	S				35	pF
C _{I (D)}	Input capacitance, data input					10	pF
C _{I (W)}	Input capacitance, write control i	nput	V _I =V _{SS} f=1MHz			40	pF
CI (RAS)	Input capacitance, RAS input		Vi=25mVrms			50	pF
CI (CAS)	Input capacitance, CAS input					50	pF
CI (REF)	Input capacitance, REF input					50	pF
Co	Output capacitance		$V_0 = V_{SS}$, f=1MHz, $V_i = 25mV_{rms}$			15	pF

Note 2: Current flowing into an IC is positive; out is negative.

3: ICC1(AV), ICC3(AV), ICC4(AV) and ICC5(AV) are dependent on cycle rate. Maximum current is measured at the fastest cycle rate.

4: ICC1(AV) and ICC4(AV) are dependent on output loading. Specified values are obtained with the output open.

262 144-BIT (65 536-WORD BY 4-BIT) DYNAMIC RAM

TIMING REQUIREMENTS (For Read, Write, Read-Modify-Write, Refresh, and Page-Mode Cycle)

 $(T_a=0 \sim 70^{\circ}C, V_{CC}=5V \pm 10\%, V_{SS}=0V, unless otherwise noted. See notes 5.6 and 7)$

			MH6404	MH6404AD1-15		
Symbol	Parameter	Alternative Symbol	Li	mits	Unit	
		Symbol	Min	Max		
torf	Refresh cycle time	t _{REF}		2	ms	
tw(RASH)	RAS high pulse width	t _{RP}	100		ns	
tw(RASL)	RAS low pulse width	t _{RAS}	150	10000	ns	
tw(CASL)	CAS low pulse width	t _{CAS}	75	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ns	
t w (CASH)	CAS high pulse width (Note	3) t _{CPN} ·	35		ns	
t n (RAS-CAS)	CAS hold time after RAS	t _{CSH}	150		ņs	
t h (CAS-RAS)	RAS hold time after CAS	t _{RSH}	75		ns	
td (CAS RAS)	Delay time, CAS to RAS (Note) t _{CRP}	-20		ns	
td(RAS-CAS)	Delay time, RAS to CAS (Note 1))) t _{RCD}	30	75	ns	
t su(RA-RAS)	Row address setup time before RAS	t _{ASR}	0		ns	
t su(CA-CAS)	Column address setup time before CAS	t ASC	0		ns	
t _{h(RAS-RA)}	Row address hold time after RAS	t _{RAH}	20		ns	
tn(CAS-CA)	Column address hold time after CAS	t _{CAH}	25		ns	
t _{n(RAS-CA)}	Column address hold time after RAS	t _{AR}	95		ns	
t _{THL}	Transition time	t_	3	25		
t _{TLH}	transition time	t _T	3	35	ns	

Note 5: An initial pause of 500 us is required after power-up followed by any eight RAS or RAS/CAS cycles before proper device operation is achieved.

The switching characteristics are defined as $t_{THL} = t_{TLH} = 5$ ns. 6:

Reference levels of input signals are VIH min and VIL max. Reference levels for transition time are also between VIH and VIL. 7.

8: Except for page-mode.

Except for page-induce.
 td (CAS-RAS) requirement is only applicable for RAS/CAS cycles preceeded by a CAS only cycle (i.e., For systems where CAS has not been decoded with RAS.)
 Operation within the td (RAS-CAS) max limit insures that ta (RAS)max can be met. td (RAS-CAS) max is specified reference point only; if td (RAS-CAS) is greater than the specified td (RAS-CAS) max limit, then access time is controlled exclusively by ta (CAS).

 $t_{d(RAS-CAS)}$ min = $t_{h(RAS-RA)}$ min + $2t_{THL}(t_{TLH}) + t_{SU(CA-CAS)}$ min.

SWITCHING CHARACTERISTICS ($T_a = 0 \sim 70^{\circ}C$, $V_{CC} = 5V \pm 10\%$, $V_{SS} = 0V$, unless otherwise noted) **Read Cycle**

				MH6404AD1-15 Limits		
Symbol Parameter	mbol Parameter		Alternative			
			Symbol	Min	Max	
t _{CR}	Read cycle time		t _{RC}	260		ns
tsu (R-CAS)	Read setup time before CAS		t _{RCS}	0		ns
th (CAS-R)	Read hold time after CAS	(Note 11)	t _{RCH}	0		ns
th (RAS-R)	Read hold time after RAS	(Note 11)	t _{RRH}	20		ns
tdis (CAS)	Output disable time	(Note 12)	tOFF	0	40	ns
ta (CAS)	CAS access time	(Note 13)	t _{CAC}		75	ns
ta (RAS)	RAS access time	(Note 14)	t RAC		150	ns

Note 11: Either th (RAS-R) or th (CAS-R) must be satisfied for a read cycle. Note 12: tdis (CAS) max defines the time at which the output achieves the open circuit condition and is not reference to VOH or VOL

Note 13: This is the value when $td(RAS-CAS) \ge td(RAS-CAS)max$. Test conditions;Load=2T TL, CL=100pF

This is the value when $td(r_{AS}-c_{AS}) < td(r_{AS}-c_{AS})$ max. When $td(r_{AS}-c_{AS}) \ge td(r_{AS}-c_{AS})$ max, $ta(r_{AS})$ will increase by the amount that Note 14: td (RAS-CAS) exceeds the value shown. Test conditions;Load=2T TL, CL=100pF

Write Cycle

<u></u>			MH640	4AD1-15	
Symbol	Parameter	Alternative Symbol	Li	imits	Unit
			Min	Max	
tcw	Write cycle time	t _{RC}	260		ns
tsu (w-CAS)	Write setup time before CAS (Note 17)	twcs	-5		ns
th (CAS-W)	Write hold time after CAS	t _{wCH}	45		ns
th(RAS-W)	Write hold time after RAS	twcR	95		ns
th (w-RAS)	RAS hold time after write	t _{RWL}	45		ns
th(w-CAS)	CAS hold time after write	tcwl	45		ns
tw(w)	Write pulse width	twp	45		ns
tsu (D-CAS)	Data-in setup time before CAS	t _{DS}	0		ns
th (CAS-D)	Data-in hold time after CAS	t _{DH}	45		ns
th (RAS-D)	Data-in hold time after RAS	t _{DHR}	95		ns

262 144-BIT (65 536-WORD BY 4-BIT) DYNAMIC RAM

Read-Write and Read-Modify-Write Cycles

				n in the second s	MH6404AD1-15		
Symbol	Parameter		Alternative		Unit		
			Symbol	Min	Max		
torw	Read-write cycle time	(Note 15)	t _{RWC}	280	1	ns	
t _{CRMW}	Read-modify-write cycle time	(Note 16)	t _{RMWC}	310		ns	
th (w-RAS)	RAS hold time after write		t _{RWL}	45		ns	
th (w-CAS)	CAS hold time after write		t _{CWL}	45		ns	
tw(w)	Write pulse width		twp	45		ns	
tsu (R-CAS)	Read setup time before CAS		t _{RCS}	0		ns	
td (RAS-W)	Delay time, RAS to write	(Note 17)	t _{RWD}	120		ns	
td (CAS-W)	Delay time, CAS to write	(Note 17)	t _{CWD}	60		ns	
tsu _(D-W)	Data-in setup time before write		t _{DS}	0		ns	
th (w-D)	Data-in hold time after write		t _{DH}	45		ns	
tdis (CAS)	Output disable time		t off	0	40	ns	
ta (CAS)	CAS access time	(Note 13)	t _{CAC}		75	ns	
ta (RAS)	RAS access time	(Note 14)	t _{RAC}		150	ns	

Note 15: to RW min is defined as to RW min = td (RAS-W) + th (W-RAS) + tw (RASH) + 3t TLH(TTHL)

16: t_{CRMW} min is defined as t_{CRMW} min = t_{a} (RAS) max + t_{h} (w-RAS) + t_{w} (RAS-H) + 3t TLH(t_{THL})

17: tsu(w-cAs), td(RAS-w), and td(CAS-w) do not define the limits of operation, but are included as electrical characteristics only.

When $t_{su}(w-CAS) \ge t_{su}(w-CAS)$ min, an early-write cycle is performed, and the data output keeps the high-impedance state. When $t_{d}(RAS-w) \ge t_{d}(RAS-w)$ min and $t_{d}(CAS-w) \ge t_{su}(w-CAS)$ min a read-write cycle is performed, and the data of the selected address will

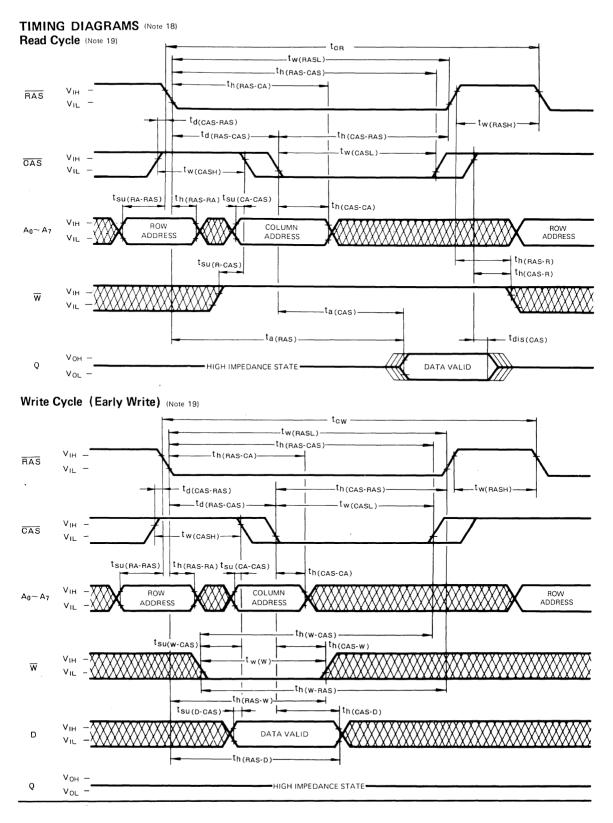
When $Id(RAS-W) \ge Id(RAS-W)$ min and $Id(CAS-W) \ge ISU(W-CAS)$ min a read-write cycle is performed, and the data of the selected address will be read out on the data output.

For all conditions other than those described above, the condition of data output (at access time and until CAS goes back to VIII) is not defined.

Page-Mode Cycle

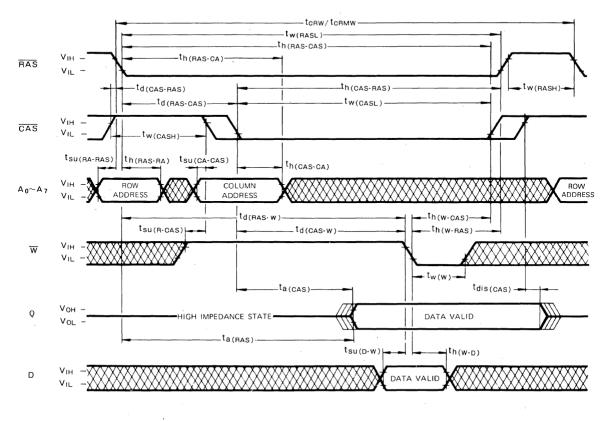
			MH6404		
Symbol Parameter	Alternative	Lir	Unit		
		Symbol	Min	Max	
t _{c PGR}	Page-mode read cycle time	t PC	145		ns
t _{c PGW}	Page-Mode write cycle time	t _{PC}	145		ns
t _{c PGRW}	Page-Mode read-write cycle time	-	180		ns
t _C PGRMW	Page-Mode read-modify-write cycle time		195		ns
tw(CASH)	CAS high pulse width	t _{CP}	60		ns

Automatic Refresh Cycle

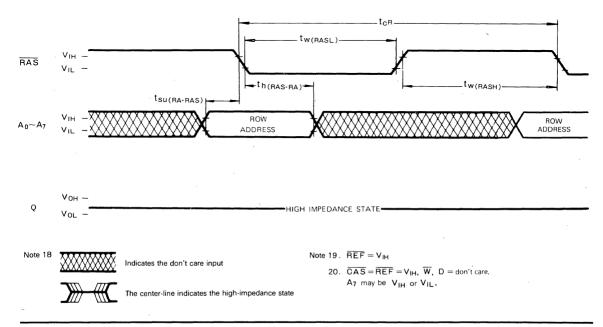

			MH640	4AD1-15		
Symbol	Parameter	Alternative	Limits		Unit	
		Symbol	Min	Max		
tc(REF)	Automatic Refresh cycle time	t _{FC}	260		ns	
td (RAS-REF)	Delay time, RAS to REF	t _{RFD}	100		ns	
tw(REFL)	REF low pulse width	t _{FP}	60	8000	ns	
tw(REFH)	REF high pulse width	t _{F1}	30		ns	
td (REF-RAS)	Delay time, REF to RAS	tFSR	30		nsí	
tsu (REF-RAS)	REF pulse setup time before RAS	t _{FRD}	295		ns	

Self-Refresh Cycle

Symbol Parameter			MH640		
	Alternative Symbol	Limits		Unit	
		Symbol	Min	Max	1
td (RAS-REF)	Delay time, RAS to REF	t _{RFD}	90		ns
tw(REFL)	REF low pulse width	t _{FBP}	8000	∞	ns
td (REF-RAS)	Delay time, REF to RAS	t _{FBR}	310		ns

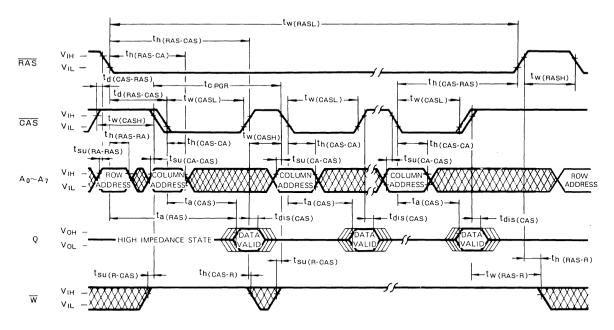


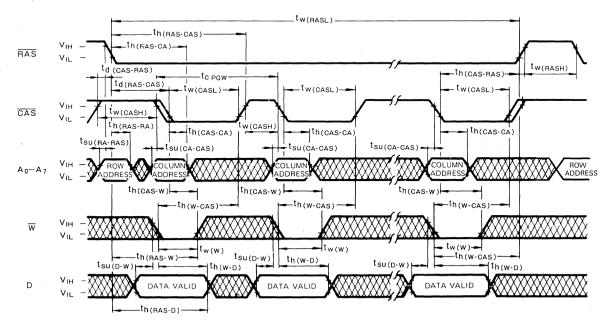
262 144-BIT (65 536-WORD BY 4-BIT) DYNAMIC RAM



262 144-BIT (65 536-WORD BY 4-BIT) DYNAMIC RAM

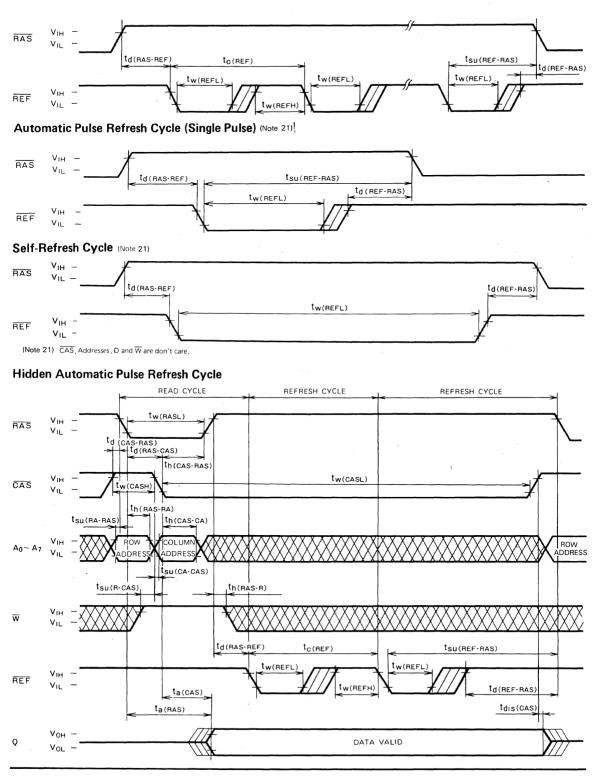
Read-Write and Read-Modify-Write Cycles (Note 19)





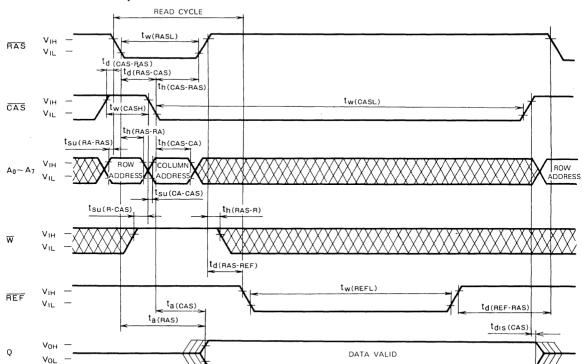
262 144-BIT (65 536-WORD BY 4-BIT) DYNAMIC RAM

Page-Mode Read Cycle (Note 19)

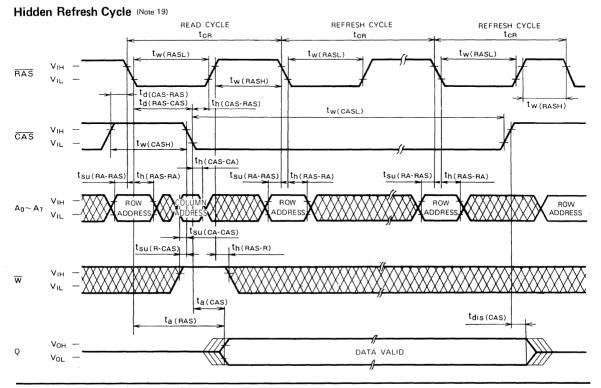

Page-Mode Write Cycle (Note 19)

262 144-BIT (65 536-WORD BY 4-BIT) DYNAMIC RAM

Automatic Pulse Refresh Cycle (Multiple Pulse) (Note 21)



MITSUBISHI LSIs


MH6404AD1-15

262 144-BIT (65 536-WORD BY 4-BIT) DYNAMIC RAM

Hidden Self-Refresh Cycle (Note 22)

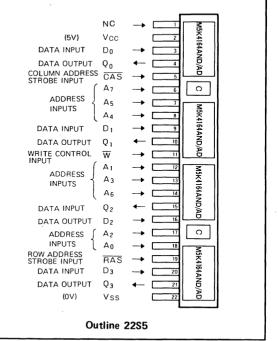
Note 22: If the pin 1 (REF) function is not used, pin 1 may be left open (not connect).

262 144-BIT (65 536-WORD BY 4-BIT) DYNAMIC RAM

DESCRIPTION

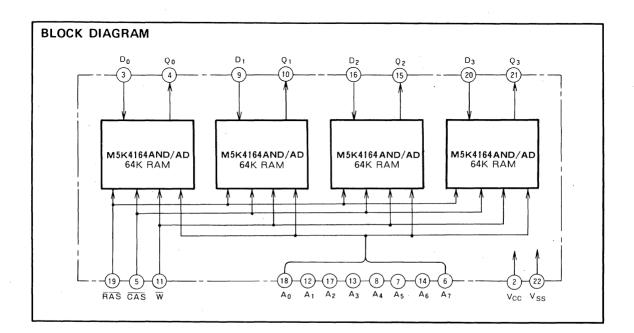
The MH6404AND1 is 65 536-word x 4 bit dynamic RAM and consists of four industry standard 64K x 1 dynamic RAMs in leadless chip carrier.

The mounting of leadless chip carriers on a ceramic single. in-line package provides any application where high densities and large quantities of memory are required.


FEATURES

High speed

Type name	Access time	Cycle time	Power dissipation
	(max)	(min)	(typ)
	(ns)	(ns)	(mW)
MH6404AND1-15	150	260	600


- Utilizes industry standard 64K RAMs in leadless chip carriers
- 22 pin Single In-line Package •
- Single +5V ($\pm 10\%$) supply operation
- • •
- Low operating power dissipation:
 - MH6404AND1-15 990mW (max)
- All inputs are directly TTL compatible
- All outputs are three-state and directly TTL compatible
- Includes (0.22 μ F x 2) decoupling capacitors
- 128 refresh cycles (every 2ms) A7 Pin is not need for refresh

PIN CONFIGURATION (TOP VIEW)

APPLICATION

- Main memory unit for computers .
- Refresh memory for CRT

FUNCTION

The MH6404AND1 provides, in addition to normal read, write, and read-modify-write operations a number of other functions, e.g., page mode, RAS-only refresh, and delayed-write. The input conditions for each are shown in Table 1.

Table 1 Input conditions for each mode

		Inputs							
Operation	RAS	CAS	w	D	Row address	Column address	Q	Refresh	Remarks
Read	ACT	ACT	NAC	DNC	APD	APD	VLD	YES	Page mode
Write	ACT	ACT	ACT	VLD	APD	APD	OPN	YES	identical
Read-modify-write	ACT	ACT	ACT	VLD	APD	APD	VLD	YES	
RAS-only refresh	ACT	NAC	DNC	DNC	APD	DNC	OPN	YES	
Hidden refresh	ACT	ACT	DNC	DNC	APD	DNC	VLD	YES	
Standby	NAC	DNC	DNC	DNC	DNC	DNC	OPN	NO	

Note ACT active, NAC nonactive, DNC don't care, VLD valid, APD applied, OPN open

SUMMARY OR OPERATIONS Addressing

To select 4 of the 262144 memory cells in the MH6404AND1 the 16-bit address signal must be multiplexed into 8 address signals, which are then latched into the on-chip latch by two externaly-applied clock pulses. First, the negative-going edge of the row-address-strobe pulse (\overline{RAS}) latches the 8 row-address bits; next, the negative-going edge of the column-address-strobe pulse (\overline{CAS}) latches the 8 column-address bits. Timing of the \overline{RAS} and \overline{CAS} clocks can be selected by either of the following two methods:

- 1. The delay time from \overline{RAS} to $\overline{CAS} t_{d(RAS-CAS)}$ is set between the minimum and maximum values of the limits. In this case, the internal \overline{CAS} control signals are inhibited almost until $t_{d(RAS-CAS)max}$ ('gated $\overline{CAS'}$ operation). The external \overline{CAS} signal can be applied with a margin not affecting the on-chip circuit operations, e.g. access time, and the address inputs can be easily changed from row address to column address.
- 2. The delay time $t_{d(RAS-CAS)}$ is set larger than the maximum value of the limits. In this case the internal inhibition of CAS has already been released, so that the internal CAS control signals are controlled by the externally applied CAS, which also controls the access time.

Data Input

Data to be written into a selected cell is strobed by the later of the two negative transitions of \overline{W} input and \overline{CAS} input. Thus when the \overline{W} input makes its negative transition prior to \overline{CAS} input (early write), the data input is strobed by \overline{CAS} , and the negative transition of \overline{CAS} is set as the reference point for set-up and hold times. In the read-write or read-modify-write cycles, however, when the \overline{W} input makes its negative transition after \overline{CAS} , the \overline{W} negative transition is set as the reference point for set-up and hold times.

Data Output Control

The outputs of the MH6404AND1 is in the high-impedance state when \overline{CAS} is high. When the memory cycle in progress is a read, read-modify-write, or a delayed-write cycle, the date output will go from the high-impedance state to the active condition, and the data in the selected cell will be read. This data output will have the same polarity as the input data. Once the output has entered the active condition, this condition will be maintained until \overline{CAS} goes high, irrespective of the condition of \overline{RAS} .

The outputs will remain in the high-impedance state throughout the entire cycle in an early-write cycle.

These output conditions, of the MH6404AND1, which can readily be changed by controlling the timing of the write pulse in a write cycle, and the width of the CAS pulse in a read cycle, offer capabilities for a number of applications, as follows.

1. Common I/O Operation

If all write operations are performed in the early-write mode, inputs and outputs can be connected directly to give a common I/O data bus.

2. Data Output Hold

The data outputs can be held between read cycles, without lengthening the cycle time. This enables extremely flexible clock-timing settings for \overline{RAS} and \overline{CAS} .

3. Two Methods of Chip Selection

Since the output is not latched, \overline{CAS} is not required to keep the outputs of selected chips in the matrix in a highimpedance state. This means that \overline{CAS} and/or \overline{RAS} can both be decoded for chip selection.

4. Extended-Page Boundary

By decoding \overline{CAS} , the page boundary can be extended beyond the 256 column locations in a single chip. In this case, \overline{RAS} must be applied to all devices.

Page-Mode Operation

This operation allows for multiple-column addressing at the same row address, and eliminates the power dissipation associated with the negative-going edge of \overline{RAS} , because once the row address has been strobed, \overline{RAS} is maintained. Also, the time required to strobe in the row address for the second and subsequent cycles is eliminated, thereby decreasing the access and cycle times.

Refresh

Each of the 128 rows $(A_0 \sim A_6)$ of the MH6404AND1 must be refreshed every 2 ms to maintain data. The methods of refreshing for the MH6404AND1 are as follows.

1. Normal Refresh

Read cycle and Write cycle (early write, delayed write or read-modify-write) refresh the selected row as defined by the low order (RAS) addresses. Any write cycle, of course, may change the state of the selected cell. Using a read, write, or read-modify-write cycle for refresh is not recommended for systems which utilize "write-OR" outputs since output bus contention will occur.

2. RAS Only Refresh

A RAS-only refresh cycle is the recommended technique for most applications to provide for data retention. A RAS-only refresh cycle maintains the outputs in the high-impedance state with a typical power reduction of 20% over a read or write cycle.

3. Hidden Refresh

A features of the MH6404AND1 is that refresh cycles may be performed while maintaining valid data at the output pin by extending the \overline{CAS} active time from a previous memory read cycle. This feature is referred to as hidden refresh.

Hidden refresh is performed by holding \overline{CAS} at V_{IL} and taking \overline{RAS} high and after a specified precharge period. executing a \overline{RAS} -only cycling, but with \overline{CAS} held low.

The advantage of this refresh mode is that data can be held valid at the output data ports indefinitely by leaving the CAS asserted. In may applications this eliminates the need for off-chiip latches.

Power Dissipation

Most of the circuitry in the MH6404AND1 is dynamic, and most of the power is dissipated when addresses are strobed. Both \overline{RAS} and \overline{CAS} are decoded and applied to the MH6404AND1 as chip-select in the memory system, but if \overline{RAS} is decoded, all unselected devices go into stand-by independent of the \overline{CAS} condition, minimizing system power dissipation.

Power Supplies

The MH6404AND1 operates on a single 5V power supply.

A wait of some 500μ s and eight or more dummy cycles is necessary after power is applied to the device before memory operation is achieved.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	conditions	Limits	Unit
Vcc	Supply voltage		-1~7	V
VI	Input voltage	With respect to Vss	-1~7	V
Vo	Output voltage		-1~7	V
10	Output current		50	mA
Pd	Power dissipation	T _a =25 ℃	4000	mW
Topr	Operating free-air temperature range		0~70	r
Tstg	Storage temperature range		- 55~150	r
Tsld	Soldering temperature time		260 • 10	°C·sec

RECOMMENDED OPERATING CONDITIONS (Ta = 0 ~ 70 °C, unless otherwise noted) (Note 1)

Symbol			Unit		
	Parameter	Min	Nom	Max	Unit
Vcc	Supply voltage	4.5	5	5.5	V
Vss	Supply voltage	0	0	0	V
VIH	High-level input voltage, all inputs	2.4		6.5	V
VIL	Low-level input voltage, all inputs	-2		0.8	V

Note 1. All voltage values are with respect to Vss

$\label{eq:constraint} \textbf{ELECTRICAL CHARACTERISTICS} \hspace{0.1 cm} (\textbf{T}_{a}=0\mbox{-}70\mbox{C} \mbox{, } \textbf{V}_{CC}=5\mbox{V}\pm10\mbox{/}, \mbox{ } \textbf{V}_{SS}=0\mbox{V} \mbox{, unless otherwise noted}) (Note 2) \hspace{0.1 cm} (Note 2) \hspace{0.1 cm} \textbf{V}_{SS}=0\mbox{V} \mbox{, unless otherwise noted}) (Note 2) \hspace{0.1 cm} \textbf{V}_{SS}=0\mbox{V} \mbox{, unless otherwise noted}) (Note 2) \hspace{0.1 cm} \textbf{V}_{SS}=0\mbox{V} \mbox{, unless otherwise noted}) (Note 2) \hspace{0.1 cm} \textbf{V}_{SS}=0\mbox{V} \mbox{, unless otherwise noted}) (Note 2) \hspace{0.1 cm} \textbf{V}_{SS}=0\mbox{V} \mbox{, unless otherwise noted}) (Note 2) \hspace{0.1 cm} \textbf{V}_{SS}=0\mbox{V} \mbox{, unless otherwise noted}) (Note 2) \hspace{0.1 cm} \textbf{V}_{SS}=0\mbox{V} \mbox{, unless otherwise noted}) (Note 2) \hspace{0.1 cm} \textbf{V}_{SS}=0\mbox{V} \mbox{, unless otherwise noted}) (Note 2) \hspace{0.1 cm} \textbf{V}_{SS}=0\mbox{V} \mbox{, unless otherwise noted}) (Note 2) \hspace{0.1 cm} \textbf{V}_{SS}=0\mbox{V} \mbox{, unless otherwise noted}) (Note 2) \hspace{0.1 cm} \textbf{V}_{SS}=0\mbox{V} \mbox{, unless otherwise noted}) (Note 2) \hspace{0.1 cm} \textbf{V}_{SS}=0\mbox{, unless otherwise noted}) (Note 2) \hspace{0.1 cm} \textbf{V}_{SS}=0\mbox{, unless otherwise noted}) (Note 2) \hspace{0.1 cm} \textbf{V}_{SS}=0\mbox{, unless otherwise noted}) (Note 2) \hspace{0.1 cm} \textbf{V}_{SS}=0\mbox{, unless otherwise noted}) (Note 2) \hspace{0.1 cm} \textbf{V}_{SS}=0\mbox{, unless otherwise noted}) (Note 2) \hspace{0.1 cm} \textbf{V}_{SS}=0\mbox{, unless otherwise noted}) (Note 2) \hspace{0.1 cm} \textbf{V}_{SS}=0\mbox{, unless otherwise noted}) (Note 2) \hspace{0.1 cm} \textbf{V}_{SS}=0\mbox{, unless otherwise noted}) (Note 2) \hspace{0.1 cm} \textbf{V}_{SS}=0\mbox{, unless otherwise noted}) (Note 2) \hspace{0.1 cm} \textbf{V}_{SS}=0\mbox{, unless otherwise noted}) (Note 2) \hspace{0.1 cm} \textbf{V}_{SS}=0\mbox{, unless otherwise noted}) (Note 2) \hspace{0.1 cm} \textbf{V}_{SS}=0\mbox{, unless otherwise noted}) (Note 2) \hspace{0.1 cm} \textbf{V}_{SS}=0\mbox{, unless otherwise noted}) (Note 2) \hspace{0.1 cm} \textbf{V}_{SS}=0\mbox{, unless otherwise noted}) (Note 2) \hspace{0.1 cm} \textbf{V}_{SS}=0\mbox{, unless otherwise noted}) (Note 2) \hspace{0.1 cm} \textbf{V}_{SS}=0\mbox{, unless otherwise noted}) ($

Combat	Parameter		Test conditions		Limits		Unit
Symbol	Tatameter		lest conditions	Min	Тур	Max	Unit
V _{OH}	High-level output voltage		I _{OH} =-5mA	2.4		Vcc	V
VoL	Low-level output voltage	A., 10 1 10 10 10 10 10 10 10 10 10 10 10 1	I _{OL} =4.2mA	0		0.4	V
loz	Off-state output current		Q floating $0V \leq V_{OUT} \leq 5.5V$	-10		10	μA
lj –	Input current		$0V \leq V_{IN} \leq 6.5V$, All other pins = $0V$	-40		40	μA
loor	Average supply current from	MH6404AND1-15	RAS, CAS cycling			180	mA
CC1 (AV)	VCC, operating (Note3, 4)		t _{CR} = t _{CW} = min, output open			180	IIIA
I CC2	Supply current from Vcc. standby		RAS = VIH output open			16	mA
	Average supply current from	MH6404AND1-15	RAS cycling, CAS = VIH			140	mA
CC3(AV)	V _{CC} , refreshing (Note 3)	WIFI0404ANDT 13	t _{C(REF)} = min, output open			140	
1001/110	Average supply current from	MH6404AND1-15	$\overline{RAS} = V_{IL}, \overline{CAS}$ cycling			140	mA
CC4 (AV)	V _{CC} , page mode (Note3, 4)	NIL 10404ALIET 10	t _{CPG} = min, output open			140	
C _{I (A)}	Input capacitance, address input	5				35	pF
C _{1 (D)}	Input capacitance, data input					10	pF
CI (W)	Input capacitance, write control	input	$V_I = V_{SS}$ f = 1MHz			40	pF
CI (RAS)	Input capacitance, RAS input		Vi=25mVrms			50	pF
CI (CAS)	Input capacitance, CAS input		.,			50	pF
Co	Output capacitance		$V_0 = V_{SS}$, f=1MHz, $V_i = 25mVrms$			15	рF

Note 2: Current flowing into an IC is positive; out is negative.

3: Icc1(AV), Icc3(AV) and Icc4(AV) are dependent on cycle rate. Maximum current is measured at the fastest cycle rate.

4: ICC1(AV) and ICC4(AV) are dependent on output loading. Specified values are obtained with the output open.

262 144-BIT (65 536-WORD BY 4-BIT) DYNAMIC RAM

TIMING REQUIREMENTS (For Read, Write, Read-Modify-Write, Refresh, and Page-Mode Cycle)

($Ta = 0 \sim 70^{\circ}C$, $V_{CC} = 5V \pm 10\%$, $V_{SS} = 0V$, unless otherwise noted. See notes 5.6 and 7)

	Parameter			MH6404		
. Symbol			Alternative Symbol	Li	mits	Unit
			Symbol	Min	Max	
t _{CRF}	Refresh cycle time		t _{REF}		2	ms
tw(RASH)	RAS high pulse width		t _{RP}	100		ns
tw(RASL)	RAS low pulse width		t _{RAS}	150	1000	ns
tw(CASL)	CAS low pulse width		t _{CAS}	75	∞	ns
tw(CASH)	CAS high pulse width	(Note 8)	t _{CPN}	35		ns
th(RAS-CAS)	CAS hold time after RAS		t _{CSH}	150		ns
t _{h(CAS-RAS)}	RAS hold time after CAS		t _{RSH}	75		ns
td (CAS RAS)	Delay time, CAS to RAS	(Note 9)	t CRP	-20		ns
td(RAS-CAS)	Delay time, RAS to CAS	(Note 10)	t _{RCD}	30	75	ns
t _{su(RA-RAS)}	Row address setup time before \overline{R}	AS	t _{ASR}	0		ns
t su(CA·CAS)	Column address setup time befor	e CAS	t ASC	0		ns
th(RAS-RA)	Row address hold time after RAS		t _{RAH}	20		ns
t _h (CAS-CA)	Column address hold time after C	AS	t _{CAH}	25		ns
t _h (RAS-CA)	Column address hold time after F	AS	t _{AR}	95		ns
t _{THL} t _{TLH}	Transition time		t _T	3	35	ns

Note 5: An initial pause of 500//s is required after power-up followed by any eight RAS or RAS/CAS cycles before proper device operation is achieved.

6: The switching characteristics are defined as $t_{THL} = t_{TLH} = 5 \text{ ns}$.

7: Reference levels of input signals are VIH min and VIL max. Reference levels for transition time are also between VIH and VIL.

8: Except for page-mode.
 9: td (CAS-RAS) requirement is only applicable for RAS/CAS cycles preceded by a CAS only cycle (i.e., For systems where CAS has not been decoded with RAS.)

10: Operation within the td (RAS-CAS) max limit insures that ta (RAS) max can be met. td (RAS-CAS) max is specified reference point only; if td (RAS-CAS) is greater than the specified td (RAS-CAS) max limit, then access time is controlled exclusively by ta (CAS). td (RAS-CAS) min = th (RAS-RA)min + 2t THL(ttru) + tsu (CA-CAS)min.

SWITCHING CHARACTERISTICS (τ_a = 0 \sim 70°C , v_{CC} = 5V \pm 10%, v_{SS} = 0V, unless otherwise noted) Read Cycle

				MH6404					
Symbol	Parameter	Parameter		Limits					
	Syl		Symbol	Min	Max				
t _C R	Read cycle time		t _{RC}	260		ns			
tsu (R-CAS)	Read setup time before CAS		t _{RCS}	0		ns			
th(CAS-R)	Read hold time after CAS	(Note 11)	t _{RCH}	0		ns			
th(RAS-R)	Read hold time after RAS	(Note 11)	t _{RRH}	20		ns			
tdis (CAS)	Output disable time	(Note 12)	t _{OFF}	0 .	40	ns			
ta (CAS)	CAS access time	(Note 13)	t _{CAC}		75	ns			
ta (RAS)	RAS access time	(Note 14)	t _{RAC}		150	ns			

Note 11: Either th (RAS-R) or th (CAS-R) must be satisfied for a read cycle.

Note 12: tdis(CAS) max defines the time at which the output achieves the open circuit condition and is not reference to VOH or VOL

Note 13: This is the value when $td(RAS-CAS) \ge td(RAS-CAS)max$. Test conditions; Load=2T TL, CL=100pF

Note 10: This is the value when 1d (RAS-CAS) max. When 1d (RAS-CAS) $\geq t$ (RAS-CAS) max, 1a (RAS) will increase by the amount that 1d (RAS-CAS) exceeds the value shown. Test conditions;Load=2T TL, CL=100pF

Write Cycle

			MH6404	AND1-15	Unit	
Symbol	Parameter	Alternative Symbol	Lin	nits		
		Symbol	Min	Max		
tcw	Write cycle time	t _{RC}	260		ns	
tsu(w-CAS)	Write setup time before CAS (Note 17)	twcs	- 5		ns	
th (CAS-W)	Write hold time after CAS	t wCH	45		ns	
th (RAS-W)	Write hold time after RAS	twcR	95		ns	
th (w-RAS)	RAS hold time after write	tRWL	45		ns	
th(w-CAS)	CAS hold time after write	tcwL	45		ns	
tw _(w)	Write pulse width	twp	45		ns	
tsu(D-CAS)	Data-in setup time before CAS	t _{DS}	0		ns	
th (CAS-D)	Data-in hold time after CAS	t _{DH}	45		ns	
th (RAS-D)	Data in hold time after RAS	t _{DHR}	95		ns	

262 144-BIT (65 536-WORD BY 4-BIT) DYNAMIC RAM

<u></u>			Alternative	MH640	4AND1-15	
Symbol	Parameter	Parameter		L	Unit	
			Symbol	Min	Max	-
t _{cRW}	Read-write cycle time	(Note 15)	t _{RWC}	280		ns
t _{CRMW}	Read-modify-write cycle time	(Note 16)	t _{RMWC}	310		ns
th (w-RAS)	RAS hold time after write.		t _{RWL}	45		ns
th (w·cas)	CAS hold time after write		towl	45		ns
tw(w)	Write pulse width		twp	45		ns
tsu (R-CAS)	Read setup time before CAS		t _{RCS}	0		ns
td (RAS-W)	Delay time, RAS to write	(Note 17)	t _{RWD}	120		ns
td (CAS-W)	Delay time, CAS to write	(Note 17)	t _{CWD}	60		ns
tsu(D-W)	Data-in setup time before write		t _{DS}	0		ns
th (w-D)	Data-in hold time after write		t _{DH}	45		ns
tdis (CAS)	Output disable time		t _{OFF}	0	40	ns
ta (CAS)	CAS access time	(Note 13)	t _{CAC}		75	ns
ta (RAS)	RAS access time	(Note 14)	t _{RAC}		150	ns

Read-Write and Read-Modify-Write Cycles

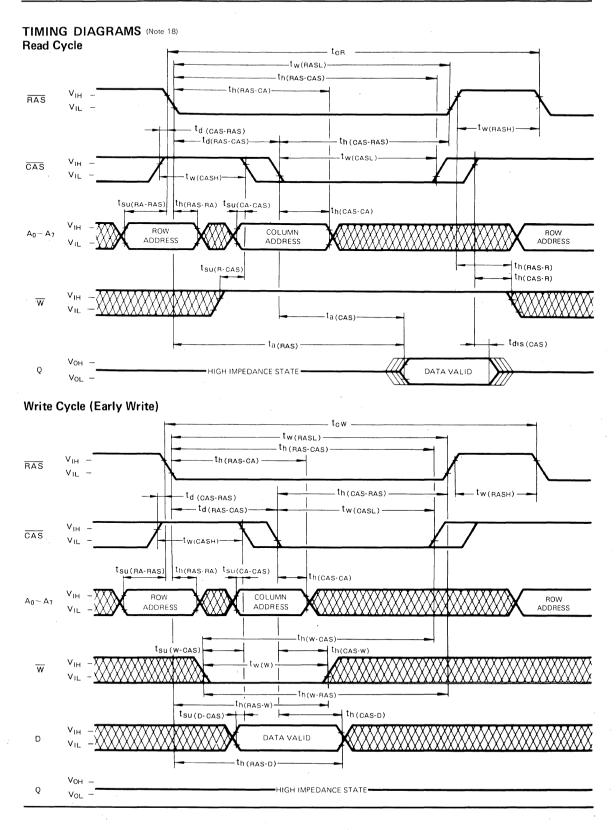
Note 15: t_{CRW} min is defined as t_{CRW} min = $t_{d(RAS-W)} + t_{h(W-RAS)} + t_{w(RASH)} + 3t_{TLH(t_{THL})}$

16: t_{cRMW} min is defined as t_{cRMW} min = t_{a} (RAS) max + t_{h} (W-RAS) + t_{w} (RAS-H) + $3t_{TLH}$ (t_{THL})

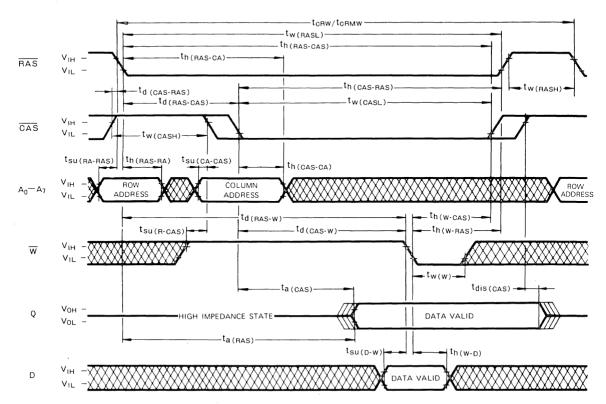
17: $t_{su}(w-c_{AS}), t_{d}(r_{AS-w}), and t_{d}(c_{AS-w}) do not define the limits of operation, but are included as electrical characteristics only.$ $When <math>t_{su}(w-c_{AS}) \ge t_{su}(w-c_{AS}) \min$, an early-write cycle is performed, and the data output keeps the high-impedance state. When $t_{d}(r_{AS-w}) \ge t_{d}(r_{AS-w}) \min$ and $t_{d}(c_{AS-w}) \ge t_{su}(w-c_{AS}) \min$ a read-write cycle is performed, and the data of the selected address will be read out on the data output.

For all conditions other than those described above, the condition of data output (at access time and until CAS goes back to VIH) is not defined.

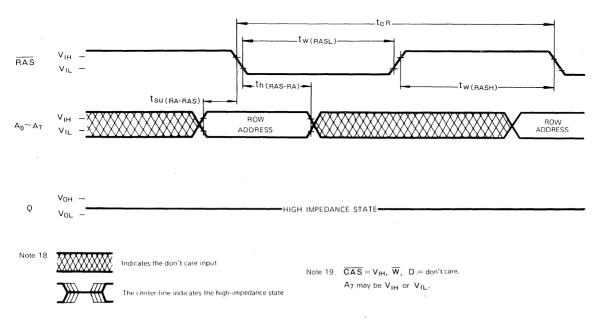
Page-Mode Cycle


Symbol Parameter			MH6404		
	Parameter	Alternative	Li	Ünit	
		Symbol	Min	Max	
t _{c PGR}	Page-mode read cycle time	t PC	145		ns
t _{c PGW}	Page-Mode write cycle	t _{PC}	145		ns
to PGRW	Page-Mode read-write cycle time		180		ns
t_{CPGRMW}	Page-Mode read-modify-write cycle time	-	195		ns
tw(CASH)	CAS high pulse width	t _{CP}	60		ns

MITSUBISHI LSIs

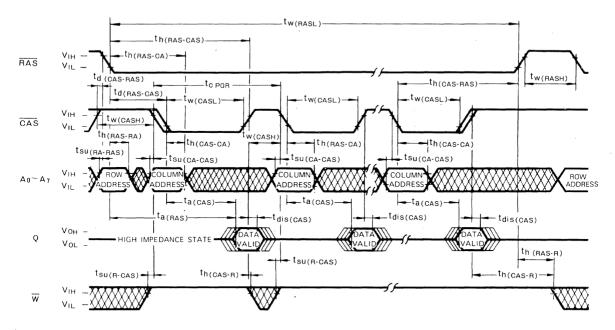

MH6404AND1-15

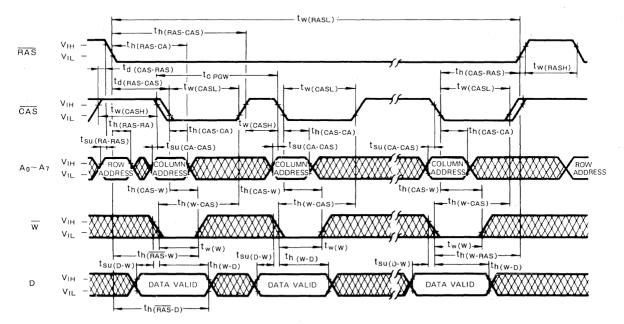
262 144-BIT (65 536-WORD BY 4-BIT) DYNAMIC RAM



262 144-BIT (65 536-WORD BY 4-BIT) DYNAMIC RAM

Read-Write and Read-Modify-Write Cycles

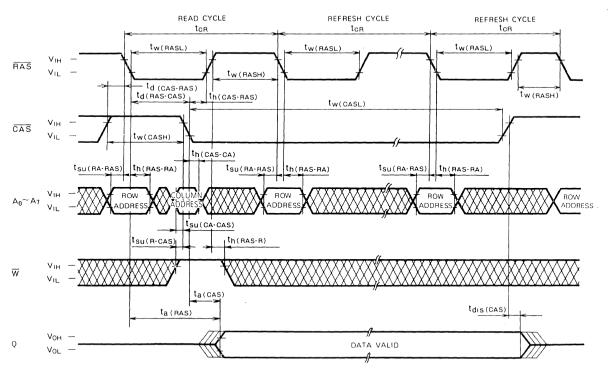

RAS-Only Refresh Cycle (Note 19)

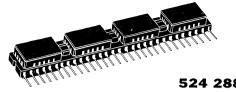


262 144-BIT (65 536-WORD BY 4-BIT) DYNAMIC RAM

Page-Mode Read Cycle




Page-Mode Write Cycle



262 144-BIT (65 536-WORD BY 4-BIT) DYNAMIC RAM

524 288-BIT(65 536-WORD BY 8-BIT)DYNAMIC RAM

DESCRIPTION

The MH6408AD is 65536 word \times 8 bit dynamic RAM and consists of eight industry standard 64K \times 1 dynamic RAMs in leadless chip carrier.

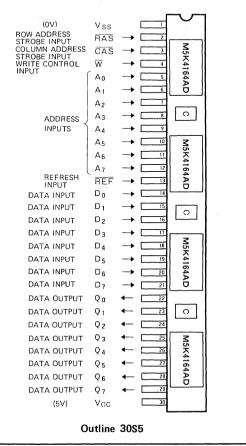
The mounting of leadless chip carriers on a ceramic single in-line package provides any application where high densities and large quantities of memory are required.

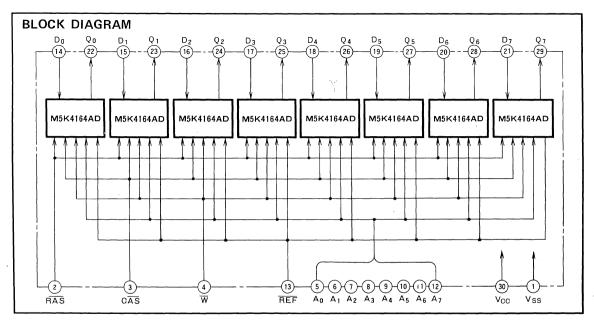
FEATURES

Performance ranges

Part No.	Access time	Cycle time	Power dissipation
	(max)	(min)	(typ)
	(ns)	(ns)	(mW)
MH6408AD-15	150	260	1200

- Utilizes industry standard 64K RAMs in leadless chip carriers
- 30 pins Single In-line Package
- Single +5V (±10%) supply operation
- Low standby power dissipation 176mW(max)
- Low operating power dissipation:


MH6408AD-15 1.9W (max)


- All inputs are directly TTL compatible
- All outputs are three-state and directly TTL compatible
- Includes (0.22 μ F x 6) decoupling capacitors
- 128 refresh cycles (every 2ms) A₇ Pin is not need for refresh
- Pin 13 controls automatic and self-refresh mode.

APPLICATION

- Main memory unit for computers
- Refresh memory

PIN DONFIGURATION (TOP VIEW)

524 288-BIT(65 536-WORD BY 8-BIT)DYNAMIC RAM

FUNCTION

The MH6408AD provides, in addition to normal read, write, and read-modify-write operations, a number of other functions, e.g., page mode, \overrightarrow{RAS} -only refresh, and delayed-write. The input conditions for each are shown iin Table 1.

Table 1 Input conditions for each mode

				Inputs				Output		
Operation	RAS	CAS	w	D	Row address	Column address	REF	Q	Refresh	Remarks
Read	ACT	ACT	NAC	DNC	APD	APD	NAC	VLD	YES	Page mode
Write	ACT	ACT	ACT	VLD	APD	APD	NAC	OPN	YES	identical except
Read-modify-write	ACT	ACT	ACT	VLD	APD	APD	NAC	VLD	YES	refresh is NO
RAS-only refresh	ACT	NAC	DNC	DNC	APD	DNC	NAC	OPN	YES	
Hidden refresh	ACT	ACT	DNC	DNC	APD	DNC	NAC	VLD	YES	
Automatic refresh	NAC	DNC	DNC	DNC	DNC	DNC	ACT	OPN	YES	
Self refresh	NAC	DNC	DNC	DNC	DNC	DNC	ACT	OPN	YES	
Hidden automatic refresh	NAC	ACT	DNC	DNC	DNC	DNC	ACT	VLD	YES	
Hidden self refresh	NAC	ACT	DNC	DNC	DNC	DNC	ACT	VLD	YES	
Standby	NAC	DNC	DNC	DNC	DNC	DNC	NAC	OPN	NO	

Note: ACT: active, NAC: nonactive, DNC: don't care, VLD: valid, APD: applied, OPN: open.

SUMMARY OF OPERATIONS Addressing

To select 8 of the 524288 memory cells in the MH6408AD the 16-bit address signal must be multiplexed into 8 address signals, which are then latched into the on-chip latch by two externally-applied clock pulses. First, the negative-going edge of the row-address-strobe pulse (\overline{RAS}) latches the 8 row-address bits; next, the negative-going edge of the column-address-strobe pulse (\overline{CAS}) latches the 8 column-address bits. Timing of the \overline{RAS} and \overline{CAS} clocks can be selected by either of the following two methods:

- The delay time from RAS to CAS t_{d(RAS-CAS)} is set between the minimum and maximum values of the limits. In this case, the internal CAS control signals are inhibited almost until t_{d(RAS-CAS)max} ('gated CAS' operation). The external CAS signal can be applied with a margin not affecting the on-chip circuit operations, e.g. access time, and the address inputs can be easily changed from row address to column address.
- 2. The delay time $t_{d(RAS-CAS)}$ is set larger than the maximum value of the limits. In this case the internal inhibition of \overline{CAS} has already been released, so that the internal \overline{CAS} control signals are controlled by the externally applied \overline{CAS} , which also controls the access time.

Data Input

Date to be written into a selected cell is strobed by the later of the two negative transitions of \overline{W} input and \overline{CAS} input. Thus when the W input makes its negative transition prior to \overline{CAS} input (early write), the data input is strobed by \overline{CAS} , and the negative transition of \overline{CAS} is set as the

reference point for set-up and hold times. In the read-write or read-modify-write cycles, however, when the \overline{W} input makes its negative transition after \overline{CAS} , the \overline{W} negative transition is set as the reference point for serup and hold times.

Data Output Control

The outputs of the MH6408AD are in the high-impedance state when \overrightarrow{CAS} is high. When the are memory cycle in progress is a read, read-modify-write, or a delayed-write cycle, the data output will go from the high-impedance state to the active condition, and the data in the selected cell will be read. This data output will have the same polarity as the input data. Once the outputs entered the active condition, this condition will be maintained until \overrightarrow{CAS} goes high, irrespective of the condition of \overrightarrow{RAS} .

The outputs will remain in the high-impedance state throughout the entire cycle in an early-write cycle.

These output conditions, of the MH6408AD, which can readily be changed by controlling the timing of the write pulse in a write cycle, and the width of the CAS pulse in a read cycle, offer capabilities for a number of applications, as follows.

1. Common I/O Operation

If all write operations are performed in the early-write mode, inputs and outputs can be connected directly to give a common I/O data bus.

2. Data Output Hold

The data outputs can be held between read cycles, without lengthening the cycle time. This enebles extremely flexible clock-timing settings for \overline{RAS} and \overline{CAS} .

524 288-BIT(65 536-WORD BY 8-BIT)DYNAMIC RAM

3. Two Methods of Chip Selection

Since the output is not latched, \overline{CAS} is not required to keep the outputs of selected chips in the matrix in a highimpedance state. This means that \overline{CAS} and/or \overline{RAS} can both be decoded for chip selection.

4. Extended-Page Boundary

By decoding \overline{CAS} , the page boundary can be extended beyond the 256 column locations in a single chip. In this case, \overline{RAS} must be applied to all devices.

Page-Mode Operation

This operation allows for multiple-column addressing at the same row address, and eliminates the power dissipation associated with the negative-going edge of \overline{RAS} , because once the row address has been strobed, \overline{RAS} is maintained. Also, the time required to strobe in the row address for the second and subsequent cycles is eliminated, thereby decreasing the access and cycle times.

Refresh

Each of the 128 rows $(A_0 \sim A_6)$ of the MH6408AD must be refreshed every 2 ms to maintain data. The methods of refreshing for the MH6408AD are as follows.

1. Normal Refresh

Read cycle and Write cycle (early write, delayed write or read-modify-write) refresh the selected row as defined by the low order (\overline{RAS}) addresses. Any write cycle, of course, may change the state of the selected cell. Using a read, write, or read-modify-write cycle for refresh is not recommended for systems which utilize "wire-OR" outputs since output bus contention will occur.

2. RAS Only Refresh

A \overline{RAS} -only refresh cycle is the recommended technique for most applications to provide for data retention. A \overline{RAS} -only refresh cycle maintains the outputs in the high-impedance state with a typical power reduction of 20% over a read or write cycle.

3. Automatic Refresh

Pin 13 ($\overline{\text{REF}}$) has two special functions. The MH6408AD has a refresh address counter, refresh address multiplexer and refresh timer for these operations. Automatic refresh is initiated by bringing $\overline{\text{REF}}$ low after $\overline{\text{RAS}}$ has precharged and is used during standard operation just like $\overline{\text{RAS}}$ -only refresh, except that sequential row addresses from an external counter are no longer necessary.

At the end of automatic refresh cycle, the internal refresh address counter will be automatically incremented. The output state of the refresh address counter is initiated by some eight $\overline{\text{REF}}$, $\overline{\text{RAS}}$ or $\overline{\text{RAS}}/\overline{\text{CAS}}$ cycle after power is aapplied. Therefore, a special operation is not necessary to initiate it.

 \overline{RAS} must remain inactive during \overline{REF} activated cycles. Likewise, \overline{REF} must remain inactive during \overline{RAS} generated cycle.

4. Self-Refresh

The other function of pin 13 (REF) is self-refresh. Timing for self-refresh is quite similar to that for automatic refresh. As long as RAS remains high and REF remains low, the MH6408AD will refresh itself. This internal sequence repeats asynchronously every 12 to 16 μ s. After 2ms, the onchip refresh address counter has advanced through all the row addresses and refreshed the entire memory. Self-refresh is primarily intended for trouble free power-down operation.

For example, when battery backup is used to maintained data integrity in the memory. REF may be used to place the device in the self-refresh mode with no external timing signals necessary to keep the information alive.

In summary, the pin 13 ($\overline{\text{REF}}$) refresh function gives the user a feature that if free, save him hardware on the board, and in fact, will simplify his battery backup procedures, increase his battery life, and save him overall cost while giving him improved system performance.

There is an internal pullup resister ($\approx 3M\Omega$) on pin 13, so if the pin 13(\overline{REF}) function is not used, pin 1 may be left open (not connect) without affecting the normal operations.

5. Hidden Refresh

A features of the MH6408AD is that refresh cycle may be performed while maintaining valid data at the output pins by extending the \overline{CAS} active time from a previous memory read cycle. This feature is referred to as hidden refresh.

Hidden refresh is performed by holding \overline{CAS} at V_{IL} and taking \overline{RAS} high and after a specified precharge period, executing a \overline{RAS} -only cycling, automatic refresh and self-refresh, but with \overline{CAS} held low.

The advantage of this refresh mode is that data can be held valid at the output data ports indefinitely by leaving the CAS asserted. In many applications this eliminates the need for off-chip latches.

Power Dissipation

Most of the circuirty in the MH6408AD is dynamic, and most of the power is dissipated when addresses are strobed. Both \overline{RAS} and \overline{CAS} are decoded and applied to the MH6408AD as chip-select in the memory system, but if \overline{RAS} is decoded, all unselected devices go into stand-by independent of the \overline{CAS} condition, minimizing system power dissipation.

Power Supplies

The MH6408AD operates on a single 5V power supply.

A wait of some 500μ s and eight or more dummy cycle is necessary after power is applied to the device before memory operation is achieved.

524 288-BIT(65 536-WORD BY 8-BIT)DYNAMIC RAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Paramater	Conditions	Limits	Unit
Vcc	Supply voltage		-1~7	V
VI	Input voltage	With respect to V _{SS}	-1~7	V
Vo	Output voltage		-1~7	V
10	Output current		50	mA
Pd	Power dissipation	Ta = 25 °C	8000	mW
Topr	Operating free-air temperature range		0~70	°C
Tstg	Storage temperature range		- 55 ~ 150	°C
Tsid	Soldering temperature+time		260 · 10	°C · sec

RECOMMENDED OPERATING CONDITIONS (Ta = 0 ~ 70°C, unless otherwise noted) (Note 1)

Symbol	Parameter		Unit		
	Farameter		Nom	Max	
Vcc	Supply voltage	4.5	5	5.5	V
Vss	Supply voltage	0	0	0	V
ViH	High level input voltage, all inputs	2.4		6.5	V
VIL	Low-level input voltage, all inputs	-2		0.8	V

Note 1. All voltage values are with respect to VSS

ELECTRICAL CHARACTERISTICS ($Ta = 0 \sim 70^{\circ}C$, $V_{CC} = 5V \pm 10\%$, $V_{SS} = 0V$, unless otherwise noted) (Note 2)

			Test conditions		Limits		
Symbol	Parameter		Test conditions	Min Typ		Max	Unit
Voн	High-level output voltage		I _{OH} = -5mA	2.4		Vcc	V
Vol	Low-level output voltage		I _{OL} =2.1mA	0		0.45	V
loz	Off-state output current		Q floating $0V \leq V_{OUT} \leq 5.5V$	- 80		80	μA
1	Input current		$0\text{V} \leq \text{V}_{\text{IN}} \leq 6.5\text{V}$, All other pins = 0V	-80		80	μA
	Average supply current from V _{CC} ,		RAS, CAS cycling				
CC1(AV)	operating (Note 3, 4)	MH6408AD-15	$t_{CR} = t_{CW} = min$, output open		360		mA
I CC2	Supply current from V _{CC} , standby	L	RAS = VIH output open			32	mA
	Average supply current from VCC,		\overrightarrow{RAS} cycling $\overrightarrow{CAS} = \overrightarrow{V}_{IH}$		280		
CC3(AV)	refreshing (Note 3)	MH6408AD-15	t _{C(REF)} = min, output open			280	mA
1	Average supply current from VCC,		RAS = VIL, CAS cycling		000		- 4
CC4(AV)	page mode (Note 3, 4)	MH6408AD-15	t CPG = min, output open			280	mA
1	Average supply current from VCC,		RAS = VIH, REF cycling			200	
CC5(AV)	automatic refreshing (Note 3)	MH6408AD-15	tc(REF) = min, output open			280	mA
			RAS = VIH, REF = VIL				
CC6 (AV)	Average supply current from V_{CC} , sel	t refreshing	output open			64	mA
CI(A)	Input capacitance, address inputs					70	pF
C _I (D)	Input capacitance, data input		VI=VSS			30	pF
C1(w)	Input capacitance, write control input		f = 1MHz			80	pF
CI (RAS)	Input capacitance, RAS input		V _I =25mVrms			100	pF
CI (CAS)	Input capacitance, CAS input					100	pF
CI(REF)	Input capacitance, REF input					100	pF
Co	Output capacitance		$V_0 = V_{SS}$, f = 1MHz, $V_1 = 25$ mVrms			30	pF

Note 2. Current flowing into an IC is positive; out is negative. 3. ICC1(AV), ICC3(AV), ICC4(AV) and ICC5(AV) are dependent on cycle rate. Maximum current is measured at the fastest cycle rate.

4. ICC1(AV) and ICC4(AV) are dependent on output loading. Specified values are obtained with the output open.

MH6408AD-15

524 288-BIT(65 536-WORD BY 8-BIT)DYNAMIC RAM

TIMING REQUIREMENTS (For Read, Write, Read-Modify-Write, Refresh, and Page-Mode Cycle)

($Ta = 0 \sim 70^{\circ}C$, $V_{CC} = 5V \pm 10\%$, $V_{SS} = 0V$, unless otherwise noted, See notes 5, 6 and 7)

	Parameter		•	MH64	MH6408AD-15		
Symbol			Alternative	' Li	Unit		
			Symbol -	Min	Max		
t _{CRF}	Refresh cycle time		t _{REF}		2	ms	
tw(RASH)	RAS high pulse width		t _{RP}	100		ns	
tw(RASL)	RAS low pulse width		t _{RAS}	150	10000	ns	
tw(CASL)	CAS low pulse width		t _{CAS}	75	∞	· ns	
tw(CASH)	CAS high pulse width	(Note 8)	t _{CPN}	35		ns	
t _h (RAS-CAS)	CAS hold time after RAS		t _{CSH}	150		ns	
t _{h (CAS-RAS)}	RAS hold time after CAS		t _{RSH}	75		ns	
td(CAS-RAS)	Delay time, CAS to RAS	(Note 9)	tCRP	-20		ns	
t _{d(RAS-CAS)}	Delay time, RAS to CAS	(Note 10)	t _{RCD}	30	100	ns	
t su (RA-RAS)	Row address setup time before RAS		t _{ASR}	0		ns	
t su (CA-CAS)	Column address setup time before CAS		tASC	0		ns	
t _h (RAS-RA)	Row address hold time after RAS		t _{RAH}	20		ns	
t _{h(CAS-CA)}	Column address hold time after CAS		t _{CAH}	25		ns	
t _{h(RAS-CA)}	Column address hold time after RAS		t _{AR}	95		ns	
t _{THL} t _{TLH}	Transition time		t _T	3	35	ns	

Note 5. An initial pause of 500 µs is required after power-up followed by any eight REF, RAS or RAS/CAS cycles before proper device operation is achieved.

6. The switching characteristics are defined as $t_{THL} = t_{TLH} = 5ns$.

7. Reference levels of input signals are V_{IH min}, and V_{IL max}. Reference levels for transition time are also between V_{IH} and V_{IL}.

8. Except for page-mode.

td(CAS-RAS) requirement is only applicable for RAS/CAS cycles preceeded by a CAS only cycle (i.e., For systems where CAS has not been decoded with RAS)
 Operation within the td (RAS-CAS) max limit insures that ta (RAS) max can be met. td (RAS-CAS)max is specified reference point only if td (RAS-CAS) is greater than the specified td (RAS-CAS) max limit, then access time is controlled exclusively by ta(CAS).

td (RAS-CAS)min = th (RAS-RA)min + 2t THL (t TLH) + t su(CA-CAS)min.

SWITCHING CHARACTERISTICS (Ta = $0 \sim 70^{\circ}$ C, V_{CC}=5V ± 10%, V_{SS}=0V, unless otherwise noted) Read Cycle

			Alternative	MH64	_	
Symbol	Parameter		Symbol	Li	Unit	
			Symbol	Min	Max	
t _{CR}	Read cycle time		t _{RC}	260		ns
tsu (R-CAS)	Read setup time before CAS		t _{RCS}	0		ns
th(CAS-R)	Read hold time after CAS	(Note 11)	t _{RCH}	0		ns
th(RAS-R)	Read hold time after RAS	(Note 11)	t _{RRH}	20		ns
tdis (CAS)	Output disable time	(Note 12)	t _{OFF}	. 0	40	ns
ta (CAS)	CAS access time	(Note 13)	t _{CAC}		75	ns
ta (RAS)	RAS access time	(Note 14)	t _{RAC}		150	ns

Note 11. Either th (RAS-R) or th (CAS-R) must be satisfied for a read cycle.

Note 12. tdis(CAS) max defines the time at which the output achieves the open circuit condition and is not reference to VOH or VOL

Note 13. This is the value when $td(RAS-CAS) \ge td(RAS-CAS)max$. Test conditions; Load=2T TL, CL=100pF

Note 10. This is the value when 1d (RAS-CAS) $\ge 1d$ (RAS-CAS) max. When $td(RAS-CAS) \ge 1d$ (RAS-CAS) max, ta(RAS) will increase by the amount that td(RAS-CAS) exceeds the value shown. Test conditions;Load=2T TL, $C_L=100pF$

Write Cycle

Symbol		Alternative	MH640	MH6408AD-15		
	Parameter		Limits		Unit	
	·	Symbol	Min	Max		
t _{cw}	Write cycle time	t _{RC}	260		ns	
tsu(w-CAS)	Write setup' time before CAS (Note 17	twcs	5		ns	
th (CAS-W)	Write hold time after CAS	t wch	45		ns	
th (RAS-W)	Write hold time after RAS	t wcR	95		ns	
th (w-RAS)	RAS hold time after write	t RWL	45		ns	
th (w-CAS)	CAS hold time after write	t _{CWL}	45	,	ns	
tw(w)	Write pulse width	twp	45		ns	
tsu (D-CAS)	Data-in setup time before CAS	t _{DS}	0		ns	
th (CAS-D)	Data in hold time after CAS	t _{DH}	45		ns	
th (RAS-D)	Data in hold time after RAS	t _{DHR}	95		ns	

MH6408AD-15

524 288-BIT(65 536-WORD BY 8-BIT)DYNAMIC RAM

			Alternative	MH640		
Symbol	Parameter			Limits		Unit
			Symbol	Min	Max	
tcRw	Read-write cycle time	(Note 15)	tRWC	280		ns
tormw	Read-modify-write cycle time	(Note 16)	t _{RMWC}	310		ns
th (W-RAS)	RAS hold time after write		tRWL	45		ns
th (w-CAS)	CAS hold time after write		t _{CWL}	45		ns
tw(w)	Write pulse width		twp	45		ns
tsu (R-CAS)	Read setup time before CAS		t _{RCS}	0		ns
td (RAS-W)	Delay time, RAS to write	(Note 17)	t _{RWD}	120		ns
td (CAS-W)	Delay time, CAS to write	(Note 17)	t _{CWD}	60		ns
tsu(D-W)	Data-in setup time before write		t _{DS}	0		ns
th(w-D)	Data-in hold time after write		t _{DH}	45		ns
tdis (CAS)	Output disable time		tOFF	0	40	ns
ta (CAS)	CAS access time	(Note 13)	t CAC		75	ns
ta (RAS)	RAS access time	(Note 14)	t _{RAC}		150	ns

Read-Write and Read-Modify-Write Cycles

Note 15. $t_{C,RW}$ min is defined as $t_{C,RW}$ min = $t_{d,(RAS-W)} + t_{h,(W-RAS)} + t_{w,(RASH)} + 3t_{TLH(t_{THI})}$

16. t_{CRMW} min is defined as t_{CRMW} min = t_{a} (RAS) max + t_{h} (w-RAS) + t_{w} (RAS-H) + $3t_{\text{TLH}}$ (tTHL)

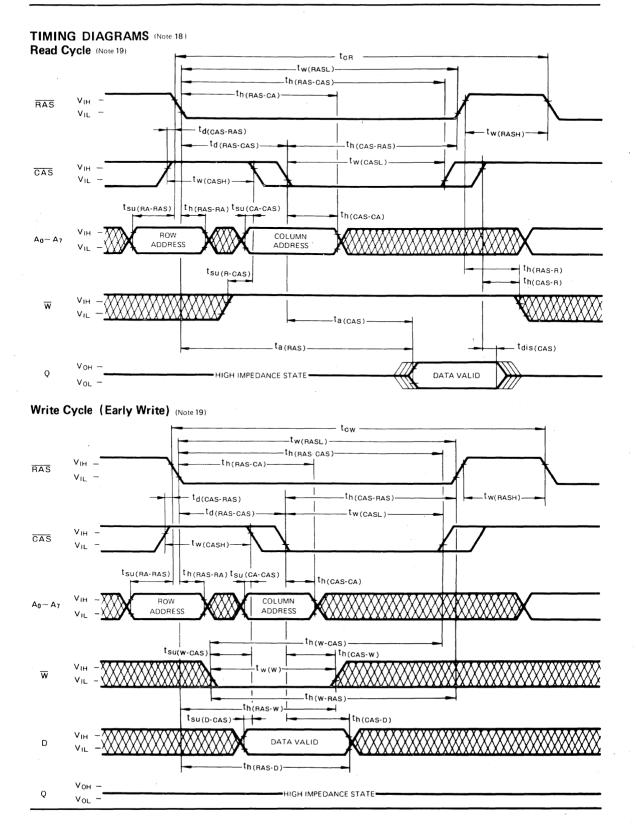
17. tsu (w-CAS), td (RAS-w), and td (CAS-w) do not define the limits of operation, but are included as electrical characteristics only. When tsu (w-CAS) ≥ tsu (w-CAS) min, an early-write cycle is performed, and the data output keeps the high-impedance state. When td (RAS-w)≥ td(RAS-w)min and td (CAS-w)≥tsu (w-CAS) min a read-write cycle is performed, and the data of the selected address will be read out on the data output.

For all conditions other than those described above, the condition of data output (at access time and until CAS goes back to VIH) is not defined.

Page-Mode Cycle

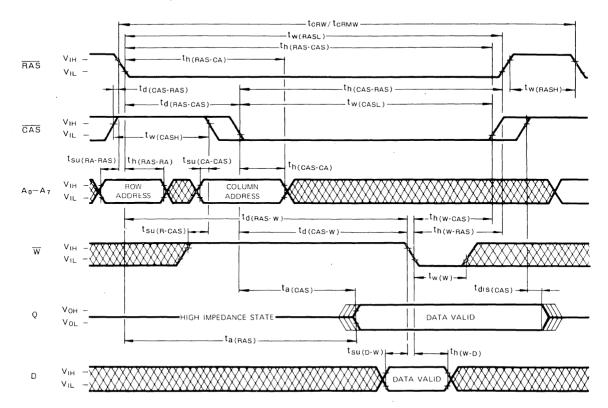
Symbol	Parameter	Alternative	MH640		
		Symbol	Lin	Unit	
		Symoor	Min	Max	
t _{c PGR}	Page-mode read cycle time	t _{PC}	145		ns
t _{c PGW}	Page-Mode write cycle time	t _{PC}	145		ns
t _{c PGRW}	Page-Mode read-write cycle time	-	180		ns
t _{,C} PGRMW	Page-Mode read-modify-write cycle time	-	195		ns
tw (CASH)	CAS high pulse width	t _{CP}	60		ns

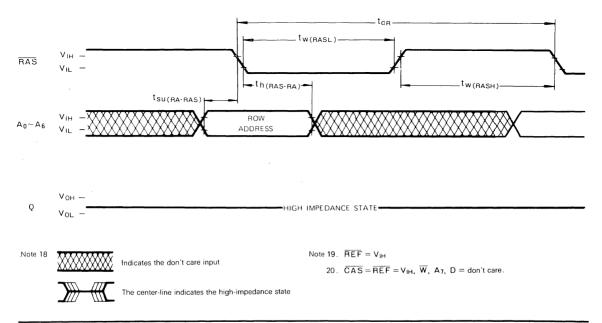
Automatic Refresh Cycle


	Parameter	Alternative	MH64	Unit	
Symbol		Symbol	Limits		
		Symbol	Min	Max	
tc(REF)	Automatic Refresh cycle time	t _{FC}	260		ns
td (RAS-REF)	Delay time, RAS to REF	t _{RFD}	100		ns
tw(REFL)	REF low pulse width	t _{FP}	60	8000	ns
tw (REFH)	REF high pulse width	t _{FI}	30		ns
td (REF-RAS)	Delay time, REF to RAS	t _{FSR}	30		ns
tsu (REF-RAS)	REF pulse setup time before RAS	t _{FRD}	295		ns

Self-Refresh Cycle

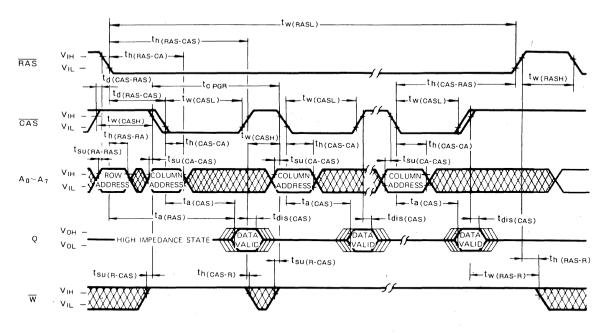
Symbol	Parameter	Alternative Symbol	MH64	Unit	
			Li		
			Min	Max	Í
td (RAS-REF)	Delay time, RAS to REF	t _{RFD}	100		ns
tw(REFL)	REF low pulse width	t _{FBP}	8000	∞	ns
td (REF-RAS)	Delay time, REF to RAS	t _{FBR}	295		ns

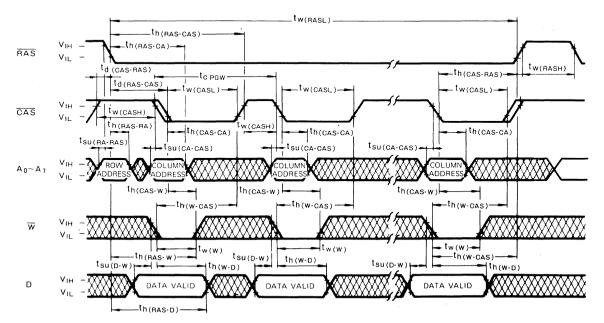

524 288-BIT(65 536-WORD BY 8-BIT)DYNAMIC RAM


MH6408AD-15

524 288-BIT(65 536-WORD BY 8-BIT)DYNAMIC RAM

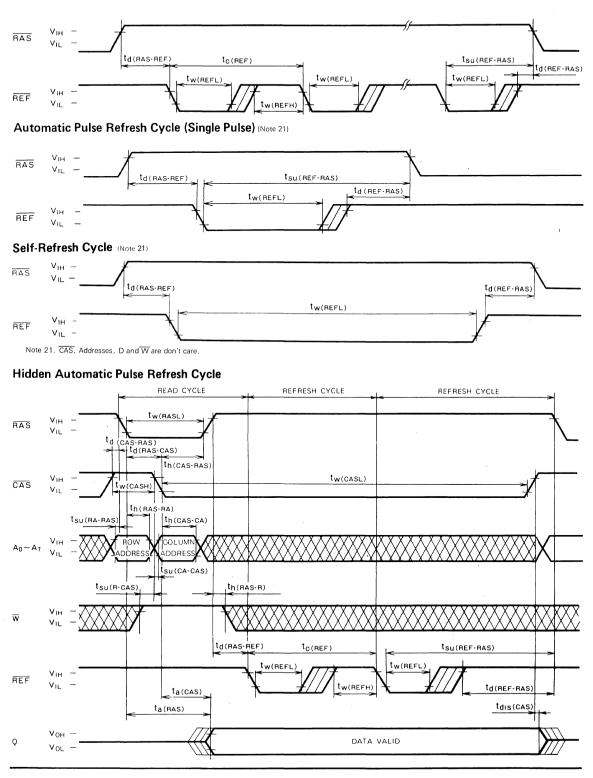
Read-Write and Read-Modify-Write Cycles (Note 19)




MITSUBISHI LSIS MH6408AD-15

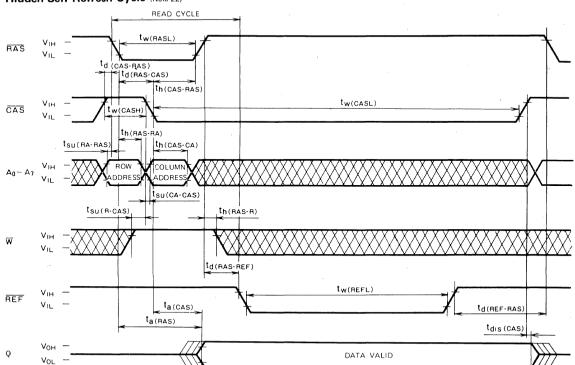
524 288-BIT(65 536-WORD BY 8-BIT)DYNAMIC RAM

Page-Mode Read Cycle (Note 19)

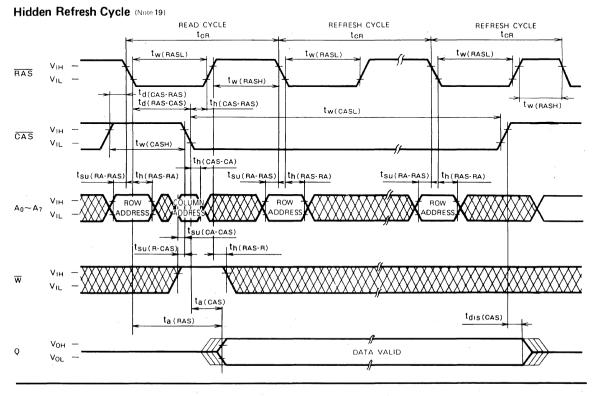

Page-Mode Write Cycle (Note 19)

524 288-BIT(65 536-WORD BY 8-BIT)DYNAMIC RAM

Automatic Pulse Refresh Cycle (Multiple Pulse) (Note 21)-



MITSUBISHI LSIs


MH6408AD-15

524 288-BIT(65 536-WORD BY 8-BIT)DYNAMIC RAM

Hidden Self-Refresh Cycle (Note 22)

Note 22. If the pin 13 (REF) function is not used, pin 13 may be left open (not connect).

MITSUBISHI LSIs

MH6408AND-15

524 288-BIT(65 536-WORD BY 8-BIT)DYNAMIC RAM

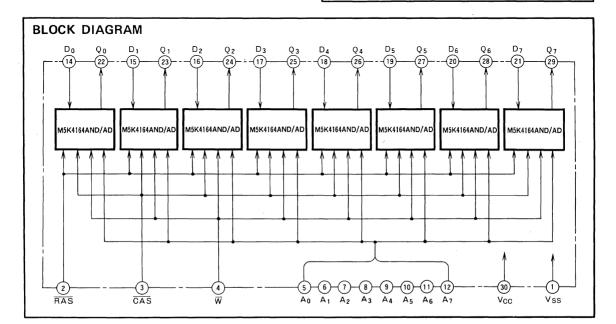
DESCRIPTION

The MH6408AND is 65536 word \times 8 bit dynamic RAM and consists of eight industry standard 64K \times 1 dynamic RAMs in leadless chip carrier.

The mounting of leadless chip carriers on a ceramic single in-line package provides any application where high densities and large quantities of memory are required.

FEATURES

Performance ranges


Type name	Access time	Cycle time	Power dissipation
	(max)	(min)	(typ)
	(ns)	(ns)	(mW)
MH6408AND-15	150	260	1200

- Utilizes industry standard 64K RAMs in leadless chip carriers
- 30 pins Single In-line Package
- Single +5V (±10%) supply operation
- Low standby power dissipation 176mW(max)
- Low operating power dissipation: MH6408AND-15 1.9W (max)
- All inputs are directly TTL compatible
- All outputs are three-state and directly
- All outputs are three-state and directly TTL compatible
- Includes $(0.22\mu F \times 6)$ decoupling capacitors
- 128 refresh cycles (every 2ms) A₇ Pin is not need for refresh

APPLICATION

- Main memory unit for computers
- Refresh memory

PIN CONFIGURATION (TOP VIEW)							
(OV) ROW ADDRESS STROBE INPUT COLUMN ADDRESS	V _{SS} RAS	→					
STROBE INPUT WRITE CONTROL	V CAS	-	3	M5K4164AND/AD			
INPUT	Á0		4	54A7			
	A0 A1	_	6	ID/A			
	A1 A2						
	A3			0			
ADDRESS / INPUTS	A4	•	- 9	L			
	A ₅		10	Z			
	A6		11	5K41			
	A7		12	64A			
(NC		13	M5K4164AND/AD			
DATA INPUT	Do		14	ð			
DATA INPUT	D ₁		15				
DATA INPUT	D2		16	0			
DATA INPUT	D ₃	-	17				
DATA INPUT	D4	>	18	M5K4164AND/AD			
DATA INPUT	D ₅		19	4164.			
DATA INPUT	D ₆	→	20	ND			
DATA INPUT	D7	→	21	AD/			
DATA OUTPUT	Q ₀	←	22				
DATA OUTPUT	Q 1	←	23	0			
DATA OUTPUT	Q 2	←	24				
DATA OUTPUT	Q ₃	←	25	MS			
DATA OUTPUT	Q4	←	26	M5K4164AND/AD			
DATA OUTPUT	Q 5	←	27	4AN			
DATA OUTPUT	Q 6		28	D/AC			
DATA OUTPUT	Q 7	4 —	29				
(5V)	Vcc		30				
Out	tline 3	3085			-		

524 288-BIT(65 536-WORD BY 8-BIT)DYNAMIC RAM

FUNCTION

The MH6408AND provides, in addition to normal read, write, and read-modify-write operations, a number of other functions, e.g., page mode, RAS-only refresh, and delayed-write. The input conditions for each are shown in Table 1.

Table 1 Input conditions for each mode

	Inputs						Output		
Operation	RAS	CAS	w	D	Row address	Column address	٥	Refresh	Remarks
Read	ACT	ACT	NAC	DNC	APD	APD	VLD	YES	Page mode
Write	ACT	ACT	ACT	VLD	APD	APD	OPN	YES	identical except
Read-modify-write	ACT	ACT	ACT	VLD	APD	APD	VLD	YES	refresh is NO
RAS-only refresh	ACT	NAC	DNC	DNC	APD	DNC	OPN	YES	
Hidden refresh	ACT	ACT	DNC	DNC	APD	DNC	VLD	YES	
Standby	NAC	DNC	DNC	DNC	DNC	DNC	OPN	NO	

Note: ACT: active, NAC: nonactive, DNC: don't care, VLD: valid, APD: applied, OPN: open.

SUMMARY OF OPERATIONS Addressing

To select 8 of the 524288 memory cells in the MH6408-AND the 16-bit address signal must be multiplexed into 8 address signals, which are then latched into the on-chip latch by two externally-applied clock pulses. First, the negative-going edge of the row-address-strobe pulse (\overline{RAS}) latches the 8 row-address bits; next, the negative-going edge of the column-address-strobe pulse (\overline{CAS}) latches the 8 column-address bits. Timing of the \overline{RAS} and \overline{CAS} clocks can be selected by either of the following two methods.

- 1. The delay time from \overline{RAS} to \overline{CAS} t_{d (RAS-CAS)} is set between the minimum and maximum values of the limits. In This case, the internal \overline{CAS} control signals are inhibited almost until t_{d (RAS-CAS)} max ('gated \overline{CAS} ' operation). The external \overline{CAS} signal can be applied with a margin not affecting the on-chip circuit operations, e.g. access time, and the address inputs can be easily changed from row address to column address.
- 2. The delay time $t_{d (RAS-CAS)}$ is set larger than the maximum value of the limits. In this case the internal inhibition of \overline{CAS} has already been released, so that the internal \overline{CAS} control signals are controlled by the externally applied \overline{CAS} , which also controls the access time.

Data Input

Data to be written into a selected cell is strobed by the later of the two negative transistons of \overline{W} input and \overline{CAS} input. Thus when the \overline{W} input makes its negative transition prior to \overline{CAS} input (early write), the data input is strobed by \overline{CAS} , and the negative transition of \overline{CAS} is set as the reference point for set-up and hold times. In the read-write or read-modify-write cycles, however, when the \overline{W} input makes its negative transition after \overline{CAS} , the W negative transition is set as the reference point for setup and hold times.

Data Output Control

The outputs of the MH6408AND are in the high-impedance state when \overline{CAS} is high. When the memory cycle in progress is a read, read-modify-write, or a delayed-write cycle, the data output will go from the high-impedance state to the active condition, and the data in the selected cell will be read. This data output will have the same polarity as the input data. Once the output has entered the active condition, this condition will be maintained until \overline{CAS} goes high, irrespective of the condition of \overline{RAS} .

The outputs will remain in the high-impedance state throughout the entire cycle in an early-write cycle.

These output conditions, of the MH6408AND, which can readily be changed by controlling the timing of the write pulse in a write cycle, and the width of the \overline{CAS} pulse in a read cycle, offer capabilities for a number of applications, as follows.

1. Common I/O Operation

If all write operations are performed in the early-write mode, inputs and outputs can be connected directly to give a common I/O data bus.

2. Data OUtput Hold

The data outputs can be held between read cycles, without lengthening the cycle time. This enables extremely flexible clock-timing settings for \overline{RAS} and \overline{CAS} .

524 288-BIT(65 536-WORD BY 8-BIT)DYNAMIC RAM

3. Two Methods of Chip Selection

Since the output is not latched, \overline{CAS} is not required to keep the outputs of selected chips in the matrix in a highimpedance state. This means that \overline{CAS} and/or \overline{RAS} can both be decoded for chip selection.

4. Extended-Page Boundary

By decoding \overline{CAS} , the page boundary can be extended beyond the 256 column locations in a single chip. In this case, \overline{RAS} must be applied to all devices.

Page-Mode Operation

This operation allows for multiple-column addressing at the same row address, and eliminates the power dissipation associated with the negative-going edge of \overline{RAS} , because once the row address has been strobed, \overline{RAS} is maintained. Also, the time required to strobe in the row address for the second and subsequent cycles is eliminated, thereby decreasing the access and cycle times.

Refresh

Each of the 128 rows ($A_0 \sim A_6$) of the MH6408AND must be refreshed every 2 ms to maintain data. The methods of refreshing for the MH6408AND are as follows.

1. Normal Refresh

Read cycle and Write cycle (early write, delayed write or read-modify-write) refresh the selected row as defined by the low order (RAS) addresses. Any write cycle, of course, may change the state of the selected cell. Using a read, write, or read-modify-write cycle for refresh is not recommended for systems which utilize "write-OR" outputs since output bus contention will occur.

2. RAS Only Refresh

A RAS-only refresh cycle is the recommended technique for most applications to provide for data retention. A RAS-only refresh cycle maintains the outputs in the high-impedance state with a typical power reduction of 20% over a read or write cycle.

3. Hidden Refresh

A features of the MH6408AND is that refresh cycles may be performed while maintaining valid data at the output pin by extending the \overline{CAS} active time from a previous memory read cycle. This feature is referred to as hidden refresh.

Hidden refresh is performed by holding \overline{CAS} at V_{1L} and taking \overline{RAS} high and after a specified precharge period, executing a \overline{RAS} -only cycling, but with \overline{CAS} held low.

The advantage of this refresh mode is that data can be held valid at the output data ports indefinitely by leaving the \overline{CAS} asserted. In many paalications this eliminates the need for off-chip latches.

Power Dissipation

Most of the circuitry in the MH6408AND is dynamic, and most of the power is dissipated when addresses are strobed. Both \overline{RAS} and \overline{CAS} are decoded and applied to the MH6408AND as chip-select in the memory system, but if \overline{RAS} is decoded, all unselected devices go into stand-by independent of the \overline{CAS} condition, minimizing system power dissipation.

Power Supplies

The MH6408AND operates on a single 5V power supply.

A wait of some 500μ s and eight or more dummy cycles is necessary after power is applied to the device before memory operation is achieved.

MH6408AND-15

524 288-BIT(65 536-WORD BY 8-BIT)DYNAMIC RAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Paramater	Conditions	Limits	Unit
Vcc	Supply voltage		-1-7	v
VI	Input voltage	With respect to V _{SS}	-1-7	V
Vo	Output voltage		-1-7	V
10	Output current		50	mA
Pd	Power dissipation	Ta=25°C	8000	mW
Topr	Operating free-air temperature range		0~70	°C
Tstg	Storage temperature range		- 55 ~ 150	°C
Tsld	Soldering temperature • time		260 · 10	°C · sec

RECOMMENDED OPERATING CONDITIONS (Ta = 0 ~ 70°C, unless otherwise noted) (Note 1)

Symbol	Parameter		Limits			
			Nom	Max	Unit	
Vcc	Supply voltage	4.5	5	5.5	V	
VSS	Supply voltage	0	0	0	v	
VIH	High level input voltage, all inputs	2.4		6.5	V	
VIL	Low-level input voltage, all inputs	-2		0.8	V	

Note 1. All voltage values are with respect to VSS

ELECTRICAL CHARACTERISTICS (Ta = 0 - 70 °C, $V_{CC} = 5V \pm 10\%$, $V_{SS} = 0V$, unless otherwise noted) (Note 2)

	_		Test conditions		Limits		Unit
Symbol	Parameter		Test conditions	Min	Тур	Max	
Voн	High-level output voltage		$I_{OH} = -5mA$	2.4		Vcc	V
VOL	Low-level output voltage		I _{OL} =2.1mA	0		0.45	v
I _{OZ}	Off-state output current		Q floating $0V \leq V_{OUT} \leq 5.5V$	/ -80		80	μА
- I _I	Input current		$0V \leq V_{IN} \leq 6.5V$, All other pins = $0V$	-80		80	μA
	Average supply current from Vcc.		RAS, CAS cycling			320	
CC1(AV)	operating (Note 3, 4)	MH6408AND-15	t _{CR} = t _{CW} = min, output open			320	mA
1002	Supply current from V _{CC} , standby		RAS = VIH output open			32	mA
1	Average supply current from V _{CC} ,		RAS cycling $\overline{CAS} = V_{IH}$			280	mA
CC3(AV)	refreshing (Note 3)	MH6408AND-15	t _{C(REF)} = min, output open			200	10A
1	Average supply current from V _{CC} ,		RAS = VIL, CAS cycling			280	mA
CC4(AV)	page mode (Note 3, 4)	MH6408AND-15	t CPG = min, output open			200	ШA
C1(A)	Input capacitance, address inputs					70	pF
C _{1(D)}	Input capacitance, data input		VI=VSS			30	pF
C1(w)	Input capacitance, write control inpu	ıt	f=1MHz			80	pF
CI (RAS)	Input capacitance, RAS input		V ₁ =25 mVrms			100	pF
CI (CAS)	Input capacitance, CAS input				1	100	pF
Co	Output capacitance		$V_0 = V_{SS}, f = 1 MHz, V_1 = 25 mVrms$			30	pF

Note 2. Current flowing into an IC is positive, out is negative.

3. ICC1(AV), ICC3(AV), and ICC4(AV) are dependent on cycle rate. Maximum current is measured at the fastest cycle rate.

4. I CC1(AV) and I CC4(AV) are dependent on output loading. Specified values are obtained with the output open.

MITSUBISHI LSIS MH6408AND.15

524 288-BIT(65 536-WORD BY 8-BIT)DYNAMIC RAM

TIMING REQUIREMENTS (For Read, Write, Read-Modify-Write, Refresh, and Page-Mode Cycle)

 $(Ta = 0 \sim 70^{\circ}C, V_{CC} = 5V \pm 10\%, V_{SS} = 0V, unless otherwise noted, See notes 5, 6 and 7)$

	Parameter		Alternative	MH640		
Symbol				Li	Unit	
			Symbol	Min	Max	
t _{CRF}	Refresh cycle time		t _{REF}		2	ms
tw(RASH)	RAS high pulse width		t _{RP}	100		ns
tw(RASL)	RAS low pulse width		t _{RAS}	150	10000	ns
tw(CASL)	CAS low pulse width		t _{CAS}	75	∞	ns
tw(CASH)	CAS high pulse width	(Note 8)	t _{CPN}	35		ns
t _{h(RAS-CAS)}	CAS hold time after RAS		t _{CSH}	150		ns
t _{h(CAS-RAS)}	RAS hold time after CAS		t _{RSH}	75		ns
td (cas ras)	Delay time, CAS to RAS	(Note 9)	t _{CRP}	-20		ns
t _{d(RAS-CAS)}	Delay time, RAS to CAS	(Note 10)	t _{RCD}	30	75	ns
t _{su(RA-RAS)}	Row address setup time before RAS		t _{ASR}	0		ns
t _{su(CA-CAS)}	Column address setup time before CAS		t _{ASC}	0		ns
t _{h (RAS-RA)}	Row address hold time after RAS		t _{RAH}	20		ns
t _{h(CAS-CA)}	Column address hold time after CAS		t _{CAH}	25		ns
t _{h(RAS-CA)}	Column address hold time after RAS		t _{AR}	95		ns
t _{THL}	Transition time		t _T	3	35	ns
t _{TLH}	Transition time		• 1	5	35	

Note 5. An initial pause of 500 us is required after power-up followed by any eight RAS or RAS/CAS cycles before proper device operation is achieved.

The switching characteristics are defined as $t_{THL} = t_{TLH} = 5ns$. 6

Reference levels of input signals are $V_{1H min}$ and $V_{1L max}$. Reference levels for transition time are also between V_{1H} and V_{11} . 7

8. Except for page-mode.

tidicas-rass requirement is only applicable for RAS/CAS cycles preceeded by a CAS only cycle (i.e., For systems where CAS has not been decoded with RAS.) a 10. Operation within the td (RAS-CAS) max limit insures that ta (RAS) max can be met. td (RAS-CAS) max is specified reference point only, if

td (RAS-CAS) is greater than the specified td (RAS-CAS) max limit, then access time is controlled exclusively by ta (CAS).

td (RAS-CAS)min = th (RAS-RA)min + 2t THL(t TLH) + t su(CA-CAS)min.

SWITCHING CHARACTERISTICS (Ta = 0 ~ 70°C, V_{CC} = 5V ± 10%, V_{SS} = 0V, unless otherwise noted) **Read Cycle**

Symbol				MH640		
	Parameter		Alternative Symbol	Lir	Unit	
		0,,	Min	Max		
t _C R	Read cycle time		t _{RC}	260		ns
tsu (R-CAS)	Read setup time before CAS		t _{RCS}	0		ns
th (CAS-R)	Read hold time after CAS	(Note 11)	t _{RCH}	0		ns
th(RAS-R)	Read hold time after RAS	(Note 11)	t RRH	20		ns
tdis(CAS)	Output disable time	(Note 12)	t _{OFF}	0	40	ns
ta (CAS)	CAS access time	(Note 13)	t _{CAC}		75	ns
ta (RAS)	RAS access time	(Note 14)	t _{RAC}		150	ns

Note 11. Either th (RAS-R) or th (CAS-R) must be satisfied for a read cycle,

Note 12 tous (CAS) max defines the time at which the output achieves the open circuit condition and is not reference to VOH or VOL

Note 13.

This is the value when $Id(RAS-CAS) \ge Id(RAS-CAS)max$. Test conditions : Load = 2T TL, $C_L = 100$ pF. This is the value when Id(RAS-CAS) < Id(RAS-CAS)max. When $Id(RAS-CAS) \ge Id(RAS-CAS)max$, Ia(RAS) will increase by the amount that Note 14 td (RAS-CAS) exceeds the value shown. Test conditions ; Load = 2T TL, CL = 100pF

Write Cycle

Symbol		Alternative Symbol	MH6408	MH6408AND-15			
	Parameter		Lin	Unit			
		Symbol	Min	Max			
tcw	Write cycle time	t _{RC}	260		ns		
tsu(w-CAS)	Write setup time before CAS (Note 17)	twcs	- 5		ns		
th (CAS-W)	Write hold time after CAS	t wCH	45		ns		
th(RAS-w)	Write hold time after RAS	t _{WCR}	95		ns		
th (w-RAS)	RAS hold time after write	t _{RWL}	45	-	ns		
th (w-CAS)	CAS hold time after write	t _{CWL}	45		ns		
tw _(W)	Write pulse width	twp	45		ns		
tsu (D-CAS)	Data-in setup time before CAS	t _{DS}	0		ns		
th (CAS-D)	Data-in hold time after CAS	t _{DH}	45		ns		
th (RAS-D)	Data-in hold time after RAS	t _{DHR}	95		ns		

524 288-BIT(65 536-WORD BY 8-BIT)DYNAMIC RAM

MH6408AND-15 Altornativo Symbol Parameter Limits Unit Symbol Min Max (Note 15) torw 280 Read-write cycle time t BWC ns 310 t_{cBMW} Read-modify-write cycle time (Note 16) t_{RMWC} ns th (w·BAS) RAS hold time after write t RWL 45 ns 45 th (w-cas) CAS hold time after write t CWL ns 45 tw(w) Write pulse width twp ns Read setup time before CAS tsu (B-CAS) t _{RCS} Ω ns td (RAS-W) Delay time, RAS to write (Note 17) tewn 120 ns Delay time, CAS to write td (CAS-W) (Note 17) tcwp 60 ns tsu(D-W) Data-in setup time before write t_{DS} 0 ns th (w-D) Data-in hold time after write t _{DH} 45 ns Output disable time tdis (CAS) t OFF 0 40 ns CAS access time ta (CAS) (Note 13) t _{CAC} 75 ns **BAS** access time ta (RAS) (Note 14) t BAC 150 ns

Read-Write and Read-Modify-Write Cycles

Note 15. t_{CRW}min is defined as t_{CRW}min = td (RAS-w) + th (w-RAS) + tw (RASH) + 3t_{TLH}(t_{THL})

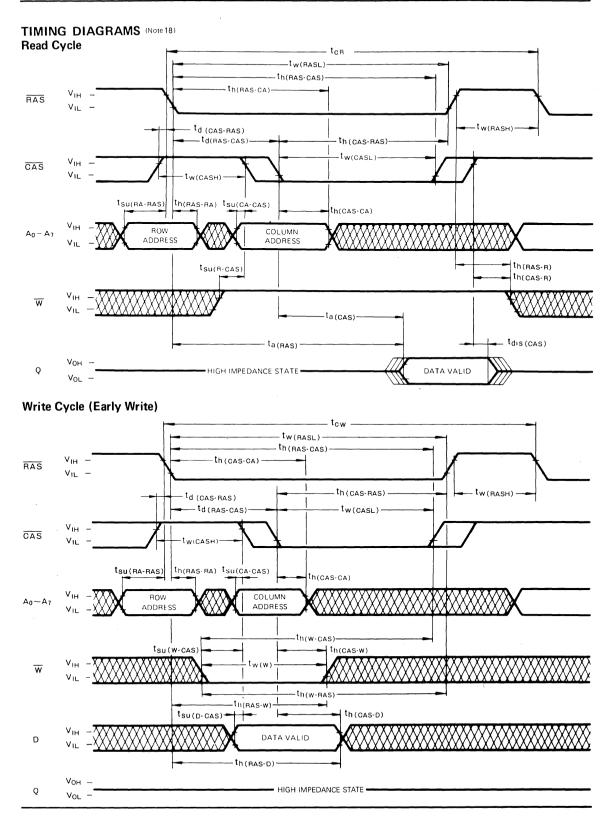
16. $t_{CRM W}$ min is defined as $t_{CRM W}$ min = ta (RAS)max + th (W-RAS) + tw (RAS H) + 3t TLH(tTHL)

17. tsu (w-CAS), td (BAS-W), and td (CAS-W) do not define the limits of operation, but are included as electrical characteristics only.

When tsu (w-cas)≥tsu (w-cas)min, an early-write cycle is performed, and the data outputs keep the high-impedance state.

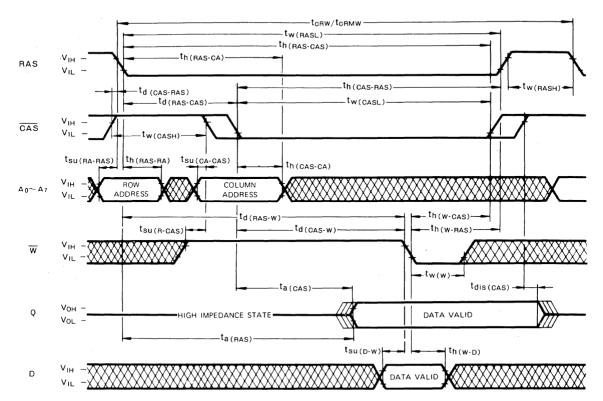
When td (RAS-w)≥td (RAS-w)min, and td (CAS-w)≥tsu (w-CAS)min a read-write cycle is performed, and the data of the selected address will be read out on the data outputs.

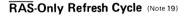
. For all conditions other than those described above, the condition of data output (at access time and until $\overline{\mathsf{CAS}}$ goes back to $\mathsf{V_{IH}}$ is not defined,

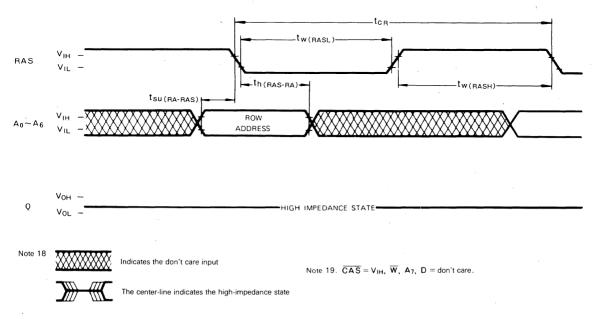

Page-Mode Cycle

Symbol Parameter			MH6408	Unit	
	Parameter	Alternative Symbol	. Lir		
		Min	Max		
t _{c PGR}	Page-Mode read cycle time	t _{PC}	145		ns
t _{C PGW}	Page-Mode write cycle time	t _{PC}	145		ns
t _{c PGRW}	Page-Mode read-write cycle time	-	180		ns
t _{c pgrmw}	Page-Mode read-modify-write cycle time	-	195		ns
tw(CASH)	CAS high pulse width	t _{CP}	60		ns

MITSUBISHI LSIS MH6408AND-15

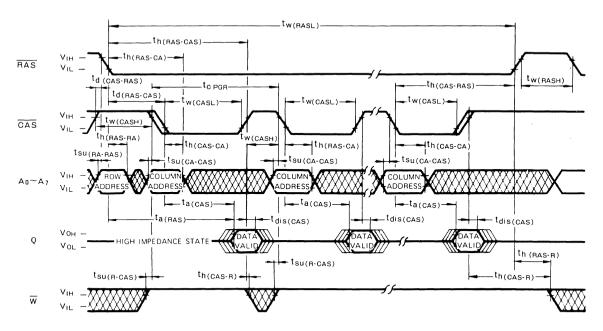

524 288-BIT(65 536-WORD BY 8-BIT)DYNAMIC RAM

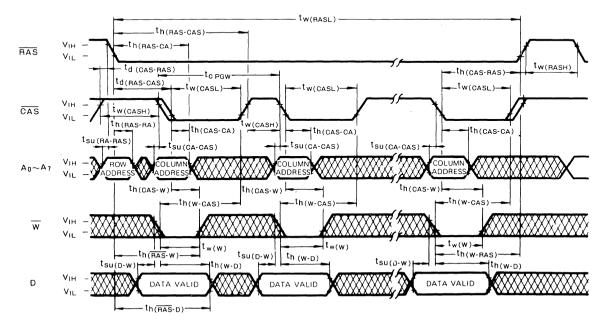



MITSUBISHI LSIS MH6408AND-15

524 288-BIT(65 536-WORD BY 8-BIT)DYNAMIC RAM

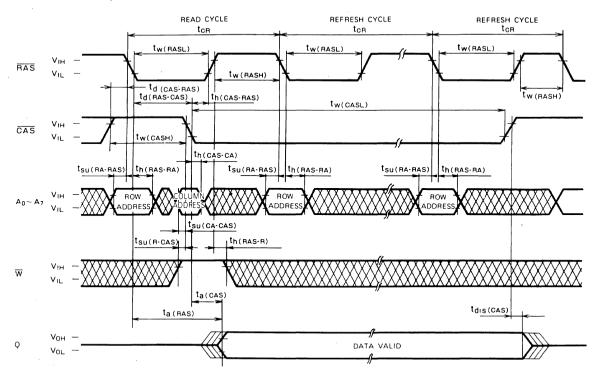
Read-Write and Read-Modify-Write Cycles




MITSUBISHI LSIS MH6408AND-15

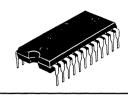
524 288-BIT(65 536-WORD BY 8-BIT)DYNAMIC RAM

Page-Mode Read Cycle


Page-Mode Write Cycle

MH6408AND-15

524 288-BIT(65 536-WORD BY 8-BIT)DYNAMIC RAM


Hidden Refresh Cycle

NMOS STATIC RAM

3

· · ł

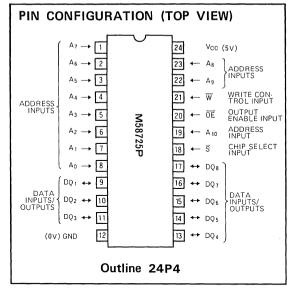
16 384-BIT (2048-WORD BY 8-BIT) STATIC RAM

DESCRIPTION

This is a family of 2048-word by 8-bit static RAMs, fabricated with the N-channel silicon-gate MOS process and designed for simple interfacing. These devices operate on a single 5V supply, as does TTL, and are directly TTLcompatible.

The input and output terminals are common, and an $\overline{\text{OE}}$ terminal is provided. $\overline{\text{S}}$ controls the power-down feature.

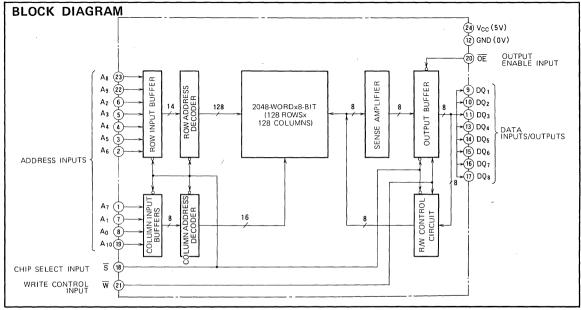
FEATURES


• Fast access time:

M58725P	200ns (max)
M58725 P-15	150ns (max)
Low power dissipation:	
Active:	250mW (typ)
Stand by:	25mW (typ)

- Power down by \overline{S}
- Single 5V supply voltage (±10% tolerance)
- Requires neither external clock nor refreshing
- All inputs and outputs are directly TTL compatible
- All outputs are three-state, with OR-tie capability
- Easy memory expansion by chip-select (S) input
- Common data DQ terminals.
- Same pin configuration as M5L2716K 16 384-bit EPROM APPLICATION
- Small-capacity memory units

FUNCTION


These devices provide common data input and output terminals. During a write cycle, when a location is designated by address signals $A_0 \sim A_{10}$ the \overline{OE} signal is kept high to keep the DQ terminals in the input mode, signal \overline{W} goes low, and the data of the DQ signal at that time is written.

During a read cycle, when a location is designated by address signals $A_0 \sim A_{10}$ the \overline{OE} signal is kept low to keep the DQ terminals in the output mode, signal \overline{W} goes high, and the data of the designated address is available at the I/O terminals.

When signal \overline{S} is high, the chip is in the non-selectable state, disabling both reading and writing. In this case the output is in the floating (high-impedance) state, useful for OR-ties with other output terminals.

Signal \overline{S} controls the power down feature. When \overline{S} goes high power dissipation is reduced to 1/10 of active power. The access time from \overline{S} is equivalent to the address access time.

16 384-BIT (2048-WORD BY 8-BIT) STATIC RAM

FUNCTION TABLE

ร	ŌĒ	w	$DQ_1 \sim DQ_8$	Mode
н	х	х	Hi-Z	Deselect
L	х	L	D _{IN}	Write
L	L	н	Dout	Read
L	н	н	Hi-Z	_

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Test conditions	Limits	Unit
Vcc	Supply voltage		0.5 7	V
VI	Input voltage	With respect to GND	-0.5~7	V
Vo	Output voltage		-0.5~7	V
Pd	Maximum power dissipation	Ta = 25°C	1000	mW
Topr	Operating free-air ambient temperature range		0~70	°C
⊤stg	Storage temperature range		-65~150	°C

RECOMMENDED OPERATING CONDITIONS ($T_a = 0 \sim 70^{\circ}C_{\circ}$ unless otherwise noted.)

	D		Limits			
Symbol	Parameter	Min	Nom	Max	Unit	
Vcc	Supply voltage	4.5	5	5.5	V	
VIL	Low-level input voltage	-1		0.8	v	
VIH	High-level input voltage	2		6	v	

ELECTRICAL CHARACTERISTICS ($Ta = 0 \sim 70^{\circ}C$, $V_{CC} = 5V \pm 10\%$, unless otherwise noted.)

Combal					Limits		11-24
Symbol	Parameter	Test condition	Min	Тур	Max	Unit	
VIH	High-level input voltage		2		6	V	
VIL	Low-level input voltage			- 1		0.8	V
VoH	High-level output voltage	$I_{0H} = -1 mA, V_{CC} = 4.5V$	2.4			V	
Vol	Low-level output voltage	I _{OL} =3.2mA				0.4	V
-L	Input current	V ₁ =0~5.5V				10	μA
I _{OZH}	Off-state high-level output current	$V_{I(\bar{S})} = 2V, V_{O} = 2.4V \sim V_{CC}$				10	μA
IOZL	Off-state low-level output current	$V_{1(\bar{S})} = 2V, V_0 = 0.4V$				-10	μA
		$V_{I}=5.5V, V_{I}(\bar{s})=0.8V,$	Ta = 25°C		50	80	mA
I _{CC1}	Supply current from VCC .	outputs open	Ta=0℃			90	mA
		$V_{I}=5.5V, V_{I}(\bar{s})=2V$	Ta=25°C		5	10	mA
I CC2	Stand by current	outputs open	Ta = 70℃		7	15	mA
Ci	Input capacitance, all inputs	$V_1 = GND$, $V_1 = 25mVrms$,	f=1MHz		3	5	pF .
Co	Output capacitance	$V_0 = GND, V_0 = 25mVrms$, f=1MHz		5	8	pF

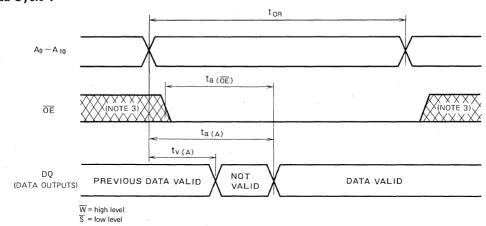
Note 1: Current flowing into an IC is positive, out is negative.

MITSUBISHI LSIS M58725P, -15

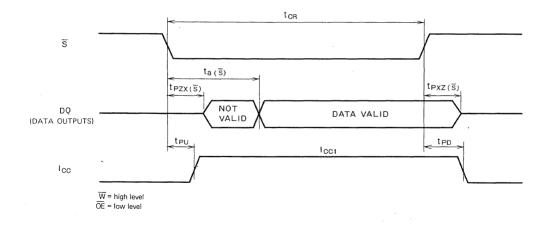
16384-BIT (2048-WORD BY 8-BIT) STATIC RAM

SWITCHING CHARACTERISTICS (For Read Cycle) ($Ta=0 \sim 70^{\circ}C$, $V_{CC}=5V \pm 10\%$, unless otherwise noted.)

		M	M58725P-15			M58725P		
Symbol	Parameter			Lir	nits			Unit
		Min	Тур	Max	Min	Тур	Max	
t _{CR}	Read cycle time	150			200			ns
ta (A)	Address access time			150			200	ns
ta (S)	Chip select access time			150			200	ns
ta(OE)	Output enable access time			50			60	ns
tv (A)	Data valid time after address	20			20			ns
t _{PXZ(S)}	Output disable time after chip select			50			60	ns
t _{PZX(S)}	Output active time after chip select	10			20			ns
t _{PU}	Power up time after chip selection	0			0			ns
t _{PD}	Power down time after chip deselection		L	60			80	ns

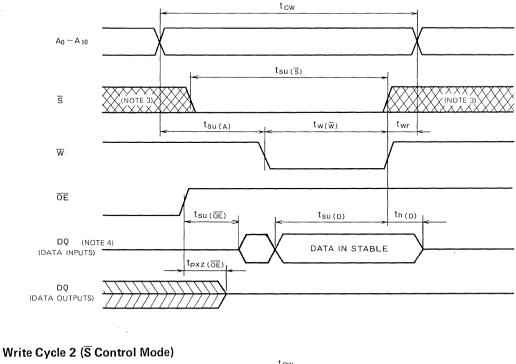

TIMING REQUIREMENTS (For Write Cycle) ($Ta = 0 \sim 70^{\circ}C$, $V_{CC} = 5V \pm 10\%$, unless otherwise noted.)

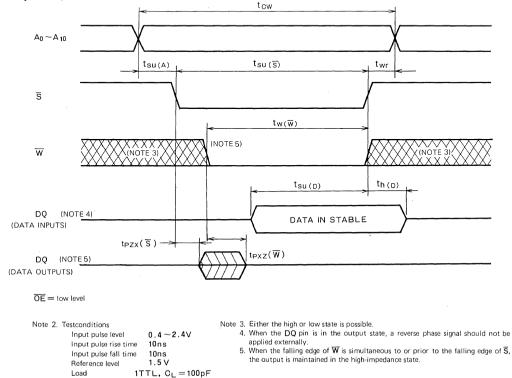
		N	158725P-	15		M58725F	2	Unit
Symbol	Parameter			Lin	nits			
		Min	Тур	Max	Min	Тур	Max	
t _{CW}	Write cycle time	150			200			ns
tsu(s)	Chip select setup time	100			120			ns
tsu (A)	Address setup time	20			20			ns
tw (W)	Write pulse width	80			100			ns
twr	Write recovery time	10			10			ns
tsu (0E)	Output enable setup time	40			40			ns
tsu (D)	Data setup time	60			60			ns
th (D)	Data hold time	10			10			ns
t _{PXZ} (OE)	Output disable time after output enable			40			40	ns
t _{PXZ(₩)}	Output disable time after write enable			40			40	ns



16 384-BIT (2048-WORD BY 8-BIT) STATIC RAM

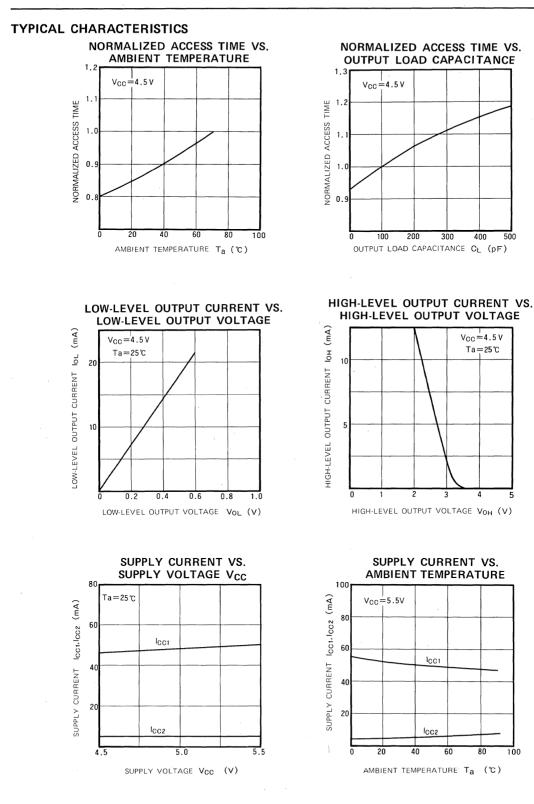
TIMING DIAGRAMS (Note 2) Read Cycle 1


Read Cycle 2



MITSUBISHI LSIS M58725P, -15

16 384-BIT (2048-WORD BY 8-BIT) STATIC RAM


Write Cycle 1 (\overline{W} Control Mode)

MITSUBISHI LSIS M58725P, -15

16384-BIT (2048-WORD BY 8-BIT) STATIC RAM

16384-BIT (16384-WORD BY 1-BIT) STATIC RAM

DESCRIPTION

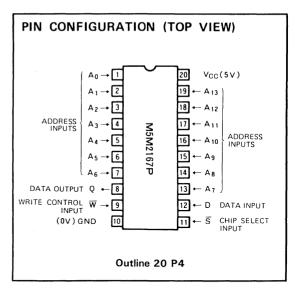
This is a family of 16384-word by 1-bit static RAMs, fabricated with the high-performance N-channel silicon-gate MOS process and designed for high-speed application. These devices operate on a single 5V supply, and are directly TTL compatible. They include a power-down feature as well.

FEATURES

Fast access time

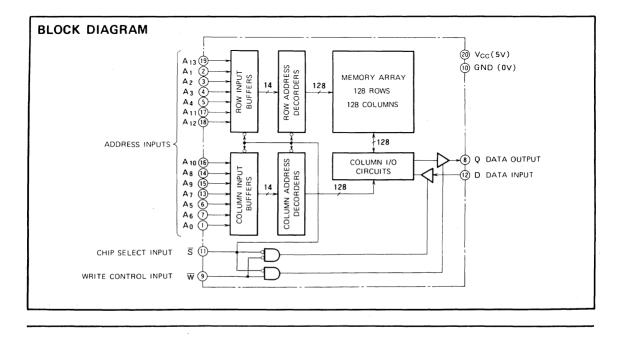
M5M2167P-55......55 ns (max) M5M2167P-70......70 ns (max)

- Power down by \overline{S}
- Single 5V power supply
- Fully static operation
- Requires neither external clock nor refreshing
- All inputs and output are directly TTL compatible
- Easy memory expansion by chip-select (\overline{S}) input
- Interchangeable with Intel's 2167


APPLICATION

• High-speed memory systems

FUNCTION


A write operation is executed during the \overline{S} low and \overline{W} low overlap time. In this period, address signals must be stable. When \overline{W} is low, the Q terminal is maintained in the high impedance state, so it is possible to connect D and Q terminals directly.

In a read operation, after setting \overline{W} to high, and \overline{S} to low if the address signals are stable, the data is available at the Q terminal.

When \overline{S} is high, the chip is in the non-selectable state, disabling both reading and writing. In this case the output is in the floating (high-impedance) state, useful for OR-ties with other devices.

Signal \overline{S} controls the power-down feature. When \overline{S} goes high, power dissipation is reduced to 1/10 of active power. The access time from \overline{S} is equivalent to the address access time.

16384-BIT (16384-WORD BY 1-BIT) STATIC RAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Limits	Unit	
Vcc	Supply voltage		-3.5 - 7	V	
VI	Input voltage	With respect to GND	-3.5~7	V	
Vo	Output voltage		-3.5~7		
Pd	Maximum power dissipation		1	w	
Topr	Temperature under bias		- 10~85	°C	
Tstg	Storage temperature		-65~150	°C	

RECOMMENDED OPERATING CONDITIONS ($T_a = 0 \sim 70^{\circ}C$, unless otherwise noted)

Symbol	Parameter	Limits			Unit	Necessary airflow cooling >2m/		
Symbol		Min	Тур	Ma×	onit	Necessary arriver county >211/3		
Vcc	Supply voltage	4.5	5	5.5	V			
VIL	Low-level input voltage	-3		0.8	V			
VIH	High-level input voltage	2		6	V			

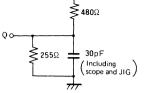
$\label{eq:constraint} \textbf{ELECTRICAL CHARACTERISTICS} \; (\; \texttt{T}_a = \texttt{0} \sim 70^\circ \texttt{C} \; , \; \; \texttt{V}_{CC} = \texttt{5V} \pm 10\% \; , \; \text{unless otherwise noted})$

Gumbal			·•·		Limits		Unit
Symbol	Parameter	lest cond	Test conditions			Max	Ont
VIH	High-level input voltage		,			6	V
VIL	Low-level input voltage	· ·		-3		0.8	v
Vон	High-level output voltage	I _{OH} = - 4 mA	I _{OH} =-4 mA				V
VOL	Low-level output voltage	I _{OL} = 8 mA	I _{OL} = 8 mA			0.4	V
-lj	Input current	V1=0~5.5V	V ₁ =0~5.5V			10	μA
llozl	Off-state output current	V _{1(S)} =2V, V ₀ =0~	$V_{1}(\bar{s})=2V, V_{0}=0 \sim V_{CC}$			50	μA
	Supply current from Vcc	VI(S)=0.8V	Ta = 25°C		80	120	mA
ICC1	Supply current from VCC	Output open	Ta = 0 °C			125	ma
I CC2	Stand by current	VI(S)=2V output ope	n		8	30	mA
I _{PO}	Peak power-on current	$V_{CC} = 0 - 4.5V$ V ₁ (\bar{s}) = Lower of V _{CC}	$V_{CC} = 0 - 4.5 V$ $V_{I}(\bar{s}) = Lower of V_{CC} or V_{IH}min$			30	mA
C,	Input capacitance	V1=GND, V1=25mV	$V_1 = GND$, $V_1 = 25mVrms$, $f = 1MHz$			5	pF
Co	Output capacitance	$V_0 = GND, V_0 = 25 m$	Vrms, f=1MHz			6	pF

Note 1. Current flow into an IC is positive, out is negative.

SWITCHING CHARACTERISTICS (FOR READ CYCLE) ($T_a = 0 \sim 70^{\circ}C$, $V_{CC} = 5V \pm 10\%$, unless otherwise noted)

Symbol	Parameter	N	M5M2167P-55			M5M2167P-70			
Symbol	r arameter	Min	Тур	Max	Min	Тур	Max	Unit	
t _C R	Read cycle time	55			70			ns	
ta(A)	Address access time			55			70	ns	
ta(s)	Chip select access time			55			70	. ns	
t _{v(A)}	Data valid time after address	5			5			ns	
t _{en(S)}	Output enable time after chip selection	10			10			ns	
t _{dis(s)}	Output disable time after chip deselection	0		25	0		30	ns	
t _{PU}	Power-up time after chip selection	0			0			ns	
t _{PD}	Power down time after chip deselection			30			40	ns	


16384-BIT (16384-WORD BY 1-BIT) STATIC RAM

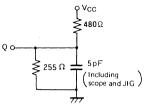
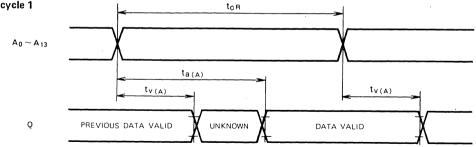
TIMING REQUIREMENTS (FOR WRITE CYCLE) ($T_a = 0 \sim 70^{\circ}C$, $V_{CC} = 5 V \pm 10\%$, unless otherwise noted)

Quertal		N	15M2167P-5	5	n I	45M2167P-7	0	
Symbol	Parameter	Min	Тур	Max	Min	Тур	Max	Unit
t _c w	Write cycle time	55			70			ns
t _{su} (s)	Chip select setup time	50			60			ns
tsu(A)1	Address setup time 1 (W CONTROL)	5			5			ns
tsu(A)2	Address setup time 2 (S CONTROL)	0	1		0			ns
t _{w(w)}	Write pulse width	35			40			ns
trec(w)	Write recovery time	5			5			ns
t _{su(D)}	Data setup time	25			30			ns
t _{h(D)}	Data hold time	0			0			ns
tdis(w)	Output disable time after \overline{W} low	0		25	0		30	ns
ten(w)	Output enable time after \overline{W} high	0			0			ns
tsu (A-WH)	Address to W high	40			45			ns

CONDITIONS

Input pulse levels 0 to 3V	
input rise and falltime 5 ns	
Input timing reference level	
Output timing reference level	
Output load	

γ v_{cc}

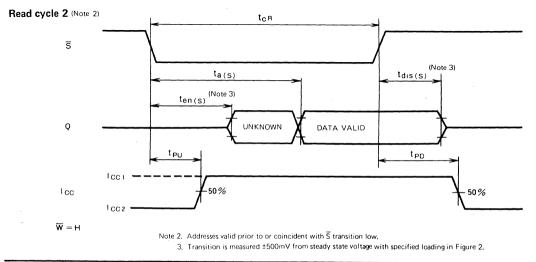
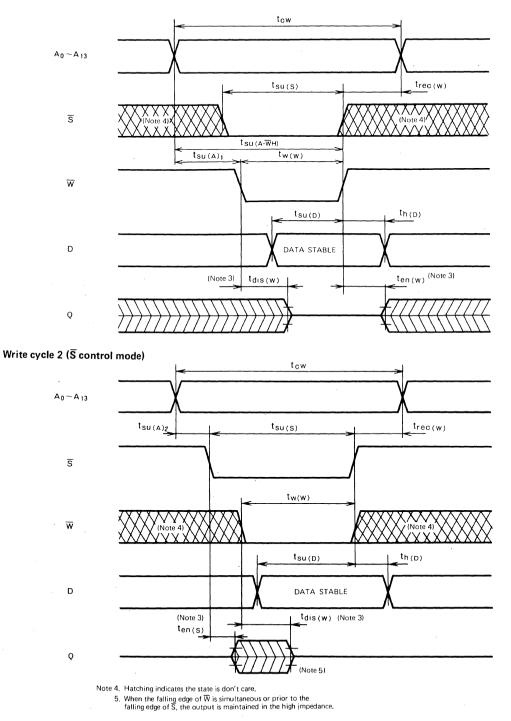

Fig. 1 Output load

Fig. 2 Output load for ten, tdis

TIMING DIAGRAMS Read cycle 1

$$\overline{W} = H$$

 $\overline{S} = L$



16384-BIT (16384-WORD BY 1-BIT) STATIC RAM

TIMING DIAGRAMS

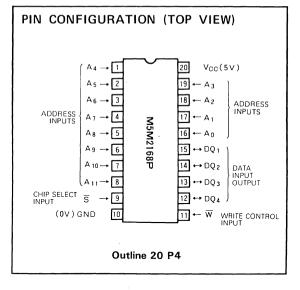
16384-BIT (4096-WORD BY 4-BIT) STATIC RAM

DESCRIPTION

This is a family of 4096 word by 4-bit static RAMs, fabricated with the high-performance N-channel silicon-gate MOS process and designed for high-speed application. These devices operate on a single 5V supply, and are directly TTL compatible. They include a power-down feature as well.

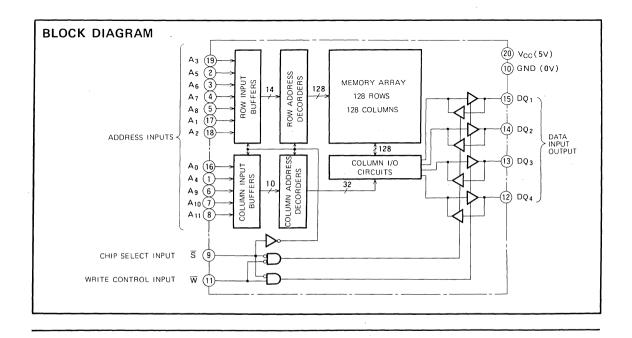
FEATURES

- Fast access time M5M2168P-55 55 ns (max)
- Standy by 40 mW (typ)
- Power down by S
- Single 5V power supply
- Fully static operation Requires neither external clock nor refreshing
- All inputs and output are directly TTL compatible
- Easy memory expansion by chip-select $\overline{(S)}$ input
- Interchangeable with Intel's 2168


APPLICATION

• High-speed memory systems

FUNCTION


A write operation is executed during the \overline{S} low and \overline{W} low overlap time. In this period, address signals must be stable. When \overline{W} is low, the DQ terminal is maintained in the high impedance state.

In a read operation, after setting \overline{W} to high, and \overline{S} to low if the address signals are stable, the data ia available at the DQ terminal.

When \overline{S} is high, the chip is in the non-selectable state, disabling both reading and writing. In this case the output is in the floating (high-impedance) state, useful for OR-ties with other devices.

Signal \overline{S} controls the power-down feature. When \overline{S} goes high, power dissipation is reduced to 1/10 of active power. The access time from \overline{S} is equivalent to the address access time.

16384-BIT (4096-WORD BY 4-BIT) STATIC RAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Limits	Unit
Vcc	Supply voltage		-3.5~7	V
VI	Input voltage	With respect to GND	-3.5~7	V
Vo	Output voltage		-3.5~7	V
Pd	Maximum power dissipation		1	w
Topr	Temperature under bias	•	-10~85	°C
Tstg	Storage temperature		-65~150	°C

RECOMMENDED OPERATING CONDITIONS ($T_a = 0 \sim 70^{\circ}C$, unless otherwise noted)

Symbol	Parameter		Unit		
Symbol	Parameter	Min	Тур	Max	Unit
Vcc	Supply voltage	4.5	5	5.5	V
VIL	Low-level input voltage	-3		0.8	v
VIH	High-level input voltage	2		6	V

Necessary airflow cooling >2m/s

Symbol		Test conc	disiana.		Limits		Unit
Symbol	Parameter	Test conc	rest conditions			Max	Unit
VIH	High-level input voltage		2		6	V	
VIL	Low-level input voltage			-3		0.8	v
V _{OH}	High-level output voltage	I _{OH} = - 4 mA	2.4			V	
VOL	Low-level output voltage	I _{OL} = 8 mA			0.4	V	
t ₁	Input current	V ₁ =0~5.5V			10	μA	
lloz I	Off-state output current	V _{1(s)} =2V, V ₀ =0~			50	μA	
	Supply current from V _{CC}	VI(S)=0.8V	Ta = 25°C		100	150	mA
I _{CC1}	Supply current norm VCC	Output open	Ta = 0 °C			155	
I CC2	Stand by current	VI(S)=2V output ope	en		8	30	mA
I _{P0}	Peak power-on current	$V_{CC} = 0 \sim 4.5V$ V ₁ (\bar{s}) = Lower of V _{CC}			30	mA	
C,	Input capacitance	$V_1 = GND, V_1 = 25mV$			5	pF	
Co	Output capacitance	$V_0 = GND, V_0 = 25 m$	Vrms, f=1MHz			6	pF

Note 1. Current flow into an IC is positive, out is negative.

SWITCHING CHARACTERISTICS (FOR READ CYCLE) ($T_a = 0 \sim 70^{\circ}C$, $V_{CC} = 5 V \pm 10\%$, unless otherwise noted)

Symbol	Parameter	M5M2168P-55			M5M2168P-70			11-14
		Min	Тур	Max	Min	Тур	Max	Unit
tcR	Read cycle time	55			70			ns
ta(A)	Address access time			55			70	ns
ta(S)	Chip select access time			55			70	ns
t _{v(A)}	Data valid time after address	5			5			ns
t _{en(S)}	Output enable time after chip selection	20			20			ns
t _{dis(S)}	Output disable time after chip deselection	0		20	0		.25	ns
t _{PU}	Power-up time after chip selection	0			0			ns
t _{PD}	Power down time after chip deselection			25			30	ns

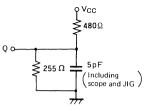
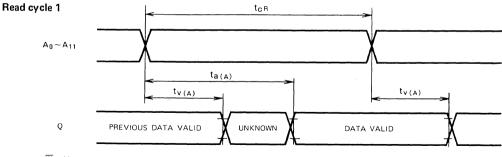
16384-BIT (4096-WORD BY 4-BIT) STATIC RAM

TIMING REQUIREMENTS (FOR WRITE CYCLE) ($T_a = 0 \sim 70^{\circ}C$, $V_{CC} = 5V \pm 10\%$, unless otherwise noted)

Symbol	Parameter	M5M2168P-55			M5M2168P-70			[
		Min	Тур	Max	Min	Тур	Max	Unit
t _c w	Write cycle time	50			60			ns
t _{su(s)}	Chip select setup time	45			55			ns
t _{su(A)1}	Address setup time 1 (W CONTROL)	0			0			ns
tsu(A)2	Address setup time 2 (S CONTROL)	0			0			ns
t _{w(w)}	Write pulse width	40			50			ns
t _{rec(w)}	Write recovery time	0			0			ns
t _{su(D)}	Data setup time	20			30			ns
t _{h (D)}	Data hold time	0			0			ns
t _{dis(w)}	Output disable time after \overline{W} low	0		25	0		30	ns
ten(w)	Output enable time after \overline{W} high	5			5			ns
tsu(A-₩H)	Address to W high	45			55			ns

CONDITIONS

Input pulse levels
input rise and falltime 5 ns
Input timing reference level 1.5V
Output timing reference level
Output load

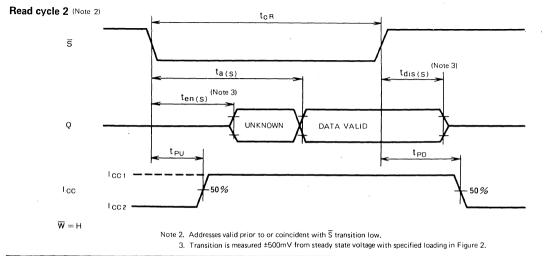
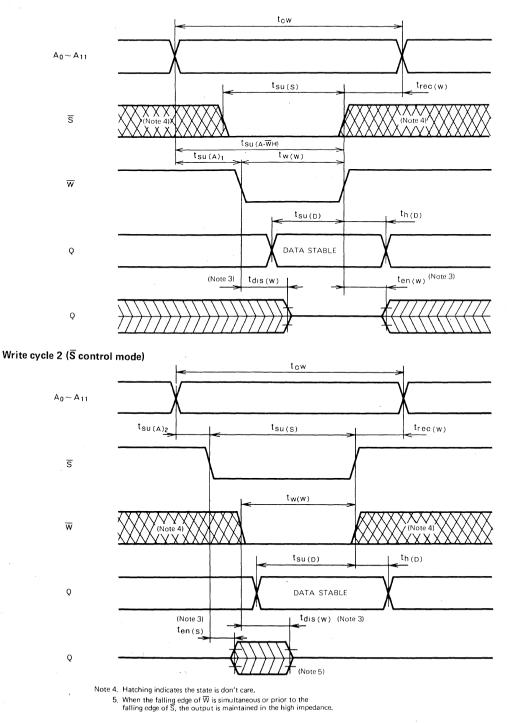

Fig. 1 Output load

Fig. 2 Output load for ten, tdis

TIMING DIAGRAMS

$$\overline{W} = H$$

 $\overline{S} = L$



16384-BIT (4096-WORD BY 4-BIT) STATIC RAM

TIMING DIAGRAMS

CMOS STATIC RAM

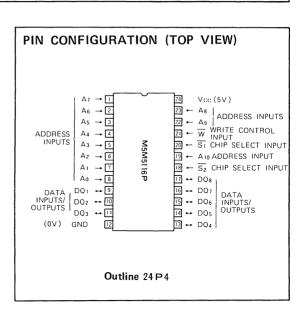
4

DESCRIPTION

The M5M5116P series of 2048-word by 8-bit asynchronous silicon gate CMOS static RAM operates on a single 5V power supply and is designed for easy use in applications requiring battery backup.

Two chip select inputs are available: $\overline{S_2}$ provides the minimum standby current with battery back-up while $\overline{S_1}$ enables high-speed memory access.

The series is packaged in a standard 24-pin plastic DIL package.

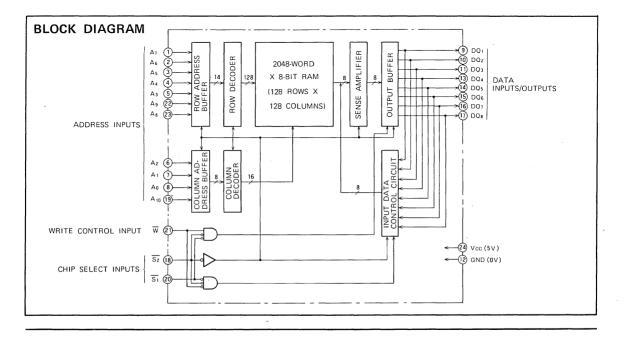

FEATURES

	Access time	S ₁ access	Current	consumption	
Type name	(max)	time (max)	Active (max)	Stand-by (max)	
M5M5116P-15	150ns	80ns	F0 1		
M5M5116P	200ns	100ns	50 m A	15 <i>µ</i> A	

- Single 5V power supply.
- External clock and refresh operation not required.
- Data can be held with 2V supply voltage.
- All inputs and outputs are directly TTL compatible.
- All outputs are 3-state with OR-tie capability.
- Easy expansion of memory capacity with chip select signal.
- Common input/output for data pins.

APPLICATIONS

Battery drive, small-capacity memory units with battery back-up



FUNCTION

The M5M5116P series has a 2048-word by 8-bit configuration. It operates on a single 5V supply and its inputs/ outputs are directly TTL compatible. Its completely static circuitry obviates the need for external clock and refresh operations and makes it very easy to use.

The data of the DQ pin are written when the address is designated by address signals $A_0 \sim A_{10}$, the $\overline{S_1}$ and $\overline{S_2}$ signals turn low-level, and the \overline{W} signal is set low.

When for the reading operation the \overline{W} signal is set high,

the $\overline{S_1}$ and $\overline{S_2}$ signals are set low, pin DQ is set to the output mode and the address is designated by signals $A_0 \sim A_{10}$, the data of the designated address are output to pin DQ.

When signal $\overline{S_1}$ or $\overline{S_2}$ is set high, the chip is set to a nonselect status in which neither reading nor writing is possible. Since the output floats (high-impedance state), OR-tie is possible with the other chip output pins.

The standby mode is established when signal $\overline{S_2}$ is set to V_{CC}. The supply current is now reduced to the very low level of 15µA (max) and the data in the memory are

retained even if the supply voltage falls to 2V, permitting power-down during non-operation or battery back-up during power failures.

OPERATION MODES

$\overline{S_1}$	S ₂	W	Mode	DQ	I _{CC}
х	н	х	Non-select	High impedance	Standby
н	L	х	Non-select	High impedance	Active
L	L	L	Write	D _{IN}	Active
L	L	н	Read	Dout	Active

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Limits	Unit
Vcc	Supply voltage		-0.3~7	V
VI	Input voltage	With respect to GND	$-0.3 \sim V_{CC} + 0.3$	V
Vo	Output voltage,		0~V _{CC}	V
Pd	Power dissipation	Ta=25°C	700	mW
Topr .	Operating free-air ambient temperature		0~70	°C
Tstg	Storage temperature		-65~150	°C

RECOMMENDED OPERATING CONDITIONS ($T_a = 0 \sim 70^{\circ}C$, unless otherwise noted)

Constant			Limits			
Symbol	Parameter	Min	Тур	Max	Unit	
V _{CC}	Supply voltage	4.5	5	5.5	V	
GND	Supply voltage		0		V	
VIL	Low-level input voltage	-0.3		0.8	V	
VIH	High-level input voltage	2.2		V _{CC} +0.3	V	

ELECTRICAL CHARACTERISTICS ($T_a = 0 \sim 70^{\circ}C$, $V_{CC} = 5V \pm 10\%$, unless otherwise noted)

<u> </u>		······································	Taka Int		Limits		
Symbol	Par	rameter	Test conditions	Min	Тур	Max	Unit
VIH	High-level input voltage			2.2		V _{CC} +0.3	V
VIL	Low-level input voltage		1	-0.3		0.8	V
VoH	High-level output voltage		I _{OH} =-1mA	2.4			V
VoL	Low-level output voltage		I _{OL} = 2.1mA			0.4	V
-lj	Input current		$V_{I} = 0 \sim V_{CC}$			± 1	μA
IOZH	Off-state high-level output	current	$\overline{S_1}$ or $\overline{S_2} = V_{IH}$, $V_0 = 2.4 V - V_{CC}$			1	μA
IOZL	Off-state low-level output	current	$\overline{S_1}$ or $\overline{S_2} = V_{IH}$, $V_0 = 0V$			-1	μA
1		M5M5116P-15	$V_1(\overline{S_1}) = V_1(\overline{S_2}) = 0$ V Output pin open			45	mA
CC1	Supply current	M5M5116P	Other inputs = V_{CC} or 0 V		30	45	mA
		M5M5116P-15	$V_{I}(\overline{S_{I}}) = V_{I}(\overline{S_{2}}) = V_{IL}$ Output pin open			50	mA
1 _{CC2}	Supply current	M5M5116P	Other inputs $=$ V _{IH}		35	50	mA
I _{CC3}	Standby supply current		$\overline{S_2} = V_{CC} - 0.2V$, Other inputs = 0 ~ V_{CC}	·		15	μA
I _{CC4}	Standby supply current		$\overline{S_2} = V_{IH}$, Other inputs = 0 ~ V _{CC}			2	mA
Ci	Input capacitance (Ta =	25°C)	$V_1 = GND, V_1 = 25mVrms, f = 1MHz$			6	pF
Co	Output capacitance (Ta =	=25°C)	$V_0 = GND, V_0 = 25mVrms, f = 1MHz$			8	pF

Note 1: Current flowing into an IC shall be positive (no sign).

2: Typical values: $V_{CC} = 5V$, $T_a = 25^{\circ}C$.

MITSUBISHI LSIS M5M5116P, -15

16384-BIT (2048-WORD BY 8-BIT) CMOS STATIC RAM

SWITCHING CHARACTERISTICS (T $_a$ = 0 $\sim70^\circ\text{C}$, V $_{CC}$ = 5V $\pm10\%$, unless otherwise noted) READ CYCLE

		N	M5M5116P-15 N Limits			5M5116P		
Symbol	Parameter					Limits		
		Min	Тур	Max	Min	Тур	Max	7
t _{CR}	Read cycle time	150			200			ns
t _{a (A)}	Address access time			150			200	ns
ta (S1)	Chip select 1 access time			80			100	nş
ta (S2)	Chip select 2 access time			150			200	ns
tdis (S1)	Output disable time from S1			50			60	ns
tdis (S ₂)	Output disable time from S2			50			60	ns
t _{en (S1})	Output enable time from S1	15			15			ns
t _{en (S2})	Output enable time from S2	15			15			ns
t _{v (A)}	Data valid time from address	20			20			ns

TIMING REQUIREMENTS (T_a=0~70°C , V_{CC}=5V \pm 10%, unless otherwise noted) WRITE CYCLE

		N	15M5116P-	15	1	M5M5116P		
Symbol	Parameter		Limits			Limits		
		Min	Тур	Max	Min	Тур	Max	
t _{cw}	Write cycle time	150			200			ns
t _{w(w)}	Write pulse width	90			120			ns
t _{su (A)}	Address set-up time	0			0			ns
t _{su (s)}	Chip select set-up time	90			120			ns
t _{su (D)}	Data set-up time	40			60			ns
t _{h (D)}	Data hold time	0			0		-	ns
t _{rec (w)}	Write recovery time	. 10			10			ns
t _{dis (W)}	Output disable time from write			50			60	ns
t _{en (w)}	Output enable time from write	15			15			ns

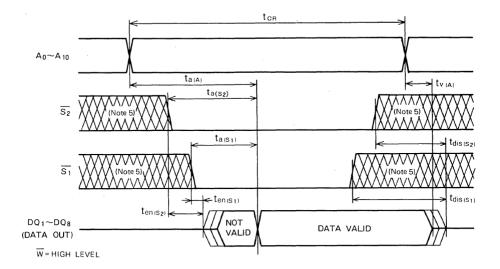
POWER-DOWN CHARACTERISTICS

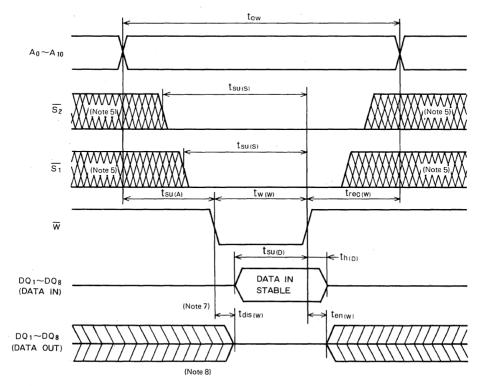
ELECTRICAL CHARACTERISTICS ($T_a = 0 \sim 70^{\circ}C$, unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			Unit
Symbol	rarameter	rest conditions	Min	Тур	Max	Unit
V _{CC} (PD)	Power-down supply voltage		2			V
		2.2V≦V _{CC (PD)}	2.2			V
V1 (S2)	Chip select input voltage	2V≤V _{CC (PD)} ≤2.2V		VCC (PD)		V
ICC (PD)	Power-down supply current	$V_{CC}=3V$, Other inputs = $3V$			10	μA

Note 3: When S₂ is operated at 2.2V (V_{IH} min), the supply current at which V_{CC (PD)} is between 4.5V and 2.4V, is specified by I_{CC4}.

TIMING REQUIREMENTS (T_a=0~70°C, unless otherwise noted)


Symbol	Parameter	Test conditions		Limiťs		Unit
Symbol	Symbol Parameter	Test conditions	Min	Түр	Max	Unit
t _{su (PD)}	Power-down set-up time		0			ns
t _{rec (PD)}	Power-down recovery time		t _{CR}			ns


MITSUBISHI LSIs M5M5116P. -15

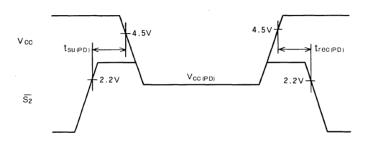
16384-BIT (2048-WORD BY 8-BIT) CMOS STATIC RAM

TIMING DIAGRAM Read cycle

Write cycle (W control)

MITSUBISHI LSIs M5M5116P. -15

16384-BIT (2048-WORD BY 8-BIT) CMOS STATIC RAM


tcw A0~A10 $\mathcal{M}\mathcal{N}$ M $\overline{S_2}(\overline{S_1})$ Note 5 (Note tsu(S) treciwi tsu(A) SI(Sz) tw(w) $(\lambda \Lambda)$ ላለለ (Note 6) \overline{W} ۸ ۸ ۸ t_{su(D)} ←th(D) DQ1~DQ8 DATA IN STABLE (DATA IN) (Note 7) tdis (w) ten (S) 2 D01~D08 (DATA OUT) (Note 8) Note 4: Test conditions Note 5: Hatching indicates the don't care inputs. 6: Writing is performed while \overline{S} and \overline{W} are in the Input pulse level: 0.4 \sim 2.4V

Write cycle (\overline{S} control)

Input pulse risetime and falltime: 10ns Load: 1 TTL, C_L = 100pF Reference level: 1.5V

- low-level overlap period.
- 7: The output is kept in the high-impedance state when \overline{W} falls simultaneously with, or before, the \overline{S} falls.
- 8: A reverse-phase signal should not be supplied when DQ is in the output mode.

POWER-DOWN CHARACTERISTICS

MITSUBISHI LSIS M5M5116FP. -15

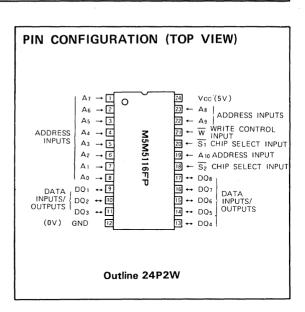
16384-BIT (2048-WORD BY 8-BIT) CMOS STATIC RAM

DESCRIPTION

The M5M5116FP series of 2048-word by 8-bit asynchronous silicon gate CMOS static RAM operates on a single 5V power supply and is designed for easy use in applications requiring battery backup.

Two chip select inputs are available: $\overline{S_2}$ provides the minimum standby current with battery back-up while $\overline{S_1}$ enables high-speed memory access.

The series is packaged in a small 24-pin plastic DIL flat package.

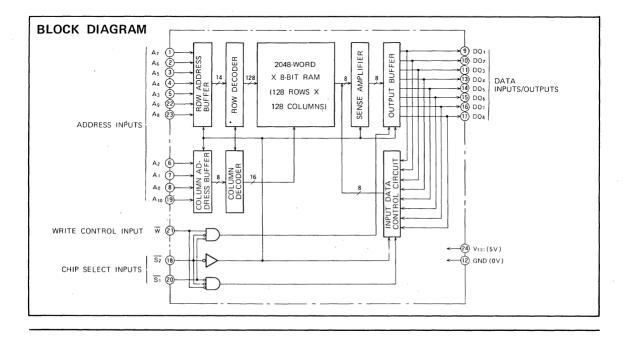

FEATURES

	Access time	S ₁ access	Current	consumption
Type name	(max)	time (max)	Active (max)	Stand-by (max)
M5M5116FP-15	150ns	80 ns	50 m A	15 <i>µ</i> A
M5M5116FP	200ns	100ns	JUMA	15 <i>µ</i> A

- Single 5V power supply.
- External clock and refresh operation not required.
- Data can be held with 2V supply voltage.
- All inputs and outputs are directly TTL compatible.
- All outputs are 3-state with OR-tie capability.
- Easy expansion of memory capacity with chip select signal.
- Common input/output for data pins.

APPLICATIONS

Battery drive, small-capacity memory units with battery back-up



FUNCTION

The M5M5116FP series has a 2048-word by 8-bit configuration. It operates on a single 5V supply and its inputs/ outputs are directly TTL compatible. Its completely static circuitry obviates the need for external clock and refresh operations and makes it very easy to use.

The data of the DQ pin are written when the address is designated by address signals $A_0 \sim A_{10}$, the $\overline{S_1}$ and $\overline{S_2}$ signals turn low-level, and the \overline{W} signal is set low.

When for the reading operation the \overline{W} signal is set high,

the $\overline{S_1}$ and $\overline{S_2}$ signals are set low, pin DQ is set to the output mode and the address is designated by signals $A_0 \sim A_{10}$, the data of the designated address are output to pin DQ.

When signal $\overline{S_1}$ or $\overline{S_2}$ is set high, the chip is set to a nonselect status in which neither reading nor writing is possible. Since the output floats (high-impedance state), OR-tie is possible with the other chip output pins.

The standby mode is established when signal $\overline{S_2}$ is set to V_{CC}. The supply current is now reduced to the very low level of 15 μ A (max) and the data in the memory are

retained even if the supply voltage falls to 2V, permitting power-down during non-operation or battery back-up during power failures.

OPERATION MODES

S ₁	S ₂	Ŵ	Mode	DQ	I _{CC}
х	н	х	Non-select	High impedance	Standby
н	L	х	Non-select	High impedance	Active
L	L	L	Write	D _{IN}	Active
L	L	н	Read	D _{OUT}	Active

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Limits	Unit
Vcc	Supply voltage		-0.3~7	V
VI	Input voltage	With respect to GND	$-0.3 \sim V_{CC} + 0.3$	V
Vo	Output voltage		0~V _{CC}	V
Pd	Power dissipation	Ta=25°C	700	mW
Topr	Operating free-air ambient temperature		0~70	°C
Tstg	Storage temperature-		-65~150	°C

RECOMMENDED OPERATING CONDITIONS ($T_a = 0 \sim 70$ °C, unless otherwise noted)

Symbol	Parameter			Unit	
Symbol	rarameter	Min	Тур	Max	Unit
V _{CC}	Supply voltage	4.5	5	5.5	V
GND	Supply voltage		0	1	V
VIL	Low-level input voltage	-0.3		0.8	V
VIH	High-level input voltage	2.2		V _{CC} +0.3	V

ELECTRICAL CHARACTERISTICS ($T_a = 0 \sim 70^{\circ}C$, $V_{CC} = 5V \pm 10\%$, unless otherwise noted)

Symbol	Param		Test conditions		Limits		11-1-
зуньон	Faran	eter	Test conditions	Min	Тур	Max	Unit
VIH	High-level input voltage			2.2		V _{CC} +0.3	V
VIL	Low-level input voltage			-0.3		0.8	V.
VOH	High-level output voltage		I _{OH} =-1mA	2.4			V
VOL	Low-level output voltage		I _{OL} = 2.1mA			0.4	V
Ц	Input current		V _I = 0 ~V _{CC}			± 1	μA
Iozh	Off-state high-level output cu	rrent	$\overline{S_1}$ or $\overline{S_2} = V_{IH}$, $V_0 = 2.4 V \sim V_{CC}$			1	μA
IOZL	Off-state low-level output cur	rent	$\overline{S_1}$ or $\overline{S_2} = V_{1H}$, $V_0 = 0V$			-1	μA
		M5M5116FP-15	$V_1(\overline{S_1}) = V_1(\overline{S_2}) = 0 \vee \text{Output pin open}$			45	mA
CC1	Supply current	M5M5116FP	Other inputs = V_{CC} or 0 V		30	45	mA
		M5M5116FP-15	$V_{I}(\overline{S_{1}}) = V_{I}(\overline{S_{2}}) = V_{IL}$ Output pin open			50	mA
I _{CC2}	Supply current	M5M5116FP	Other inputs = V _{IH}	·	35	50	mA
I CC3	Standby supply current		$\overline{S_2} = V_{CC} - 0.2V$, Other inputs = 0 $-V_{CC}$			15	μA
I CC4	Standby supply current		$\overline{S_2} = V_{1H}$, Other inputs = 0 ~ V _{CC}			2	mA
Ci	Input capacitance (Ta = 25°	C)	VI=GND, Vi=25mVrms, f=1MHz			6	pF
Co	Output capacitance (Ta = 2	5°C)	$V_0 = GND, V_0 = 25mVrms, f = 1MHz$			8	pF

Note 1: Current flowing into an IC shall be positive (no sign).

2: Typical values: V_{CC} = 5V, T_a = 25°C.

MITSUBISHI LSIS M5M5116FP, -15

16384-BIT (2048-WORD BY 8-BIT) CMOS STATIC RAM

SWITCHING CHARACTERISTICS (T $_a$ = 0 \sim 70°C, V_{CC}=5V \pm 10%, unless otherwise noted) READ CYCLE

		м	5M5116FP	- 15		M5M5116FP			
Symbol	Parameter		Limits			Limits			
		Min	Тур	Max	Min	Тур	Max	1	
t _{CR}	Read cycle time	150			200			ns	
t _{a (A)}	Address access time			.150			200	ns	
ta (S1)	Chip select 1 access time			80			100	nş	
ta (S2)	Chip select 2 access time			150			200	ns	
tdis (S1)	Output disable time from S1			50			60	ns	
tdis (S2)	Output disable time from S2			50			60	ns	
ten (S1)	Output enable time from S1	15			15			ns	
ten (S ₂)	Output enable time from S2	15			15			ns	
t _{v (A)}	Data valid time from address	20			20			ns	

TIMING REQUIREMENTS (T_a=0~70°C, V_{CC}=5V \pm 10%, unless otherwise noted) WRITE CYCLE

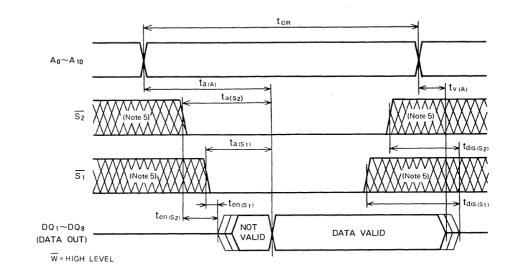
		M	M5M5116FP-15 Limits			M5M5116FP Limits			
Symbol	Parameter								
		Min	Тур	Max	Min	Тур	Max		
t _{cw}	Write cycle time	150			200			ns	
t _{w(W)}	Write pulse width	90			120			ns	
t _{su (A)}	Address set-up time	0			0			ns	
t _{su (s)}	Chip select set-up time	90			120			ns	
t _{su (D)}	Data set-up time	40			60			ns	
t _{h (D)} .	Data hold time	. 0			0			ns	
t _{rec (w)}	Write recovery time	10			10			ns	
t _{dis (W)}	Output disable time from write			50			60	ns	
t _{en (w)}	Output enable time from write	15			15			ns	

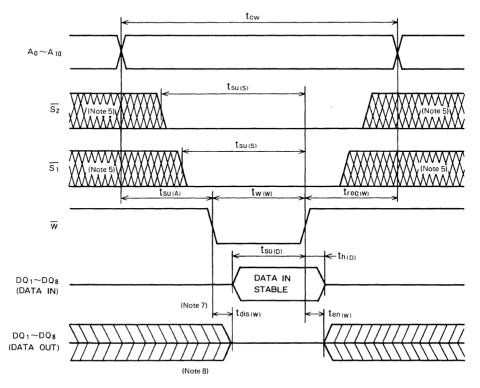
POWER-DOWN CHARACTERISTICS ELECTRICAL CHARACTERISTICS ($T_a = 0 \sim 70^{\circ}C$, unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			Unit
Зушьог	Falaneter	Min Typ Max	Unit			
V _{CC} (PD)	Power-down supply voltage		2			V
M. C.	Chip select input voltage	2.2V≦V _{CC} (PD)	2.2			v
V _{1 (S2})	Chip select input vortage	2V≤V _{CC (PD)} ≤2.2V		VCC (PD)		v
ICC (PD)	Power-down supply current	$V_{CC}=3V$, Other inputs = $3V$			10	μA

Note 3: When S₂ is operated at 2.2V (V_{IH} min), the supply current at which V_{CC(PD)} is between 4.5V and 2.4V, is specified by I_{CC4}.

TIMING REQUIREMENTS (Ta = 0 \sim 70 °C , unless otherwise noted)


Symbol	Symbol Parameter	Test conditions				
Symbol		Test conditions	Min	Тур	Max	Unit
t _{su (PD)}	Power-down set-up time		0			ns
t _{rec (PD)}	Power-down recovery time		t _{CR}			ns


MITSUBISHI LSIS M5M5116FP, -15

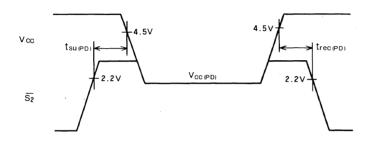
16384-BIT (2048-WORD BY 8-BIT) CMOS STATIC RAM

TIMING DIAGRAM Read cycle

Write cycle (\overline{W} control)

MITSUBISHI LSIs M5M5116FP. -15

16384-BIT (2048-WORD BY 8-BIT) CMOS STATIC RAM


tow A0~A10 ላለለ. $\overline{S_2}(\overline{S_1})$ Moto E t_{su(S)} trec (w) t_{su (A)} SI(Sz) tw(w) (Note 6) w t_{su(D)} ←th m DQ1~DQ8 DATA IN STABLE (DATA IN) (Note 7) 🚽 t dis (w) ten (S) D01~D08 (DATA OUT) (Note 8) Note 4: Test conditions Note 5: Hatching indicates the don't care inputs. Input pulse level: 0.4 ~ 2.4V 6: Writing is performed while \overline{S} and \overline{W} are in the

Write cycle (\overline{S} control)

Input pulse risetime and falltime: 10ns Load: 1 TTL, CL = 100pF Reference level: 1.5V

- low-level overlap period.
- 7: The output is kept in the high-impedance state when \overline{W} falls simultaneously with, or before, the \overline{S} falls.
- 8: A reverse-phase signal should not be supplied when DQ is in the output mode.

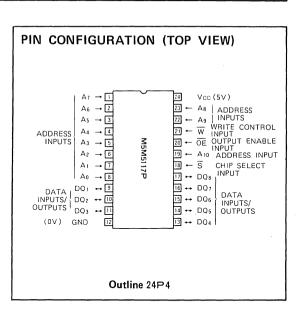
POWER-DOWN CHARACTERISTICS

DESCRIPTION

The M5M5117P series of 2048-word by 8-bit asynchronous silicon gate CMOS static RAM operates on a single 5V power supply and is designed for easy use in applications requiring battery backup.

A chip select input, \overline{S} , is available to provide the minimum standby current with battery back-up while an output enable input, \overline{OE} , enables high-speed memory access.

The series features pin compatibility with the M5L2716K 16K EPROM and M58725P 16K static RAM, and it is packaged in a standard 24-pin plastic DIL package.

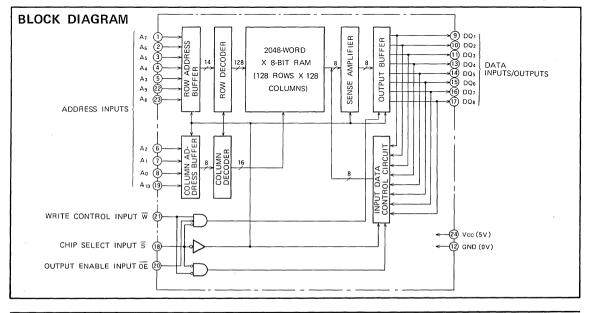

FEATURES

	Access time	OE access	Current consumption		
Type name	(max)	time (max)	Active (max)	Stand-by (max)	
M5M5117P-15	150ns	80ns	50.0	15.00	
M5M5117P	200ns	100ns	50mA	15 <i>#</i> A	

- Single 5V power supply.
- External clock and refresh operation not required.
- Data can be held with 2V supply voltage.
- All inputs, and outputs are directly TTL compatible.
- All outputs are 3-state with OR-tie capability.
- Easy expansion of memory capacity with chip select signal.
- Common input/output for data pins.
- Pin compatibility with M5L2716K 16K EPROM and M58725P 16K static RAM.

APPLICATIONS

Battery drive, small-capacity memory units with battery back-up



FUNCTION

The M5M5117P series has a 2048-word by 8-bit configuration. It operates on a single 5V supply and its inputs/ outputs are directly TTL compatible. Its completely static circuitry obviates the need for external clock and refresh operations and makes it very easy to use.

The data of the DQ pin are written when the address is designated by address signals $A_0 \sim A_{10}$, the \overline{S} signals turns low-level, and the \overline{W} signal is set low.

When for the reading operation the \overline{W} signal is set high, the \overline{S} and \overline{OE} signals are set low, pin DQ is set to the output mode and the address is designated by signals $A_0 \sim A_{10}$, the data of the designated address are output to pin DQ.

When signal \overline{S} is set high, the chip is set to a non-select status in which neither reading nor writing is possible. Since the output floats (high-impedance state), OR-tie is possible with the other chip output pins. When the \overline{OE} signal is set high, the output is put in the floating state. When \overline{OE} is set high during writing for use with an I/O bus system, bus contention between the input and output data can be avoided.

The standby mode is established when signal \overline{S} is set to V_{CC}. The supply current is now reduced to the very low level of 15 μ A (max) and the data in the memory are

retained even if the supply voltage falls to 2V, permitting power-down during non-operation or battery back-up during power failures.

OPERATION MODES

ร	ŌĒ	w	Mode	DQ	Icc .
н	х	x	Non-select	High impedance	Standby
L	х	L	Write	D _{IN}	Active
L	L	н	Read	Dout	Active
L	н	н	Output disable	High impedance	Active

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Limits	Unit
V _{CC}	Supply voltage		-0.3~7	V
Vi	Input voltage	With respect to GND	$-0.3 \sim V_{CC} + 0.3$	V
Vo	Output voltage		0~V _{CC}	V
Pd	Power dissipation	Ta=25°C	700	mW
Topr	Operating free-air ambient temperature		0~70	°C
Tstg	Storage temperature		-65~150	°C

RECOMMENDED OPERATING CONDITIONS (Ta = 0~70°C, unless otherwise noted)

Symbol	Parameter		Limits			
Symbol	rarameter	Min	Тур	Max	Unit	
Vcc	Supply voltage	4.5	5	5.5	V	
GND	Supply voltage		0		V	
VIL	Low-level input voltage	-0.3		0.8	V	
ViH	High-level input voltage	2.2		V _{CC} +0.3	V	

ELECTRICAL CHARACTERISTICS ($T_a = 0 \sim 70^{\circ}C$, $V_{CC} = 5V \pm 10\%$, unless otherwise noted)

	_				Limits		Unit
Symbol	Par	ameter	Test conditions	Min	Тур	Max	Unit
VIH	High-level input voltage					V _{CC} +0.3	V
VIL	Low-level input voltage			-0.3		0.8	V
VoH	High-level output voltage		I _{OH} =-1mA	2.4			V
VOL	Low-level output voltage		I _{OL} =2.1mA			0.4	V
- II	Input current		V ₁ =0~V _{CC}			± 1	μA
lоzн	Off-state high-level output	current	\overline{S} or $\overline{OE} = V_{IH}$, $V_0 = 2.4 V \sim V_{CC}$			1	μA
IOZL	Off-state low-level output	current	\overline{S} or $\overline{OE} = V_{IH}$, $V_O = 0V$			- 1	μA
		M5M5117P-15	$V_{I}(\bar{s}) = 0V$ Output pin open			45	mA
I CC1	Supply current	M5M5117P	Other inputs = V _{CC}		30	45	mA
		M5M5117P-15	$V_{I}(\bar{s}) = V_{IL}$ Output pin open			50	mA
1 CC2	Supply current	M5M5117P	Other inputs = VIH		35	50	mA
I CC3	Standby supply current	I	$\overline{S} = V_{CC} - 0.2V$, Other inputs = $0 - V_{CC}$			15	μA
ICC4	Standby supply current		$\overline{S} = V_{IH}$, Other inputs $= 0 \sim V_{CC}$			2	mA
Ci	Input capacitance (Ta =2	25°C)	V_1 =GND, V_1 =25mVrms, f=1MHz			6	pF
Co	Output capacitance (Ta =	=25°C)	$V_0 = GND, V_0 = 25mVrms, f = 1MHz$			8	pF

Note 1: Current flowing into an IC shall be positive (no sign).

2: Typical values $V_{CC} = 5V$, $T_a = 25^{\circ}C$.

SWITCHING CHARACTERISTICS (Ta = 0 ~ 70°C, V_{CC}=5V \pm 10%, unless otherwise noted) READ CYCLE

		N	M5M5117P-15 Limits			M5M5117P		
Symbol	Parameter					Limits		
		Min	Тур	Max	Min	Тур	Max	1
t _{CR}	Read cycle time	150			200			ns
t _{a (A)}	Address access time			150			200	ns
t _{a (S)}	Chip select access time			150			200	ns
t _{a (OE)}	Output enable access time			80			100	ns
t _{dis (S)}	Output disable time from S			50			60	ns
t _{dis (OE)}	Output disable time from OE			50			60	ns
t _{en (S)}	Output enable time from S	15			15			ns
t _{en (OE)}	Output enable time from OE	15			15			ns
t _{v (A)}	Data valid time from address	20			20			ns

TIMING REQUIREMENTS (Ta=0~70°C, V_{CC}=5V \pm 10%, unless otherwise noted) WRITE CYCLE

		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	15M5117P-1	15		M5M5117P			
Symbol	Parameter		Limits			Limits		Unit	
		Min	Тур	Max	Min	Тур	Max		
t _{cw}	Write cycle time	150			200			ns	
tw(w)	Write pulse width	90			120			ns	
t _{su (A)}	Address set-up time	0			0			ns	
t _{su (S)}	Chip select set-up time	90			120			ns	
t _{su (D)}	Data set-up time	40			60			ns	
t _{h (D)}	Data hold time	0			0			ns	
t _{rec (w)}	Write recovery time	10			10			ns	
t _{su(OE)}	Output enable set-up time	40			40			ns	
t _{dis(OE)}	Output disable time from OE			50			60	ns	
t _{dis (w)}	Output disable time from write			50			60	ns	
ten (w)	Output enable time from write	15			15			ns	

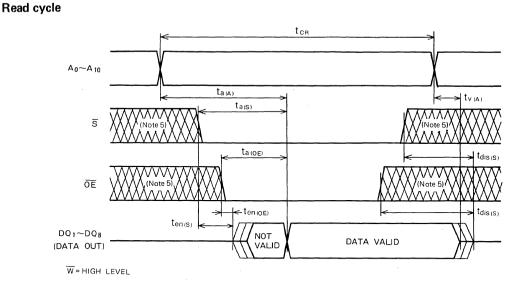
# POWER-DOWN CHARACTERISTICS

**ELECTRICAL CHARACTERISTICS** ( $T_a = 0 \sim 70^{\circ}C$ , unless otherwise noted)

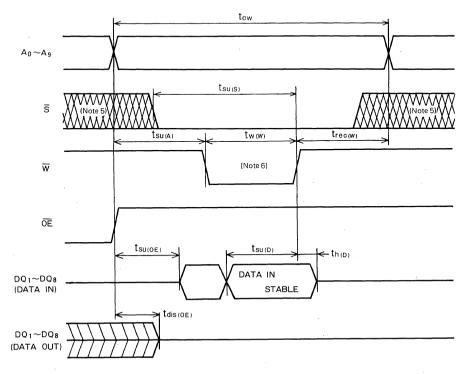
Symbol	Parameter	Test conditions	Limits			Unit
Symbol	Faraneter	rest conditions	Min	Тур	Max	Unit
V _{CC} (PD)	Power-down supply voltage		2			V
M. (c)	Chip select input voltage	$2.2V \leq V_{CC (PD)}$	2.2			V
V _{I (S)}		2V≦V _{CC (PD)} ≦2.2V		V _{CC} (PD)		V
ICC (PD)	Power-down supply current	$V_{CC}=3V$ , Other inputs = 3V			10	μA

Note 3: When S is operated at 2.2V (VIH min), the supply current at which V_{CC (PD)} is between 4.5V and 2.4V, is specified by I_{CC4}.

#### TIMING REQUIREMENTS (Ta=0~70 $^\circ C$ , unless otherwise noted)


Symbol Parameter	Parameter	Test conditions		Unit		
	l'est conditions	Min	Тур	Max	Unit	
t _{su (PD)}	Power-down set-up time		0			ns
t _{rec (PD)}	Power-down recovery time		t _{CR}			ns



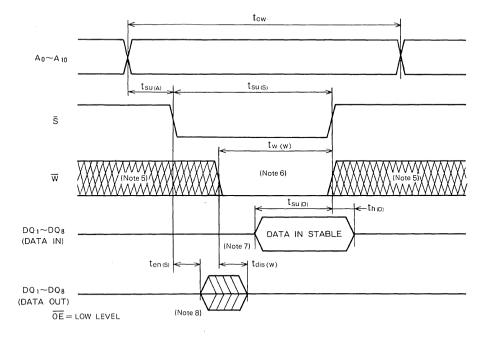

# MITSUBISHI LSIS M5M5117P, -15

# 16384-BIT (2048-WORD BY 8-BIT) CMOS STATIC RAM

TIMING DIAGRAM



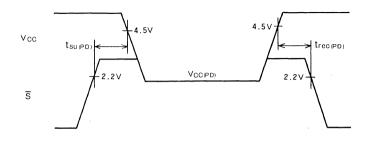
Write cycle (W control)






# MITSUBISHI LSIS M5M5117P, -15

## 16384-BIT (2048-WORD BY 8-BIT) CMOS STATIC RAM


#### Write cycle (S control)



Note 4: Test conditions Input pulse level:  $0.4 \sim 2.4V$ Input pulse risetime and falltime: 10ns Load: 1TTL,  $C_L = 100pF$ Reference level: 1.5V Note 5: Hatching indicates the don't care inputs.

- 6: Writing is performed while  $\overline{S}$  and  $\overline{W}$  are in the low-level overlap period.
- 7: The output is kept in the high-impedance state when  $\overline{W}$  falls simultaneously with, or before, the  $\overline{S}$  falls.
- A reverse phase signal should not be supplied when DQ is in the output mode.

#### **POWER-DOWN CHARACTERISTICS**







# MITSUBISHI LSIS

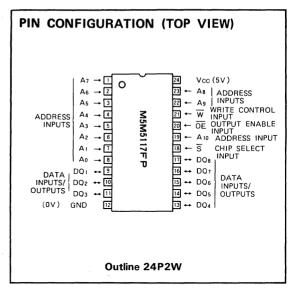
#### 16384-BIT (2048-WORD BY 8-BIT) CMOS STATIC RAM

#### DESCRIPTION

The M5M5117FP series of 2048-word by 8-bit asynchronous silicon gate CMOS static RAM operates on a single 5V power supply and is designed for easy use in applications requiring battery backup.

A chip select input,  $\overline{S}$ , is available to provide the minimum standby current with battery back-up while an output enable input,  $\overline{OE}$ , enables high-speed memory access.

The series features pin compatibility with the M5L2716K 16K EPROM and M58725P 16K static RAM, and it is packaged in a small 24-pin plastic DIL flat package.

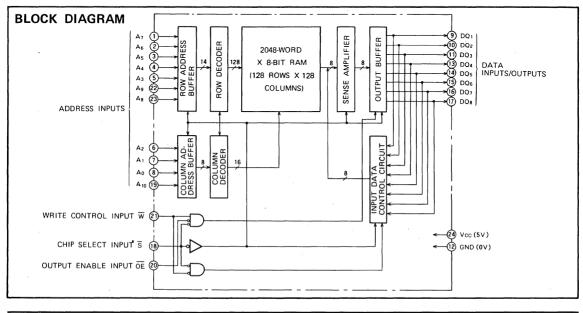

#### **FEATURES**

	A	OE access	Current	consumption	
Type name	Access time (max)	time (max)	Active (max)	Stand-by (max)	
M5M5117FP-15	150ns	80ns	50	15	
M5M5117FP	200ns	100ns	50mA	15 <i>µ</i> A	

- Single 5V power supply.
- External clock and refresh operation not required.
- Data can be held with 2V supply voltage.
- All inputs, and outputs are directly TTL compatible.
- All outputs are 3-state with OR-tie capability.
- Easy expansion of memory capacity with chip select signal.
- Common input/output for data pins.
- Pin compatibility with M5L2716K 16K EPROM and M58725P 16K static RAM.

#### APPLICATIONS

Battery drive, small-capacity memory units with battery back-up




#### **FUNCTION**

The M5M5117FP series has a 2048-word by 8-bit configuration. It operates on a single 5V supply and its inputs/ outputs are directly TTL compatible. Its completely static circuitry obviates the need for external clock and refresh operations and makes it very easy to use.

The data of the DQ pin are written when the address is designated by address signals  $A_0 \sim A_{10}$ , the  $\overline{S}$  signals turns low-level, and the  $\overline{W}$  signal is set low.

When for the reading operation the  $\overline{W}$  signal is set high, the  $\overline{S}$  and  $\overline{OE}$  signals are set low, pin DQ is set to the output mode and the address is designated by signals  $A_0 \sim A_{10}$ , the data of the designated address are output to pin DQ.





When signal  $\overline{S}$  is set high, the chip is set to a non-select status in which neither reading nor writing is possible. Since the output floats (high-impedance state), OR-tie is possible with the other chip output pins. When the  $\overline{OE}$  signal is set high, the output is put in the floating state. When  $\overline{OE}$  is set high during writing for use with an I/O bus system, bus contention between the input and output data can be avoided.

The standby mode is established when signal  $\overline{S}$  is set to V_{CC}. The supply current is now reduced to the very low level of 15µA (max) and the data in the memory are

retained even if the supply voltage falls to 2V, permitting power-down during non-operation or battery back-up during power failures.

#### **OPERATION MODES**

ร	ŌĒ	W	Mode	DQ	Icc
н	x	х	Non-select	High impedance	Standby
L	х	L	Write	D _{IN}	Active
L	L	н	Read	Dout	Active
L	н	н	Output disable	High impedance	Active

#### ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Limits	Unit	
V _{CC}	Supply voltage			V	
V ₁	Input voltage	With respect to GND	$-0.3 - V_{CC} + 0.3$	V	
Vo	Output voltage		0~V _{CC}	V	
Pd	Power dissipation	Ta=25°C	700	mW	
Topr	Operating free-air ambient temperature		0~70	°C	
Tstg	Storage temperature		-65~150	°C	

#### **RECOMMENDED OPERATING CONDITIONS** ( $T_a = 0 \sim 70^{\circ}C$ , unless otherwise noted)

Symbol	Parameter		Limits			
Symbol		Min	Тур	Max	Unit	
V _{CC}	Supply voltage	4.5	5	5.5	V	
GND	Supply voltage		0		V	
VIL	Low-level input voltage	-0.3		0.8	V	
VIH	High-level input voltage	2.2		V _{CC} +0.3	V	

#### **ELECTRICAL CHARACTERISTICS** ( $T_a = 0 \sim 70^{\circ}C$ , $V_{CC} = 5V \pm 10\%$ , unless otherwise noted)

			Test conditions		Limits		Unit
Symbol	Para	meter	l est conditions	Min	Тур	Max	Onit
VIH	High-level input voltage			2.2		V _{CC} +0.3	V
VIL.	Low-level input voltage			-0.3		0.8	V
Vон	High-level output voltage		I _{0H} =-1mA	2.4			v
VOL	Low-level output voltage		I _{OL} = 2.1mA			0.4	V
1 ₁	Input current		V ₁ =0~V _{CC}			± 1.	μA
lоzн	Off-state high-level output current		$\overline{S}$ or $\overline{OE} = V_{IH}$ , $V_0 = 2.4 V - V_{CC}$			1	μA
IOZL	Off-state low-level output current		$\overline{S}$ or $\overline{OE} = V_{IH}$ , $V_O = 0V$			-1	μA
		M5M5117FP-15	$V_{I}(\bar{s}) = 0V$ Output pin open			45	mA
I _{CC1}	Supply current	M5M5117FP	Other inputs = $V_{CC}$		30	45	mA
		M5M5117FP-15	$V_{I}(\bar{s}) = V_{IL}$ Output pin open			50	mA
I CC2	Supply current	M5M5117FP	Other inputs = VIH		35	50	mA
1 CC3	Standby supply current		$\overline{S} = V_{CC} - 0.2V$ , Other inputs = $0 - V_{CC}$			15	μA
ICC4	Standby supply current		$\overline{S} = V_{IH}$ , Other inputs = 0 ~ V _{CC}			2	mA
Ci	Input capacitance (Ta = 25°C)		$V_1$ =GND, $V_i$ =25mVrms, f=1MHz			6	pF
Co	Output capacitance (Ta = 25°C)		$V_0 = GND$ , $V_0 = 25mVrms$ , $f = 1MHz$			8	pF

Note 1: Current flowing into an IC shall be positive (no sign).

2: Typical values: V_{CC} = 5V, T_a = 25°C.



# MITSUBISHI LSIS M5M5117FP, -15

## 16384-BIT (2048-WORD BY 8-BIT) CMOS STATIC RAM

#### SWITCHING CHARACTERISTICS ( $T_a = 0 \sim 70^{\circ}C$ , $V_{CC} = 5V \pm 10\%$ , unless otherwise noted.) READ CYCLE

		м	M5M5117FP-15						
Symbol	Parameter		Limits			Limits			
		Min	Тур	Max	Min	Тур	Max		
t _{CR}	Read cycle time	150			200			ns	
t _{a (A)}	Address access time			150			200	ns	
t _{a (S)}	Chip select access time			150			200	ns	
t _{a (OE)}	Output enable access time			80			100	ns	
t _{dis (S)}	Output disable time from S			50			60	ns	
t _{dis (OE)}	Output disable time from OE			50			60	ns	
t _{en (S)}	Output enable time from S	15			15			ns	
t _{en (OE)}	Output enable time from OE	15			15			ns	
t _{v (A)}	Data valid time from address	20			20			ns	

# TIMING REQUIREMENTS ( $\tau_a{=}0{\sim}70^{\circ}C$ , $V_{CC}{=}5V{\pm}10\%$ , unless otherwise noted ) WRITE CYCLE

		м	5M5117FP-	15	N	M5M5117FP			
Symbol	Parameter		Limits			Unit			
		Min	Тур	Max	Min	Тур	Max		
t _{cw}	Write cycle time	150			200			ns	
t _{w(w)}	Write pulse width	90			120			ns	
t _{su (A)}	Address set-up time	0			0			ns	
t _{su (S)}	Chip select set-up time	90			120			ns	
t _{su (D)}	Data set-up time	40		-	60			ns	
t _{h (D)}	Data hold time	0			0			ns	
trec (w)	Write recovery time	10			10			ns	
t _{su(OE)}	Output enable set-up time	40			40			ns	
t _{dis(OE)}	Output disable time from OE			50			60	ns	
t _{dis (w)}	Output disable time from write			50			60	ns	
ten (w)	Output enable time from write	15			15			ns	

#### POWER-DOWN CHARACTERISTICS

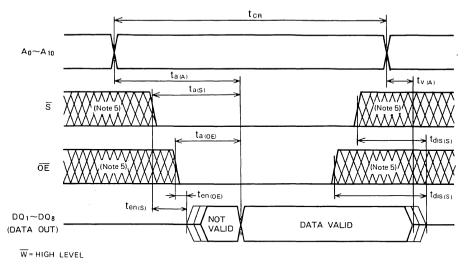
#### **ELECTRICAL CHARACTERISTICS** ( $T_a = 0 \sim 70^{\circ}C$ , unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			11.24
			Min	Тур	Max	Unit
V _{CC} (PD)	Power-down supply voltage		2			V
V _{I (S)}	Chip select input voltage	2.2V≦V _{CC (PD)}	2.2			V
•1(5)		2V≦V _{CC (PD)} ≦2.2V		VCC (PD)		v
ICC (PD)	Power-down supply current	$V_{CC}=3V$ , Other inputs = 3V			10	μA

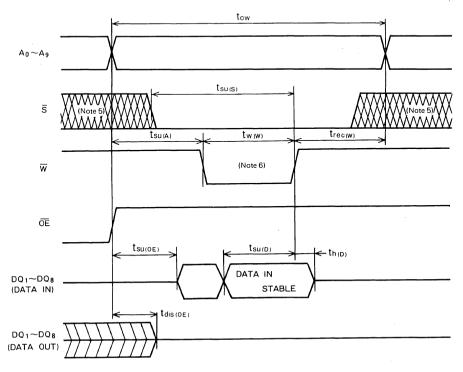
Note 3: When S is operated at 2.2V (VIH min), the supply current at which VCC (PD) is between 4.5V and 2.4V, is specified by ICC4.

#### TIMING REQUIREMENTS ( $T_a = 0 \sim 70^{\circ}C$ , unless otherwise noted)

Symbol Parameter	Parameter	Test conditions		Linit		
			Min	Тур	Max	Unit
t _{su (PD)}	Power-down set-up time		0			ns
t _{rec (PD)}	Power-down recovery time		t _{CR}			ns




# MITSUBISHI LSIS M5M5117FP, -15

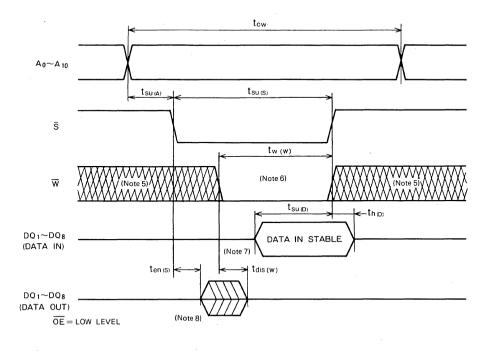

### 16384-BIT (2048-WORD BY 8-BIT) CMOS STATIC RAM

# TIMING DIAGRAM





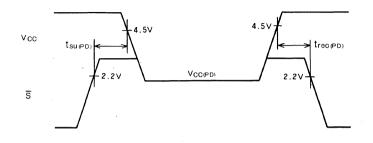
Write cycle (W control)






# MITSUBISHI LSIS M5M5117FP, -15

## 16384-BIT (2048-WORD BY 8-BIT) CMOS STATIC RAM


### Write cycle ( $\overline{S}$ control)



Note 4: Test conditions Input pulse level: 0.4 ~ 2.4V Input pulse risetime and falltime: 10ns Load: 1TTL, CL = 100pF Reference level: 1.5V Note 5: Hatching indicates the don't care inputs.

- Writing is performed while S and W are in the low-level overlap period.
- 7: The output is kept in the high-impedance state when  $\overline{W}$  falls simultaneously with, or before, the  $\overline{S}$  falls.
- A reverse phase signal should not be supplied when DQ is in the output mode.

#### **POWER-DOWN CHARACTERISTICS**







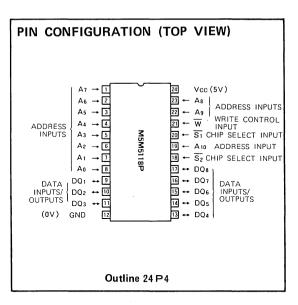
# мітя Шалані Lais M5M5118P. -15

### 16384-BIT (2048-WORD BY 8-BIT) CMOS STATIC RAM

#### DESCRIPTION

The M5M5118P series of 2048-word by 8-bit asynchronous silicon gate CMOS static RAM operates on a single 5V power supply and is designed for easy use in applications requiring battery back-up.

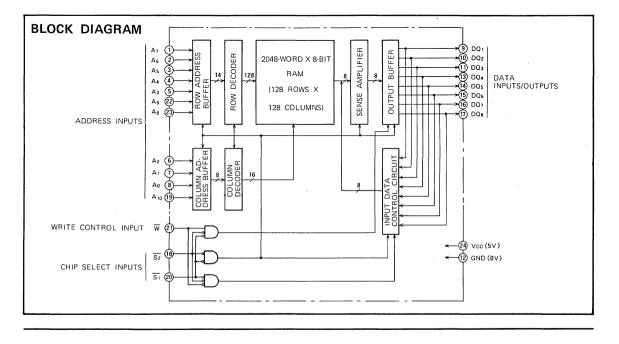
Two chip select inputs,  $\overline{S_1}$  and  $\overline{S_2}$ , are available to provide the minimum standby current with battery back-up. The series is packaged in a standard 24-pin plastic DIL package.


#### FEATURES

	0		consumption
Type name	Access time (max)	Active (max)	Stand-by (max)
M5M5118P-15	150ns	50mA	15 <i>µ</i> A
M5M5118P	200ns	JUNA	15/24

- Single 5V power supply.
- External clock and refresh operation not required.
- Data can be held with 2V supply voltage.
- All inputs and outputs are directly TTL compatible.
- All outputs are 3-state with OR-tie capability.
- Easy expansion of memory capacity with chip select signal.
- Common input/output for data pins

#### APPLICATIONS


Battery drive, small-capacity memory units with battery back-up



#### FUNCTION

The M5M5118P series has a 2048-word by 8-bit configuration. It operates on a single 5V supply and its inputs/ outputs are directly TTL compatible. Its completely static circuitry obviates the need for external clock and refresh operations and makes it very easy to use. The data of the DQ pin are written when the address is designated by address signals  $A_0 \sim A_{10}$ , the  $\overline{S_1}$  and  $\overline{S_2}$  signals turn lowlevel, and the  $\overline{W}$  signal is set low.

When for the reading operation the  $\overline{W}$  signal is set high, the  $\overline{S_1}$  and  $\overline{S_2}$  signals are set low, pin DQ is set to the output





mode and the address is designated by signals  $A_0 \sim A_{10}$ , the data of the designated address are output to pin DQ.

When signal  $\overline{S_1}$  or  $\overline{S_2}$  is set high, the chip is set to a nonselect status in which neither reading nor writing is possible. Since the output floats (high-impedance state), OR-tie is possible with the other chip output pins.

The standby mode is established when signal  $\overline{S_2}$ , or signal  $\overline{S_1}$  (with signal  $\overline{S_2}$  at V_{CC} or GND), is set to V_{CC}. The supply current is now reduced to the very low level of 15 $\mu$ A (max) and data in the memory are retained even if the supply voltage falls to 2V, permitting power-down

during non-operation or battery back-up during power failures.

#### **OPERATION MODES**

S ₁	S ₂	W	Mode	DQ	Icc
х	н	х	Non-select	High impedance	Standby
н	x	х	Non-select	High impedance	Standby
L	L	L	Write	D _{IN}	Active
L	L	н	Read	Dout	Active

#### ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Limits	Unit
Vcc	Supply voltage		-0.3~7	v
V ₁	Input voltage	With respect to GND	$-0.3 \sim V_{CC} + 0.3$	v
Vo	Output voltage	······································	0~V _{CC}	v
Pd	Power dissipation	Ta=25°C	700	m W
Topr	Operating free-air ambient temperature		0~70	°C
Tstg	Storage temperature		-60~150	°C

**RECOMMENDED OPERATING CONDITIONS** ( $T_a = 0 \sim 70^{\circ}C$ , unless otherwise noted)

	D			Unit	
Symbol	Parameter	Min	Тур	Max	Unit
Vcc	Supply voltage	4.5	5	5.5	V
GND	Supply voltage		0		V
VIL	Low-level input voltage	-0.3		0.8	V
VIH	High-level input voltage	2.2		V _{CC} +0.3	V

#### $\label{eq:Electrical characteristics} \mbox{ ($T_a=0$-70°C$, $V_{CC}=5V\pm10\%$, unless otherwise noted)}$

<u> </u>					Limits		
Symbol	Param	eter	Test conditions	Min	αγΤ	Max	Unit
VIH	High-level input voltage	· .		2.2		Vcc+0.3	V
VIL	Low-level input voltage			-0.3		0.8	V
V _{OH}	High-level output voltage		I _{OH} =-1mA	2.4			V
VOL	Low-level output voltage		I _{OL} =2.1mA			0.4	V
I _F	Input current		V _I =0~V _{CC}			± 1	μA
I _{ozh}	Off-state high-level output c	urrent	$\overline{S_1}$ or $\overline{S_2} = V_{1H}$ , $V_0 = 2.4 V - V_{CC}$			1	μA
I _{OZL}	Off-state low-level output co	urrent	$\overline{S_1}$ or $\overline{S_2} = V_{1H}, V_0 = 0V$			-1	μA
	0.1	M5M5118P-15	$V_1(\overline{S_1}) = V_1(\overline{S_2}) = 0V$ Output pin open			45	mA
CC1	Supply current	M5M5118P	Other inputs = V _{CC}		30	45	mA
		M5M5118P-15	$V_{I}(\overline{S_{1}}) = V_{I}(\overline{S_{2}}) = V_{IL}$ Output pin open			50	mA
CC2	Supply current	M5M5118P	Other inputs = V _{1H}		35	50	mA
I _{CC3}	Standby supply current		$ \widehat{\mathbb{O}} \ \overline{\mathbb{S}_2} = \mathbb{V}_{CC} - \mathbb{O}.2  \mathbb{V} , \text{ Other inputs} = \mathbb{O} - \mathbb{V}_{CC} \\ \widehat{\mathbb{O}} \ \overline{\mathbb{S}_1} = \mathbb{V}_{CC} - \mathbb{O}.2  \mathbb{V} , \ \overline{\mathbb{S}_2} \le \mathbb{O}.2  \mathbb{V} , \text{ Other inputs} = $	0~Vcc		15	μA
I _{CC4}	Standby supply current		$\overline{S_2} \leq 0.2 \text{ V}, \overline{S_1} = \text{V}_{\text{IH}}, \text{ Other inputs} = 0 - \text{V}_{\text{CC}}$			2	mA
Ci	Input capacitance (Ta = 2	5°C)	$V_1 = GND$ , $V_1 = 25mVrms$ , $f = 1MHz$			6	pF
Co	Output capacitance (Ta = 2	25°C)	$V_0 = GND$ , $V_0 = 25mVrms$ , $f = 1MHz$			8	pF

Note 1: Current flowing into an IC shall be positive (no sign).

2: Typical values:  $V_{CC} = 5V$ ,  $T_a = 25^{\circ}C$ .



# SWITCHING CHARACTERISTICS (Ta = 0 $\sim$ 70°C, V_{CC}=5V $\pm$ 10%, unless otherwise noted) READ CYCLE

		N	M5M5118P-15 Limits			M5M5118P Limits		
Symbol	Parameter							
		Min	Тур	Max	Min	Тур	Max	7
tcr	Read cycle time	150			200			ns
t _{a(A)}	Address access time			150			200	ns
ta(s1)	Chip select 1 access time			150			200	ns
ta (S2)	Chip select 2 access time			150			200	ns
tdis(S2)	Output disable time from S1			50			60	ns
t _{dis (S1} )	Output disable time from S2			50			60	ns
t _{en (S1} )	Output enable time from S1	15			15			ns
t _{en (S2} )	Output enable time from S2	15			15			ns
t _{v (A)}	Data valid time from address	20			20			ns

# TIMING REQUIREMENTS (Ta=0~70°C, V_{CC}=5V $\pm$ 10%, unless otherwise noted) WRITE CYCLE

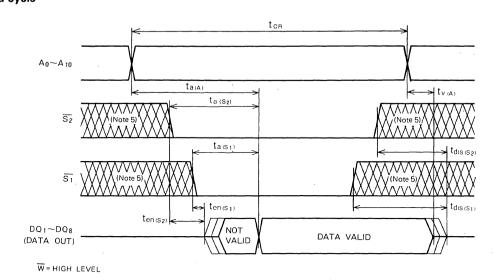
		N	15M5118P-1	5		M5M5118P		
Symbol	Parameter	Limits					Unit	
		Min	Тур	Max	Min	Тур	Max	1
t _{cw}	Write cycle time	150			200			nn
t _{w(W)}	Write pulse width	90			120			ns
t _{su (A)}	Address set-up time	0			0			ns
t _{su (s)}	Chip select set-up time	90			120			ns
t _{su (D)}	Data set-up time	40			60			ns
t _{h (D)}	Data hold time	0			0			ns
t _{rec (w)}	Write recovery time	10			10			ns
t _{dis (w)}	Output disable time from write			50			60	ns
t _{en (w)}	Output enable time from write	15			15			ns

# $\label{eq:power-down} \begin{array}{l} \mbox{POWER-DOWN CHARACTERISTICS} \\ \mbox{ELECTRICAL CHARACTERISTICS ($T_a=0$-70°C, unless otherwise noted)} \end{array}$

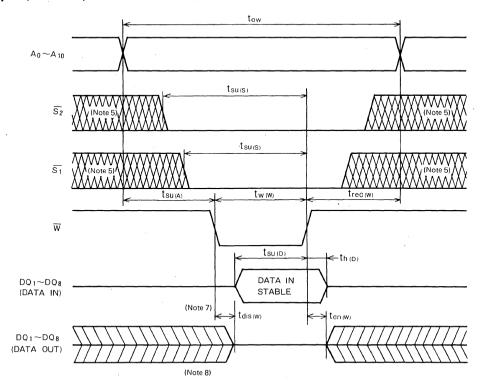
Symbol	Parameter	Test conditions	Limits			Unit
Symbol		rest conditions	Min	Тур	Max	Unit
VCC (PD)	Power-down supply voltage		2			V
VL(S)		2.2V≦V _{CC} (PD)	2.2			V
VI(S)	Chip select input voltage	$2V \leq V_{CC (PD)} \leq 2.2V$		VCC (PD)		V
ICC (PD)	Power-down supply current	$V_{CC}=3V$ , Other inputs = 3V			10	μA

Note 3: When  $\overline{S_1}$  or  $\overline{S_2}$  is operated at 2.2V (V_{IH} min), the supply current at which V_{CC (PD}) is between 4.5V and 2.4V, is specified by I_{CC4}.

#### TIMING REQUIREMENTS (Ta=0~70°C, unless otherwise noted)


Symbol	Symbol. Parameter	Test conditions				
Symbol.	Parameter	Test conditions	Min	Тур	Ma×	
t _{su(PD)}	Power-down set-up time		0			ns
t _{rec (PD)}	Power-down recovery time		t _{CR}			ns



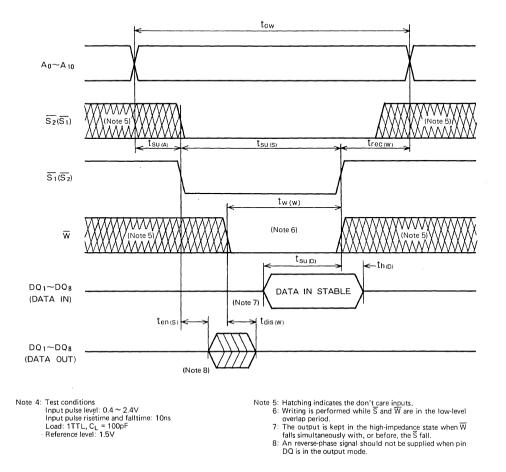

MITSUBISHI LSIS M5M5118P. -15

### 16384-BIT (2048-WORD BY 8-BIT) CMOS STATIC RAM

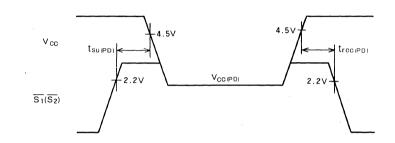
TIMING DIAGRAM Read cycle



#### Write cycle (W control)







# MITSUBISHI LSIS M5M5118P, -15

# 16384-BIT (2048-WORD BY 8-BIT) CMOS STATIC RAM

## Write cycle ( $\overline{S}$ control)



#### **POWER-DOWN CHARACTERISTICS**







# MITSUBISHI LSIS M5M5118FP. -15

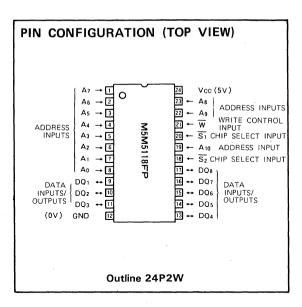
16384-BIT (2048-WORD BY 8-BIT) CMOS STATIC RAM

#### DESCRIPTION

The M5M5118FP series of 2048-word by 8-bit asynchronous silicon gate CMOS static RAM operates on a single 5V power supply and is designed for easy use in applications requiring battery back-up.

Two chip select inputs,  $\overline{S_1}$  and  $\overline{S_2}$ , are available to provide the minimum standby current with battery back-up.

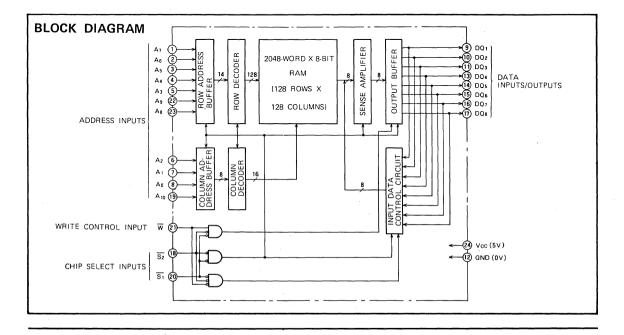
The series is packaged in a small 24-pin plastic DIL flat package.


#### **FEATURES**

	Access time (max) 150 ns	Current	consumption
Type name		Active (max)	Stand-by (max)
M5M5118FP-15	150ns	50	15.4
M5M5118FP	200ns	50mA	15 µ A

- Single 5V power supply.
- External clock and refresh operation not required.
- Data can be held with 2V supply voltage.
- All inputs and outputs are directly TTL compatible.
- All outputs are 3-state with OR-tie capability.
- Easy expansion of memory capacity with chip select signal.
- Common input/output for data pins

#### **APPLICATIONS**


Battery drive, small-capacity memory units with battery back-up



#### **FUNCTION**

The M5M5118FP series has a 2048-word by 8-bit configuration. It operates on a single 5V supply and its inputs/ outputs are directly TTL compatible. Its completely static circuitry obviates the need for external clock and refresh operations and makes it very easy to use. The data of the DQ pin are written when the address is designated by address signals  $A_0 \sim A_{10}$ , the  $\overline{S_1}$  and  $\overline{S_2}$  signals turn lowlevel, and the  $\overline{W}$  signal is set low.

When for the reading operation the  $\overline{W}$  signal is set high, the  $\overline{S_1}$  and  $\overline{S_2}$  signals are set low, pin DQ is set to the output





mode and the address is designated by signals  $A_0 \sim A_{10}$  , the data of the designated address are output to pin DQ.

When signal  $\overline{S_1}$  or  $\overline{S_2}$  is set high, the chip is set to a nonselect status in which neither reading nor writing is possible. Since the output floats (high-impedance state), OR-tie is possible with the other chip output pins.

The standby mode is established when signal  $\overline{S_2}$ , or signal  $\overline{S_1}$  (with signal  $\overline{S_2}$  at  $V_{CC}$  or GND), is set to  $V_{CC}$ . The supply current is now reduced to the very low level of 15 $\mu$ A (max) and data in the memory are retained even if the supply voltage falls to 2V, permitting power-down

during non-operation or battery back-up during power failures.

#### **OPERATION MODES**

S ₁	S ₂	W	Mode	DQ	1cc
×	н	Х	Non-select	High impedance	Standby
н	Х	Х	Non-select	High impedance	Standby
L	L	L	Write	D _{IN}	Active
L	L	н	Read	D _{OUT}	Active

#### ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Limits	Unit
Vcc	Supply voltage		-0.3~7	v
V ₁	Input voltage	With respect to GND	$-0.3 - V_{CC} + 0.3$	v
Vo	Output voltage		$0 \sim V_{CC}$	v
Pd	Power dissipation	Ta=25°C	700	m W
Topr	Operating free-air ambient temperature		0~70	°C
Tstg	Storage temperature		-60~150	°C

#### **RECOMMENDED OPERATING CONDITIONS** ( $T_a = 0 \sim 70^{\circ}C$ , unless otherwise noted)

Symbol	Parameter		Limits						
зутьої	rarameter	Min	Тур	Max	Unit				
Vcc	Supply voltage	4.5	5	5.5	V				
GND	Supply voltage		0		V				
VIL	Low-level input voltage	-0.3		0.8	V				
VIH	High-level input voltage	2.2		V _{CC} +0.3	V				

#### **ELECTRICAL CHARACTERISTICS** ( $T_a = 0 \sim 70^{\circ}C$ , $V_{CC} = 5V \pm 10\%$ , unless otherwise noted)

Symbol	Parameter		Test southing		Limits		
Symbol	Parameter		Test conditions	Min	Тур	Max	Unit
VIH	High-level input voltage			2.2		V _{CC} +0.3	V
VIL	Low-level input voltage			-0.3		0.8	V
V _{он}	High-level output voltage		1 _{0H} =-1mA	2.4			V
V _{OL}	Low-level output voltage		I _{OL} =2.1mA			0.4	V
I _I	Input current	·····	V ₁ =0~V _{CC}			±1	μA
¹ оzн	Off-state high-level output curre	nt	$\overline{S_1}$ or $\overline{S_2} = V_{IH}$ , $V_0 = 2.4 V \sim V_{CC}$			1	μA
OZL	Off-state low-level output currer	t	$\overline{S_1}$ or $\overline{S_2} = V_{1H}, V_0 = 0V$			-1	μA
1	Ĉ l	M5M5118FP-15	$V_1(\overline{S_1}) = V_1(\overline{S_2}) = 0V$ Output pin open	•		45	mA
CC1	Supply current	M5M5118FP	Other inputs $= V_{CC}$		30	45	mA
	Current automation	M5M5118FP-15	$V_{I}(\overline{S_{1}}) = V_{I}(\overline{S_{2}}) = V_{IL}$ Output pin open		-	50	mA
CC2	Supply current	M5M5118FP	Other inputs $= V_{IH}$		35	50	mA
I _{CC3}	Standby supply current	. I	$ () \overline{S_2} = V_{CC} - 0.2V, \text{ Other inputs} = 0 \sim V_{CC} $ $ () \overline{S_1} = V_{CC} - 0.2V, \overline{S_2} \le 0.2V, \text{ Other inputs} = 0$			15	μA
I _{CC4}	Standby supply current		$\overline{S_2} \le 0.2 \text{ V}, \overline{S_1} = \text{V}_{\text{IH}}, \text{ Other inputs} = 0 \sim \text{V}_{\text{CC}}$			2	mA
Ci	Input capacitance (Ta=25°C)		$V_1 = GND$ , $V_1 = 25mVrms$ , $f = 1MHz$			6	pF
Co	Output capacitance (Ta = 25°C	)	$V_0 = GND$ , $V_0 = 25mVrms$ , $f = 1MHz$			8	pF

Note 1: Current flowing into an IC shall be positive (no sign).

2: Typical values: V_{CC} = 5V, T_a = 25°C.



# MITSUBISHI LSIS M5M5118FP, -15

# 16384-BIT (2048-WORD BY 8-BIT) CMOS STATIC RAM

#### SWITCHING CHARACTERISTICS ( $T_a = 0 \sim 70^{\circ}C$ , $V_{CC} = 5V \pm 10\%$ , unless otherwise noted) READ CYCLE

		м	5M5118FP	- 15	N	)		
Symbol	Parameter		Limits				Unit	
		Min	Тур	Max	Min	Тур	Max	
t _{CR}	Read cycle time	150			200			ns
t _{a (A)}	Address access time			150			200	ns
ta(s1)	Chip select 1 access time			150		1	200	ns
ta (S2)	Chip select 2 access time			150			200	ns
tdis (S2)	Output disable time from S1			50			60	ns
tdis (S1)	Output disable time from S2			50			60	ns
t _{en (S1} )	Output enable time from S1	15	*		15			ns
t _{en (S2} )	Output enable time from S2	15			15			ns
t _{v (A)}	Data valid time from address	20			20			ns

# TIMING REQUIREMENTS (Ta = 0 $\sim$ 70°C , V_{CC} = 5 V $\pm$ 10% , unless otherwise noted) WRITE CYCLE

		м	5M5118FP-	15		M5M5118FF	>		
Symbol	Parameter		Limits				Unit		
		Min	Тур	Max	Min	Тур	Max		
t _{cw}	Write cycle time	150			200			nn	
t _{w(w)}	Write pulse width	90			120			ns	
t _{su (A)}	Address set-up time	0			0			ns	
t _{su (S)}	Chip select set-up time	90			120			ns	
t _{su (D)}	Data set-up time	40			60			ns	
t _{h (D)}	Data hold time	0			0			ns	
t _{rec (w)}	Write recovery time	10			10			ns	
t _{dis (w)}	Output disable time from write			50			60	ns	
t _{en (w)}	Output enable time from write	15			15			ns	

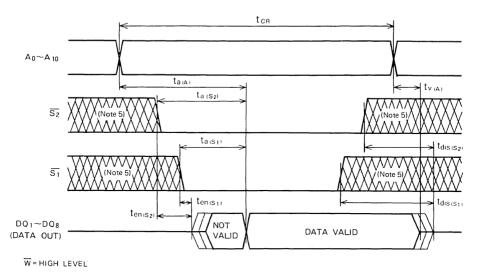
# POWER-DOWN CHARACTERISTICS ELECTRICAL CHARACTERISTICS ( $T_a = 0 \sim 70^{\circ}C$ , unless otherwise noted)

Symbol	Parameter	Test conditions		Unit		
Symbol	rarameter	Test conditions	Min	Тур	Max	Unit
VCC (PD)	Power-down supply voltage		2			V
Vi (s)		$2.2V \leq V_{CC}$ (PD)	2.2			V
VI(S)	Chip select input voltage	$2V \leq V_{CC} (PD) \leq 2.2V$		V _{CC} (PD)		V
ICC (PD)	Power-down supply current	$V_{CC}=3V$ , Other inputs = $3V$			10	μA

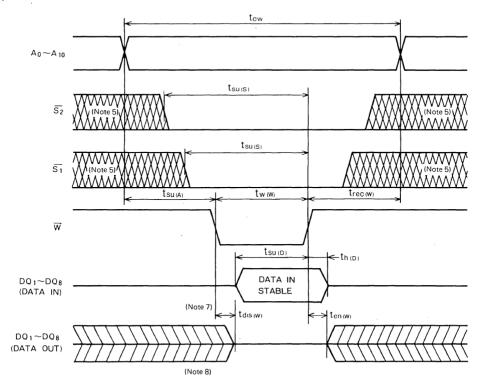
Note 3: When S₁ or S₂ is operated at 2.2V (V_{IH} min), the supply current at which V_{CC (PD)} is between 4.5V and 2.4V, is specified by I_{CC4}.

#### TIMING REQUIREMENTS ( $T_a = 0 \sim 70^{\circ}C$ , unless otherwise noted)

Symbol Parameter	Test conditions		Unit			
	Test conditions	Min	Тур	Max	Unit	
t _{su(PD)}	Power-down set-up time		0			ns
t _{rec (PD)}	Power-down recovery time		t _{CR}			ns




# MITSUBISHI LSIS M5M5118FP, -15

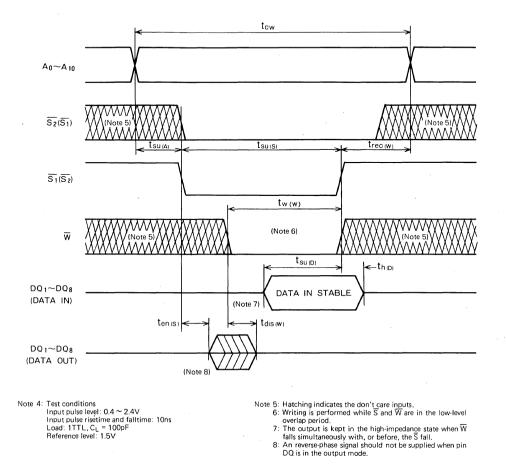

### 16384-BIT (2048-WORD BY 8-BIT) CMOS STATIC RAM

# TIMING DIAGRAM

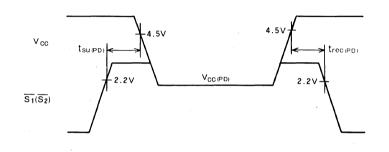




#### Write cycle (W control)







# MITSUBISHI LSIS M5M5118FP, -15

# 16384-BIT (2048-WORD BY 8-BIT) CMOS STATIC RAM

#### Write cycle (S control)



**POWER-DOWN CHARACTERISTICS** 





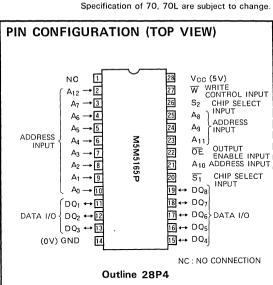


#### DESCRIPTION

The M5M5165P is a 65,536-bit CMOS static RAM organized as 8,192 words by 8 bits which is fabricated using high-performance double polysilicon CMOS technology. The use of resistive load NMOS cells and CMOS periferals result in a high-density and low-power static RAM. It is ideal for the memory systems which require simple interface.

The stand-by current is low enough for a battery backup application. It is mounted in a standard 28 pin package and configured in an industrial standard  $8K \times 8$ -bit pinout.

#### **FEATURES**


		Power supply current						
Туре	Access time (max)	Active (max)	Stand-by (max)					
M5M5165P-70	70 ns							
M5M5165P-10	100 ns		2mA					
M5M5165P-12	120ns							
M5M5165P-15	150ns	50 m A						
M5M5165P-70L	70 n s	50 MA						
M5M5165P-10L	100 ns		100 µ A					
M5M5165P-12L	120ns		1					
M5M5165P-15L	150ns							

- Single +5V Power Supply
- Fully Static Operation: No Clocks, No Refresh
- Data-Hold on +2V Power Supply
- Directly TTL Compatible: All Inputs and Outputs
- Three-State Outputs: OR-tie Capability
- Simple Memory Expantion by  $\overline{S_1}$ ,  $S_2$
- OE Prevents Data Contention in The I/O Bus
- Common Data I/O
- Pinout Compatible with 64K EPROM M5L2764K APPLICATION

Small Capacity Memory Units.

#### FUNCTION

The operation mode of the M5M5165P is determined by a



combination of the device control inputs  $\overline{S_1}$ ,  $S_2$ ,  $\overline{W}$  and  $\overline{OE}$ . Each mode is summarized in the function table. (see next page)

A write cycle is excuted whenever the low level  $\overline{W}$  overlaps with the low level  $\overline{S_1}$  and the high level  $S_2$ . The address must be set up before the write cycle and must be stable during the entire cycle. The data is latched into a cell on the trailing edge of  $\overline{W}$ ,  $\overline{S_1}$  or  $S_2$ , whichever occurs first, requring the set-up and hold time relative to these edge to be maintained. The Output enable input  $\overline{OE}$  directly controls the output stage. Setting the  $\overline{OE}$  at a high level, the output stage is in a high-impedance state, and the data bus contention problem in the write cycle is eliminated. A read cycle is excuted by setting  $\overline{W}$  at a high level and  $\overline{OE}$  at a low level while  $\overline{S_1}$  and  $S_2$  are in an active state ( $\overline{S_1} = L$ ,





# MITSUBISHI LSIS M5M5165P-70.-10.-12.-15.-70L.-10L.-12L.-15L

#### 65536-BIT (8192 WORD BY 8-BIT) CMOS STATIC RAM

#### $S_2 = H$

When setting  $\overline{S_1}$  at a high level or  $S_2$  at a low level, the chip is in a non-selectable mode in which both reading and writing are disabled. In this mode, the output stage is in a high-impedance state, allowing OR-tie with other chips and memory expantion by  $\overline{S_1}$  and  $S_2$ . The power supply current is reduced as low as the stand-by current which is specified as  $I_{CC3}$  or  $I_{CC4}$ , and the memory data can be held at +2V power supply, enabling battery back-up operation during power failure or power-down operation in the non-selected mode.

#### FUNCTION TABLE

$\overline{S_1}$	S ₂	W	ŌĒ	Mode	DQ	lcc
х	L	х	х	Non selection	high-impedance	Standby
н	х	х	х	Non selection	high-impedance	Standby
L	н	L	х	Write	D _{IN}	Active
L	н	н	L	Read	D _{OUT}	Active
L	н	н	н		high-impedance	Active

#### RECOMMENDED OPERATING CONDITIONS (Ta=0~70°C, unless otherwise noted)

	Description of the second s		Limits		11-1-
Symbol	Parameter	Min	Тур	Max	Unit
Vcc	Supply voltage	4.5	5	5.5	V
GND	Supply voltage		0		V
VIL	low input voltage	-0.3		0.8	v
ViH	high input voltage	2.2	•	V _{CC} +0.3	V

#### ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Limits	Unit
Vcc	Supply voltage		-0.3~7	v
Vi	Input voltage	With respect to GND	-0.3~V _{CC} +0.3	V
Vo	Output voltage		0~V _{CC}	V
Pd	Power dissipation	Ta=25°C	700	mW
Topr	Operating temperature		0~70	°C
Tstg	Storage temperature		-65~150	°C

#### **ELECTRICAL CHARACTERISTICS** ( $T_a = 0 \sim 70^{\circ}C$ , $V_{CC} = 5V \pm 10\%$ , unless otherwise noted)

Symbol	Demonster	Test conditions -		Limits		
Symbol	Parameter	lest conditions -	Min	Тур	Max	Unit
VIH	High input voltage		2.2		V _{CC} +0.3	V
VIL	Low input voltage		-0.3		0.8	V
V _{OH}	High output voltage	I _{0H} =-1mA	2.4			V
VOL	Low output voltage	I _{OL} = 2 mA			0.4	V
II.	Input current	V _I =0~V _{CC}			±1	μA
I _{OZH}	High level output current in off-state	$\overline{S_1} = V_{IH} \text{ or } S_2 = V_{IL} \text{ or } \overline{OE} = V_{IH}$			1	μA
IOZL	Low level output current in off-state	V 1/0 =0-V _{CC}			-1	μA
I _{CC1}	Active supply current	$\overline{S_1} \le 0.2$ , $S_2 \ge V_{CC} - 0.2$ Outout open Other inputs $\le 0.2$ or $\ge V_{CC} - 0.2$		30	45	mA
I CC2	Active supply current	$\overline{S_1} = V_{IL}$ or $S_2 = V_{IH}$ Output open Other inputs $= V_{IH}$		35	50	mA
1	Stand-by supply current	(1) $S_2 \le 0.2V$ , Other inputs = 0 ~ V _{CC} (2) $S_1 \ge V_{CC} - 0.2V$ , $S_2 \ge V_{CC} - 0.2V$ ,			2(P)	mA
1003	Stand-by suppry current	$\begin{array}{c} (2)  S_1 \leq V_{CC} - 0.2V,  S_2 \leq V_{CC} - 0.2V, \\ \text{Other inputs} = 0 - V_{CC} \end{array}$			100(P-L)	μA
I _{CC4}	Stand-by supply current	$S_2 = V_{IL}, \overline{S_1} = V_{IH}, Other inputs = 0 \sim V_{CC}$			3	mA
Ci	Output capacitance (Ta=25°C)	$V_1 = GND$ , $V_i = 25 \text{ mVmrs}$ , $f = 1 \text{MHz}$			6	pF
Co	Outout capacitance (Ta=25°C)	$V_0 = GND, V_0 = 25 \text{ mVrms}, f = 1 \text{ MHz}$			8	pF

Note 1 Direction for current flowing into IC is indicated as positive (no mark)

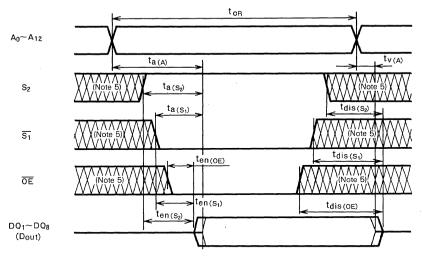
2 Typical value is V_{CC}=5V, Ta=25°C



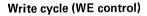
# M5M5165P-70, -10, -12, -15, -70L, -10L, -12L, -15L

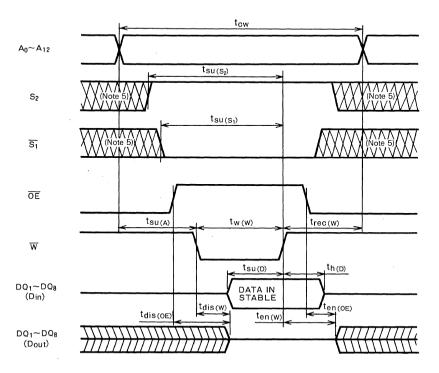
### 65536-BIT (8192 WORD BY 8-BIT) CMOS STATIC RAM

# SWITCHING CHARACTERISTICS ( $T_a$ =0 $\sim$ 70°C, $V_{CC}$ =5 V $\pm$ 10%, unless otherwise noted ) Read cycle


Cumbral			5165F 5165F				M5M M5M			M5M5165P-15 M5M5165P-15L				
Symbol	Parameter		Limits		Limits		Limits			Limits			Unit	
		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
t _{cR}	Read cycle time	70			100			120			150			ns
t _{a (A)}	Address access time			70			100			120			150	ns
t _{a (S1} )	Chip select 1 access time			70			100			120			150	ns
t _{a (S2} )	Chip select 2 access time			70			100			120			150	ns
t _{a (OE} )	Output enable access time			35			50			60			70	ns
tdis(S1)	Output disable time after $\overline{S_1}$ high			30			35			40			50	ns
t _{dis (S2} )	Output disable time after S ₂ low			30			35			40			50	ns
tdis (OE)	Output disable time after OE high			30			35			40			50	ns
t _{en(S1} )	Output enable time after $\overline{S_1}$ low	5			10			10			10			ns
t _{en(S2} )	Output enable time after $S_2$ high	5			10			10			10			ns
t _{en (OE)}	Output enable time after OE low	5			10			10			10			ns
t _{v (A)}	Data valid time after address change	20			20			20			20			ns

# TIMING REQUIREMENTS ( $T_a$ =0 $\sim$ 70°C , $V_{CC}$ =5 V $\pm$ 10% , unless otherwise noted ) Write cycle


Symbol	Parameter		M5M5165P-70 M5M5165P-70L Limits			M5M5165P-10 M5M5165P-10L Limits			M5M5165P-12 M5M5165P-12L Limits			15165F 15165F	Unit	
												Limits		
		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
t _{ow}	Write cycle time	70			100			120			150			ns
t _{w(w)}	Write pulse width	40			60			70			90			ns
tsu (A)	Address set up time	0			0			0			0			ns
t _{su (S)}	Chip select set up time	65			80			85			100			ns
t _{su (D)}	Data set up time	30			35			40			50			ns
t _{h (D)}	Data hold time	5			5			5			5			ns
t _{rec(w)}	Write recovery time	5			5			10			10			ns
t _{dis(w)}	Output disable time after $\overline{W}$ low	0		30			35			40			50	ns
t _{dis (OE)}	Output disable time after OE high	0		30			35			40			50	ns
t _{en (w)}	Output enable time after $\overline{W}$ high	5			10			10			10			ns
t _{en (OE} )	Output enable time after OE low	5			10			10			10			ns

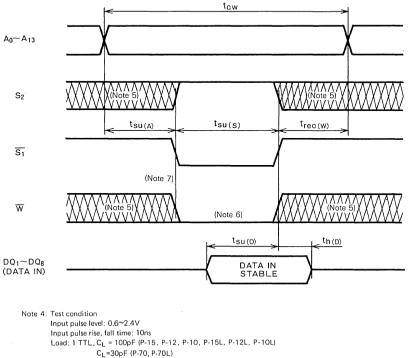



#### TIMING DIAGRAM Read cycle



 $\overline{W} = "H"$  level








# M5M5165P-70, -10, -12, -15, -70L, -10L, -12L, -15L

#### 65536-BIT (8192 WORD BY 8-BIT) CMOS STATIC RAM

#### Write cycle (S control)



Conditions of assessment: 1.5V

5: Hatching indicates the state is don't care.

6: Writing is executed while  $S_2$  high overlaps  $\overline{S_1}$  and  $\overline{W}$  low.

7: If  $\overline{W}$  goes low simultaneously with or prior to  $\overline{S_1}$  low or  $S_2$  high, the output remains in the high-impedance state.

8: Don't apply inverted phase signal externally when DQ pin is in output mode.



#### **MITSUBISHI LSIs**

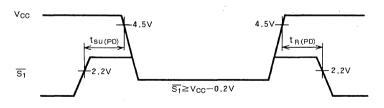
## M5M5165P-70, -10, -12, -15, -70L, -10L, -12L, -15L

## 65536-BIT (8192 WORD BY 8-BIT) CMOS STATIC RAM

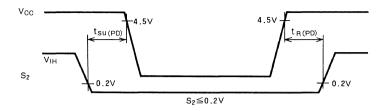
#### POWER DOWN CHARACTERISTICS

#### **ELECTRICAL CHARACTERISTICS** ( $T_a = 0 \sim 70^{\circ}C$ , unless otherwise noted)

Cumbel	Parameter	<b>T</b>	Limits			
Symbol	Falaneter	Test conditions	Min	Тур	Max	Unit
VCC(PD)	Power down supply voltage		2			v
N/		2.2V≦V _{CC(PD)}	2.2	1		v
$V_1(\overline{S_1})$	Chip select input $\overline{S}_1$	2V≦V _{CC(PD)} ≦2.2V		VCC(PD)		V
		4.5V≦V _{CC} (PD)			0.8	V
V _{1 (S2} )	Chip select input S2	V _{CC (PD)} <4.5V			0.2	V
ICC (PD) Power down supply current	Power down supply surrent				2(P)	mA
	Power down supply current V _{CC} =3V, Other inputs =3V	$v_{CC}=3v$ , Other inputs = $3v$			50(P-L)	μA


Note 3: When St is operated at 2.2V (VIH min) and the supply voltage is between 4.5V and 2.4V, supply current is defined as ICC4.

#### TIMING REQUIREMENTS ( $T_a = 0 \sim 70^{\circ}$ C, unless otherwise noted )


Symbol	Parameter	Test conditions		Unit		
Symbol		Test conditions	Min	Тур	Max	Unit
t _{su (PD)}	Power down setup time		0			ns
t _{rec (PD)}	Power down recovery time		t _{CR}			ns

## POWER DOWN CHARACTERISTICS

 $\overline{\mathbf{S}_1}$  control



#### S₂ control





## MOS MASK ROM

# 5

. , '' , '



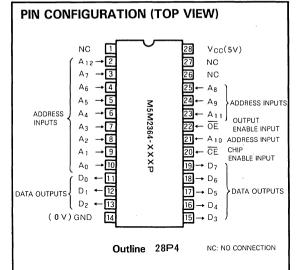


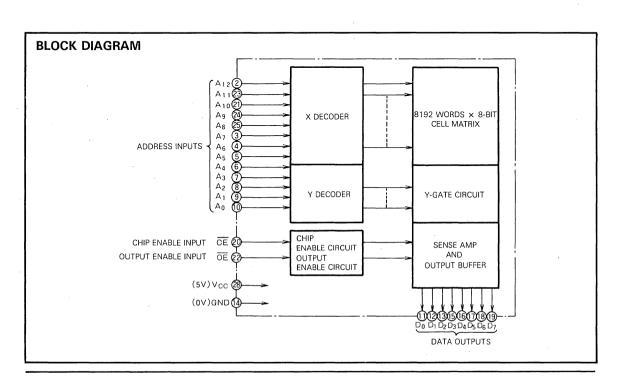
65 536-BIT(8192-WORD BY 8-BIT)MASK-PROGRAMMABLE ROM

#### DESCRIPTION

The Mitsubishi M5M2364-XXXP is a 65536-bit maskprogrammable high speed read-only memory.

The M5M2364-XXXP is fabricated by N-channel polysilicon gate technology and available in a 28-pin DIL package. It is interchangeable with the M5L2764K and Intel 2764 in read mode.


The XXX in type code is a three-digit decimal number assigned by Mitsubishi to identify the customer's specification to which the ROM has been programmed.


#### **FEATURES**

- 8192 words × 8-bit organization
- Access time ...... 250 ns (MAX)
- Two line control OE, CE
- Single 5V power supply (V_{CC} =  $5V \pm 10\%$ )
- 3-State output buffer
- Input and output
- Standard 28-pin DIL package
- Interchangeable with the M5L2764K and Intel 2764

#### APPLICATION

• Electronic computers and various software







#### 65 536-BIT(8192-WORD BY 8-BIT)MASK-PROGRAMMABLE ROM

#### FUNCTION

Set the  $\overline{CE}$  and  $\overline{OE}$  terminals to the read mode (low level).

Low level inputs to  $\overline{CE}$  and  $\overline{OE}$  and address signals to the address inputs  $(A_0 \sim A_{12})$  make the data contents of the designated address location available at the data output  $(D_0 \sim D_7)$ .

When the  $\overline{\text{CE}}$  or  $\overline{\text{OE}}$  signal is high, data output are in a floating state.

When the  $\overline{\text{CE}}$  signal is high, the device is in the standby mode or power-down mode.

#### **ABSOLUTE MAXIMUM RATINGS**

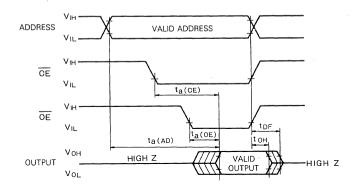
Symbol	Parameter	Conditions	Limits	Unit
Topr	Operating ambient temperature		- 10~ 80	°C
Tstg	Storage temperature		- 65~ 150	°C
V ₁	Input voltage	With respect to GND	-0.6~7	V

#### DC ELECTRICAL CHARACTERISTICS ( $T_a = 0 \sim 70^{\circ}$ C, $V_{CC} = 5V \pm 10\%$ , unless otherwise specified)

Symbol	Parameter	Test Conditions		Limits		
Зуший	Parameter	Test Conditions	Min.	Түр	Max	Unit
I _{LI}	Input leakage current	V _{IN} =5.5V	- 10		10	μA
ILO	Output leakage current	V _{OUT} =5.5V	- 10		10	μA
CC1	V _{CC} Supply voltage (Standby)	CE=V _{IH}		10	20	mA
I _{CC2}	V _{CC} Supply voltage (Operating)	CE=OE=VIL		40	80	mA
VIL	Low level input voltage		-0.1		0.8	V
VIH	High level input voltage		2.0		Vcc+1	V
VOL	Low level output voltage	I _{OL} =2.1mA			0.45	v
Voh	High level output voltage	I _{OH} =-400μA	2.4			v

Note 2. Typical value is that with standard supply voltage applied and  $T_a = 25^{\circ}C$ .

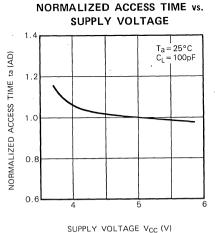
#### AC ELECTRICAL CHARACTERISTICS ( $T_a = 0 \sim 70^{\circ}$ C, $V_{CC} = 5V \pm 10\%$ , unless otherwise specified)


Symbol	Parameter	Test Conditions	Limits			
Symbol		Test Conditions	Min	Тур	Max	Unit
ta(AÓ)	Address access time	CE=OE=VIL			250	ns
ta(CE)	CE access time	<u> </u>			250	ns
ta(OE)	OE access time	CE=VIL	10		100	ns
t DF	OE output floating delay time	CE=VIL	0		90	ns
t oh	Data validity period after $\overline{OE}$ , $\overline{CE}$	CE=OE=VIL	0			ns

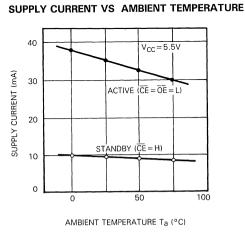


#### 65 536-BIT(8192-WORD BY 8-BIT)MASK-PROGRAMMABLE ROM

### **READ-OUT TIMING DIAGRAM**


**TYPICAL CHARACTERISTICS** 

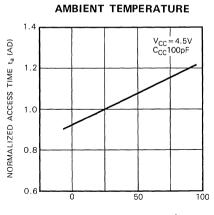



Switching Characteristics Test Conditions

#### **INPUT/OUTPUT CAPACITANCE** (T_a=25°C, f=1MHz, unless otherwise specified)

Symbol	Parameter	Test Conditions	Limits			.11-24
Symbol			Min	Тур	Max	[.] Unit
CIN	Input capacitance	V _{IN} =0V		4	6	pF
Cout	Output capacitance	V _{OUT} =0V		8	12	pF

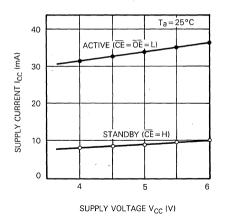



#### vs.

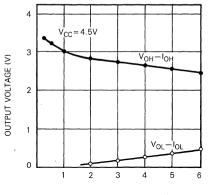




### MITSUBISHI LSIS M5M2364-XXXP


#### 65 536-BIT(8192-WORD BY 8-BIT)MASK-PROGRAMMABLE ROM




NORMALIZED ACCESS TIME vs.

AMBIENT TEMPERATURE Ta (°C)

### SUPPLY CURRENT VS SUPPLY VOLTAGE



#### OUTPUT VOLTAGE VS OUTPUT CURRENT



OUTPUT CURRENT (mA)

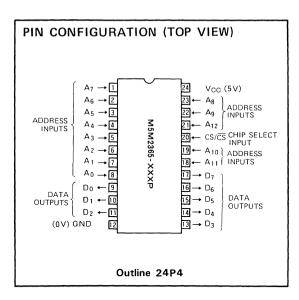


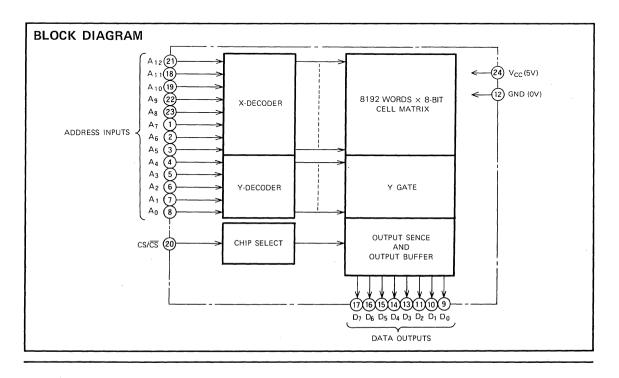




65536-BIT (8192-WORD BY 8-BIT) MASK-PROGRAMMABLE ROM

#### DESCRIPTION


The Mitsubishi M5M2365-XXXP is a 65536-bit mask programmable high speed read-only memory.


The M5M2365-XXXP is fabricated by N-channel polysilicon gate technology and available in a 24-pin DIL package. It is pin-compatible with the M5L2716K and M5L2732K in read mode.

The XXX in type code is a three-digit decimal number assigned by Mitsubishi to identify the customer's specification to which the ROM has been programmed.

#### **FEATURES**

- 8192 word x 8-bit organization
- Output control selection (CS/CS)
- Single 5V power supply
- 3-state outputs for wire-OR expansion
- Input and output TTL-compatible
- Standard 24 pin DIL package
- Pin compatible with 2716, 2732 EPROMs and MK36000 MASK ROM







## **MITSUBISHI LSIs** M5M2365-XXXP

#### 65536-BIT (8192-WORD BY 8-BIT) MASK-PROGRAMMABLE ROM

#### **ABSOLUTE MAXIMUM RATINGS***

Temperature under bias $\dots \dots \dots$	)
Storage temperature $\dots \dots -65^{\circ}C \sim +150^{\circ}C$	)
All input or output voltage ^{**}	1

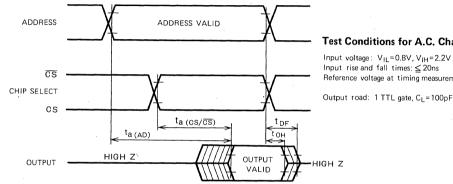
#### COMMENT

* Stresses above those listed may cause permanent damage to the device.

This is a stress rating only and functional operation of the device at these or at any other conditions above those indicated in the operational sections of this specification is not implied.

Exposure to absolute maximum rating conditions for extended periods affects device reliability.

** With respect to Ground.


#### D.C. ELECTRICAL CHARACTERISTICS (Ta=0~70°C, V_{CC}=5V± 10%, unless otherwise noted)

Cumbal		Conditions		Limits		
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
LI	Input leakage current	V _{IN} =5.5V	- 10		10	μA
ILO	Output leakage current	Vout=5.5V	- 10		10	μA
lcc	V _{CC} current	CS/CS=H/L			60	mA
VIL	Input low voltage		-0.1		0.8	V
VIH	Input high voltage		2.0		V _{CC} +1	V
VoL	Output low voltage	I _{OL} =2.1mA			0.45	V
Vон	Output high voltage	I _{OH} =-400//A	2.4			V

#### A.C. ELECTRICAL CHARACTERISTICS (Ta=0~70°C, VCC=5V±10%, unless otherwise noted)

Symbol	Parameter	Conditions	Limits			Ünit
			Min	Тур	Max	Onit
ta(AD)	Address to output delay	CS/CS=H/L			250	ns
t _{a (CS/CS} )	Chip select to output delay		10		100	ns
t DF	Chip select to output float		10		90	ns
tон	Output hold from chip select		10			ns

#### A.C. WAVEFORMS



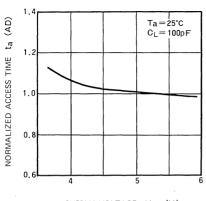
#### **Test Conditions for A.C. Characteristics**

Input voltage: VIL=0.8V, VIH=2.2V Input rise and fall times:  $\leq 20$ ns Reference voltage at timing measurement: Input 1V and 2V

۱

Outputs 0.8V and 2V



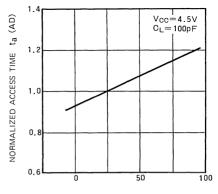

## MITSUBISHI LSIS M5M2365-XXXP

#### 65536-BIT (8192-WORD BY 8-BIT) MASK-PROGRAMMABLE ROM

#### **CAPACITANCE** ( $T_a = 25^{\circ}C$ , f = 1MHz)

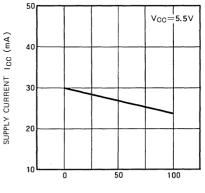
Symbol Parameter	Decomptor	Conditions -	Limits			Unit
	rarameter		Min	Тур	Max	Unit
CIN	Input capacitance	V _{IN} =0V		4	6	pF
Соит	Output capacitance	V _{OUT} =0V		8	12	pF

#### TYPICAL CHARACTERISTICS



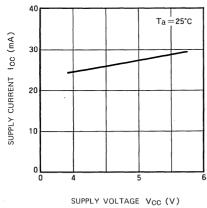

NORMALIZED ACCESS TIME VS.

SUPPLY VOLTAGE


SUPPLY VOLTAGE VCC (V)

#### NORMALIZED ACCESS TIME VS. AMBIENT TEMPERATURE




AMBIENT TEMPERATURE Ta (°C)

#### SUPPLY CURRENT VS. AMBIENT TEMPERATURE



AMBIENT TEMPERATURE Ta (°C)

SUPPLY CURRENT VS. SUPPLY VOLTAGE

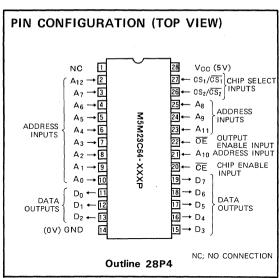






#### DESCRIPTION

The Mitsubishi M5M23C64-XXXP is a 65536-bit mask-programmable high speed read-only memory.

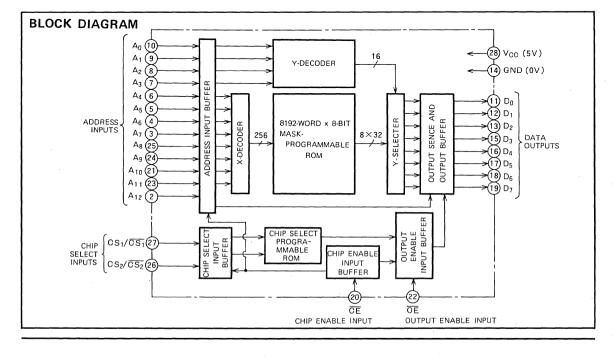

The M5M23C64-XXXP is fabricated by Silicon gate CMOS technology and available in a 28-pin DIL package. It is interchangeable with the M5L2764K in read mode.

The XXX in type code is a three-digit decimal number assigned by Mitsubishi to identify the customer's specification to which the ROM has been programmed.

#### **FEATURES**

A ₀ ~A ₁₂	Addresses
CE	Chip enable
ŌĒ	Output enable
D ₀ ~D ₇	Outputs
N.C.	No connection
$CS_1/\overline{CS_1}, CS_2/\overline{CS_2}$	Chip select

- 8192 word x 8-bit organization
- Single 5V power supply
- 3-state output buffer
- Input and output TTL-compatible
- Standard 28-pin DIL package
- Interchangeable with The M5L2764K in read mode




#### FUNCTION

Set the  $\overline{CE}$  and  $\overline{OE}$  terminals to the read mode (low level), and the CS1/ $\overline{CS1}$  and CS2/ $\overline{CS2}$  terminals to the read mode (high level/low level).

Low level inputs to  $\overline{CE}$  and  $\overline{OE}$ , high level/low level inputs to  $CS_1/\overline{CS_1}$  and  $CS_2/\overline{CS_2}$ , and address signals to the address inputs (A0 ~ A12) make the data contents of the designated address location available at the data input/output (D0 ~ D7).

When the  $\overline{\text{OE}}$  Signal is high, the data input/output are in a floating state.





#### 65536-BIT(8192-WORD BY 8-BIT)MASK-PROGRAMMABLE ROM

When the  $\overline{CE}$  signal is high, the data input/output are in a froating state and the device is in the standby mode or power-down mode.

The active logic level of  $CS_1/\overline{CS_1}$  and  $CS_2/\overline{CS_2}$  can be programmed at the time of fabricating the ROM mask.

ABSOLUTE MAXIMUM RATINGS (Note 1)

Temperature under bias	$\dots -10^{\circ}C \sim +80^{\circ}C$
Storage temperature	$-65^{\circ}C \sim +150^{\circ}C$
All input or output voltage (Note 2)	−0.3V ~ +7V

Note 1 Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods affects device reliability.

2 With respect to Ground

#### RECOMMENDED OPERATING CONDITIONS (Ta = 0 $\sim$ 70°C)

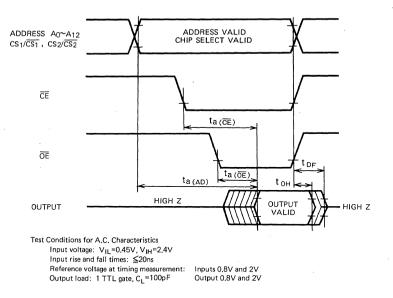
Symbol	Parameter		Unit		
Symbol	Falanetei	Min	Тур	Max	.5 V V +0.1 V
Vcc	Supply voltage (Note 1)	4.5	5	5.5	V
GND	Supply voltage		0		V
VIH	High level input voltage	2.4		Vcc+0.1	V
VIL	Low level input voltage	-0.1		0.45	V

Note1 Need 1µF ceramic capacitor between Vcc and GND.

#### D.C. CHARACTERISTICS (Ta=0~70°C, V_{CC}=5V $\pm$ 10%, unless otherwise noted)

Symbol	Parameter	Task and distant		Limits			
Symbol	Parameter	Test conditions	Min	Тур	Max	Unit	
l Li	Input load current		-10		10	μA	
ILO	Output leakage current		-10		10	μA	
1	V	CE = VIH			10	mA	
I _{CC1}	V _{CC} current standby	$\overline{CE} = V_{CC} - 0.2V$			50	μA	
1		$\overline{CE} = \overline{OE} = V_{1L}$ Output Open			10	0	
I _{CC2}	V _{CC} current active	$CS_1/\overline{CS_1}=CS_2/\overline{CS_2}=V_{IH}/V_{IL}$			40	mA	
VIL	Input low voltage		-0.1		0.6	V	
VIH	Input high voltage		2.2		Vcc+0.1	V	
Vol	Output low voltage	I _{OL} =2.1mA			0.45	V	
VoH .	Output high voltage	I _{OH} =-400μA	2.4			V	

#### A.C. CHARACTERISTICS (Ta=0~70°C, $V_{CC}=5V\pm10\%$ , $V_{IH}=2.4V$ , $V_{IL}=0.45V$ , unless otherwise noted)


Symbol	Parameter	Test conditions		Unit		
- Oymbol		Test conditions	Min	Тур	Max	, Onit
t _{a (AD)}	Address to output delay	$\overline{CE} = \overline{OE} = V_{IL}$ $CS_1/\overline{CS_1} = CS_2/\overline{CS_2} = V_{IH}/V_{IL}$			350	ns
t _{a (CE)}	CE to output delay	$\overline{OE} = V_{IL}$ $CS_1/\overline{CS_1} = CS_2/\overline{CS_2} = V_{IH}/V_{IL}$			350	ns
t _{a (OE)}	Output enable to output delay	$\overline{CE} = V_{1L}$ $CS_1/\overline{CS_1} = CS_2/\overline{CS_2} = V_{1H}/V_{1L}$			200	ns
t _{DF}	Output enable high to output float	$\overline{CE} = V_{IL}$ $CS_1/\overline{CS_1} = CS_2/\overline{CS_2} = V_{IH}/V_{IL}$	0		200	ns
t _{oH}	Output hold from address	$\frac{CS_1/\overline{CS_1}=CS_2/\overline{CS_2}=V_{IH}/V_{IL}}{\overline{CE}=\overline{OE}=V_{IL}}$	0			ns



## MITSUBISHI LSIS M5M23C64-XXXP

## 65536-BIT(8192-WORD BY 8-BIT)MASK-PROGRAMMABLE ROM

#### A.C. WAVEFORMS



#### $\label{eq:capacity} \textbf{CAPACITANCE} \; (\textbf{T}_a \!=\! 25^{\circ} \text{C} \; , \; f \!=\! 1 \text{MHz})$

Symbol	Parameter	Conditions		Unit		
Symbol	Parameter	Conditions	Min	Тур	Max	. Onit
CIN	Input capacitance	VIN=0V			10	pF
Cout	Output capacitance	V _{OUT} =0V			15	pF





#### DESCRIPTION

The Mitsubishi M5M23C65-XXXP is a 65536-bit mask-programmable high speed read-only memory.

The M5M23C65-XXXP is fabricated by silicon gate CMOS technology and available in a 24-pin D1L package.

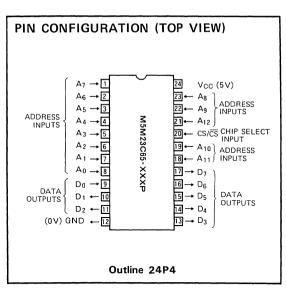
The XXX in type code is a three-digit decimal number assigned by Mitsubishi to identify the customer's specification to which the ROM has been programmed.

#### **FEATURES**

A ₀ ~A ₁₂	Addresses
cs/ <del>cs</del>	Chip select
D ₀ ~D ₇	Outputs

- 8192 word x 8-bit organization
- Access time ...... 350 ns (max)
- Chip select CS/CS mask programmable
- Low power supply current (Icc)

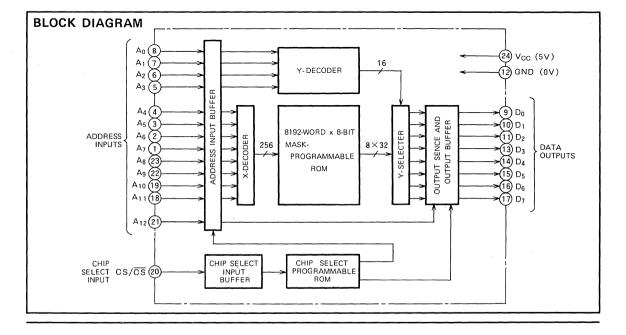
Active . . . . . . . 40 mA (max) Standby . . . . . . . 10 mA (max) (TTL-compatible) 50 μA (max) (CS/CS =


0.2V/Vcc-0.2V)

- Single 5V power supply
- 3-state output buffer
- Input and output TTL-compatible
- Standard 24-pin DIL package

#### FUNCTION

Set the CS/ $\overline{CS}$  terminals to the read mode. (high level/low level)


High level/low level inputs to CS/CS and address signals



to the address inputs  $(A_0 \sim A_{12})$  make the data contents of the designated address location available at the data input/output (D₀ ~ D₇).

When the  $CS/\overline{CS}$  signal is low/high, data input/output are in a floating state, and the device is in the standby mode or power-down mode.

The active logic level of  $CS/\overline{CS}$  can be programmed at the time of fabricating the ROM mask.





## 65536-BIT(8192-WORD BY 8-BIT)MASK-PROGRAMMABLE ROM

#### ABSOLUTE MAXIMUM RATINGS (Note 1)

Temperature under bias	$\dots -10^{\circ}C \sim +80^{\circ}C$
Storage temperature	$65^{\circ}C \sim +150^{\circ}C$
All input or output voltage (Note 2)	0.3V ~ +7V

Note 1 Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods affects device reliability.

2 With respect to Ground

Symbol			Limits		11-14
Symbol	Paràmeter	Min	Тур	Max	Unit
Vcc	Supply voltage (Note 1)	4.5	5	5.5	V
GND	Supply voltage		0		V
VIH	High level input voltage	2.4		Vcc+0.1	V
VIL	Low level input voltage	-0.1		0.45	V

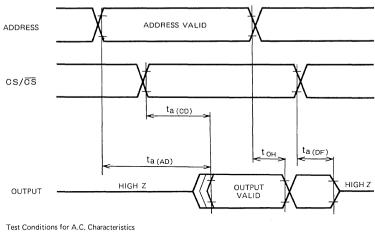
RECOMMENDED OPERATING CONDITIONS (Ta=0~70°C)

## Note1 Need $1\mu$ F ceramic capacitor between V_{CC} and GND.

#### **D.C. CHARACTERISTICS** ( $T_a = 0 \sim 70 \degree$ , $V_{CC} = 5V \pm 10\%$ , unless otherwise noted)

Guardian	Parameter	Test conditions		Unit		
Symbol		rest conditions	Min	Тур	10         μA           10         μA           10         mA           50         μA           40         mA           0.6         V           V _{CC} +0.1         V	Unit
t _{LL}	Input load current		-10		10	μA
I _{LO}	Output leakage current		-10		10	μA
	V _{CC} current standby	$CS/\overline{CS} = V_{IL}/V_{IH}$			10	mA
ICC1		CS/CS=0.2V/V _{CC} -0.2V			50	μA
I _{CC2}	V _{CC} current active	CS/CS=VIH/VIL, Output open			40	mA
VIL	Input low voltage		-0.1		0.6	V
VIH	Input high voltage		2.2		V _{CC} +0.1	V
Vol	Output low voltage	IOL=2.1mA			0.45	V .
V _{OH}	Output high voltage	I _{OH} =-400 µ A	2.4			V

#### A.C. CHARACTERISTICS (Ta=0~70°C, $V_{CC}=5V\pm10\%$ , $V_{IH}=2.4V$ , $V_{IL}=0.45V$ , unless otherwise noted )


Symbol	Destruction	Test conditions		11-11		
Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
t _{a (AD)}	Address to output delay	CS/CS=VIH/VIL			350	ns
t _{a (CD} )	Chip select to output delay				350	ns
t _{a (DF)}	Chip select to output float				200	ns
t _{OH}	Output hold from address	CS/CS=VIH/VIL	0			ns



## MITSUBISHI LSIS M5M23C65-XXXP

## 65536-BIT(8192-WORD BY 8-BIT)MASK-PROGRAMMABLE ROM

#### A.C. WAVEFORMS



lnput voltage:  $V_{IL}$ =0.45V,  $V_{IH}$ =2.4V Input rise and fall times :  $\leq$ 20ns Reference voltage at timing measurement: Inputs 0.8V and 2V Output load: 1 TTL gate,  $C_L$ =100pF Outputs 0.8V and 2V

#### **CAPACITANCE** ( $T_a = 25^{\circ}C$ , f = 1MHz)

Symbol Parameter Text conditions	Tout and later		Limits		Unit	
Symbol	Farameter	Text conditions	Min	Тур	Max	Unit
CIN	Input Capacitance	VIN=0V			10	pF
COUT	Output Capacitance	V _{OUT} =0V			15	pF





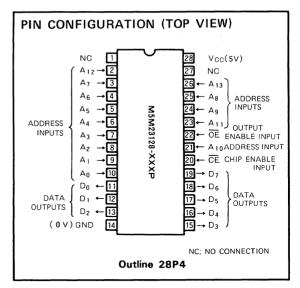
## MITSUBISHI LSIS M5M23128-XXXP

131072-BIT(16384-WORD BY 8-BIT)MASK-PROGRAMMABLE ROM

#### DESCRIPTION

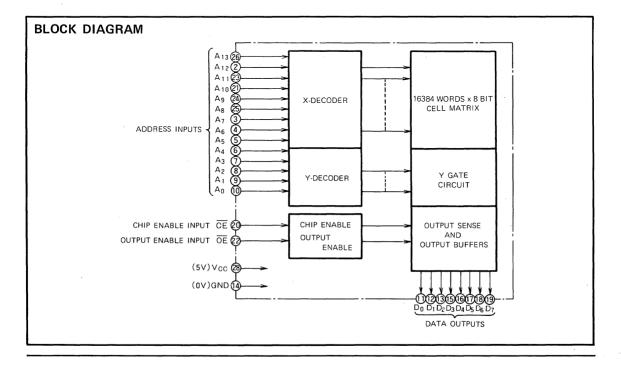
The Mitsubishi M5M23128-XXXP is a 131072-bit maskprogrammable high speed read-only memory.

The M5M23128-XXXP is fabricated by N-channel polysilicon gate technology and available in a 28-pin DIL package. It is interchangeable with the M5L27128K and Intel 27128 in read mode.


The XXX in type code is a three-digit decimal number assigned by Mitsubishi to identify the customer's specification to which the ROM has been programmed.

#### **FEATURES**

- 16384 word x 8-bit organization
- Two line control OE, CE
- Low power supply current (I_{cc}) Active . . 80mA (max) Standby . 30mA (max)
- Single 5V power supply
- 3-state output buffer
- Input and output TTL-compatible
- Standard 28-pin DIL package
- Interchangeable with the M5L27128K and Intel 27128


#### FUNCTION

Set the  $\overline{CE}$  and  $\overline{OE}$  terminals to the read mode (low level.) Low level inputs to  $\overline{CE}$  and  $\overline{OE}$  and address signals to the address inputs ( $A_0 \sim A_{13}$ ) make the data contents of the designated address location available at the data output ( $D_0 \sim D_7$ ).



When the  $\overline{\text{CE}}$  or  $\overline{\text{OE}}$  signal is high, data output are in a floating state.

When the  $\overline{\text{CE}}$  signal is high, the device is in the standby mode or power-down mode.





## 131072-BIT(16384-WORD BY 8-BIT)MASK-PROGRAMMABLE ROM

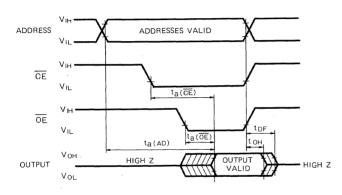
#### **ABSOLUTE MAXIMUM RATINGS***

Temperature under bias				 $-10^{\circ}C \sim +80^{\circ}C$
Storage temperature				$-65^{\circ}C \sim +150^{\circ}C$
All input or output voltage**				

#### COMMENT

 Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods

affects device reliability. ** With respect to Ground.


#### D.C. ELECTRICAL CHARACTERISTICS (Ta=0~70°C, VCC=5V± 10%, unless otherwise noted)

Symbol	Deservation	$V_{IN} = 5.5V$ $V_{OUT} = 5.5V$ $\overline{OE} = V_{IH}$ $\overline{OE} = \overline{OE} = V_{IL}$		Limits		Unit
Symbol	Parameter	Conditions	Min	Тур	Max	onit
I _{LI}	Input leakage current	V _{IN} =5.5V	- 10		10	μA
ILO	Output leakage current	V _{OUT} =5.5V	- 10		10	μA
I _{CC1}	V _{CC} current standby	CE=VIH		15	30	mA
1002	V _{CC} current active	CE=OE=VIL		40	80	mA
VIL	Input Iow voltage		-0.1		0.8	V
VIH	Input high voltage		2.0		V _{CC} +1	V
Vol	Output low voltage	I _{OL} =2.1mA			0.45	v
Vон	Output high voltage	I _{OH} =-400/(A	2.4			V

#### A.C. ELECTRICAL CHARACTERISTICS ( $T_a=0-70^{\circ}C$ , $V_{CC}=5V\pm 10\%$ , unless otherwise noted)

Currels al	Desember			Limits		
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
ta(AD)	Address to output delay	CE=OE=VIL			250	ns
ta(CE)	CE to output delay	OE=VIL			250	ns
ta(OE)	Output enable to output delay	CE=VIL	10		100	ns
t DF	Output enable high to output float	<u>CE</u> =V _{IL}	0		90	ns
tон	Output hold from CE or OE	CE=OE=VIL	0			ns

#### A.C. WAVEFORMS



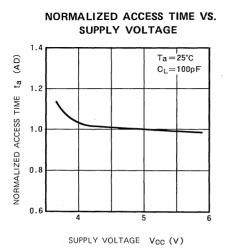
#### **Test Conditions for A.C. Characteristics**

Input voltage: V_{IL} = 0.45V, V_{IH} = 2.4V Input rise and fall times:  $\leq$  20ns Reference voltage at timing measurement: Inputs 1V and 2V Outputs 0.8V and 2V

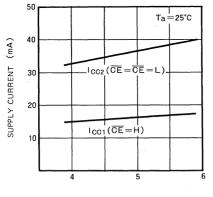
Output load: 1 TTL gate, CL = 100pF



## MITSUBISHI LSIS M5M23128-XXXP


#### 131072-BIT(16384-WORD BY 8-BIT)MASK-PROGRAMMABLE ROM

0.6


#### $\textbf{CAPACITANCE} (T_a = 25^{\circ}\text{C}, \text{ } f = 1\text{MHz})$

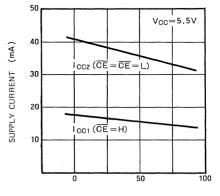
Contract	Descustor (	Conditions		Limits		Unit
Symbol	Parameter	Conditions		Тур	Max	Unit
CIN	Input capacitance	V _{IN} =0V		4	6	pF
Соит	Output capacitance	V _{OUT} =0V		8	12	pF

#### TYPICAL PERFORMANCE DATA



SUPPLY CURRENT VS. SUPPLY VOLTAGE




SUPPLY VOLTAGE VCC (V)

NORMALIZED ACCESS TIME VS. AMBIENT TEMPERATURE

0 50 100

AMBIENT TEMPERATURE Ta (°C)

SUPPLY CURRENT VS. AMBIENT TEMPERATURE



AMBIENT TEMPERATURE Ta (°C)



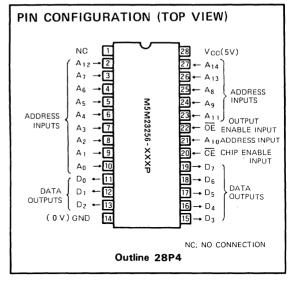


#### DESCRIPTION

The Mitsubishi M5M23256-XXXP is a 262144-bit maskprogrammable high speed read-only memory.

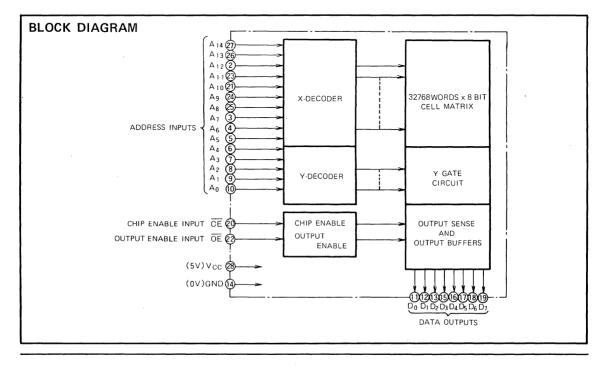
The M5M23256-XXXP is fabricated by N-channel polysilicon gate technology and available in a 28-pin DIL package. It is compatible with the M5L27256K and Intel 27256 in read mode.

The XXX in type code is a three-digit decimal number assigned by Mitsubishi to identify the customer's specification to which the ROM has been programmed.


#### **FEATURES**

- 32768 word x 8-bit organization
- Two line control  $\overline{OF}$   $\overline{CF}$
- Low power supply current (Icc) Active . . 80mA (max) 9 Standby . 30mA (max)
- Single 5V power supply
- 3-state output buffer
- Input and output TTL-compatible
- Standard 28-pin DIL package
- Compatible with Intel 27256

#### FUNCTION


Set the  $\overline{CE}$  and  $\overline{OE}$  terminals to the read mode (low level.)

Low level inputs to  $\overline{CE}$  and  $\overline{OE}$  and address signals to the address inputs  $(A_0 \sim A_{14})$  make the data contents of the designated address location available at the data output  $(D_0 \sim D_7)$ .



When the  $\overline{CE}$  or  $\overline{OE}$  signal is high, data output are in a floating state.

When the  $\overline{CE}$  signal is high, the device is in the standby mode or power-down mode.





## **MITSUBISHI LSIs** M5M23256-XXXP

#### 262144-BIT(32768-WORD BY 8-BIT)MASK-PROGRAMMABLE ROM

#### **ABSOLUTE MAXIMUM RATINGS***

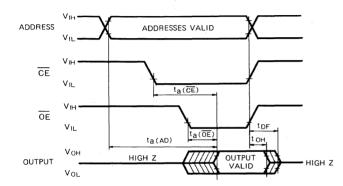
Temperature under bias	$-10^{\circ}C \sim +80^{\circ}C$
Storage temperature	$-65^{\circ}C \sim +150^{\circ}C$
All input or output voltage**	

#### COMMENT

* Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other conditions above those indicated in the operational sections of this specification is not implied.

Exposure to absolute maximum rating conditions for extended periods affects device reliability.

** With respect to Ground.


#### D.C. ELECTRICAL CHARACTERISTICS (Ta=0~70°C, V_{CC}=5V± 10%, unless otherwise noted)

Combal				Limits		
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
ILI	Input leakage current	V _{IN} =5.5V	- 10		10	μA
ILO	Output leakage current	V _{OUT} =5.5V	- 10		10	μA
ICC1	V _{CC} current standby	CE=V _{IH}		15	30	mA
ICC2	V _{CC} current active			40	80	mA
VIL	Input Iow voltage		-0.1		0.8	V
ViH	Input high voltage		2.0		V _{CC} + 1	V
Vol	Output Iow voltage	I _{OL} =2.1mA			0.45	v
V _{OH}	Output high voltage	I _{0H} =-400//A	2.4			V

#### A.C. ELECTRICAL CHARACTERISTICS (Ta=0~70°C, VGC=5V± 10%, unless otherwise noted)

Symbol	Parameter	Castilities		Limits		
зушоо	Falanete	Conditions	Min	Тур	Max	Unit
ta(AD)	Address to output delay	CE=OE=VIL			250	ns
ta(CE)	CE to output delay	0E=VIL			250	ns
ta(OE)	Output enable to output delay	CE=VIL	10		100	ns
tDF	Output enable high to output float	CE=VIL	0		90	ns
tон	Output hold from CE or OE		0			ns

#### A.C. WAVEFORMS

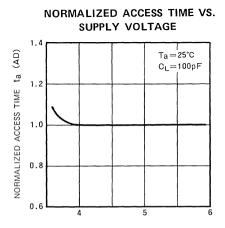


#### **Test Conditions for A.C. Characteristics**

Input voltage:  $V_{IL} = 0.45V$ ,  $V_{IH} = 2.4V$ Input rise and fall times:  $\leq 20$ ns Reference voltage at timing measurement: Inputs 1V and 2V Output load: 1 TTL gate, CL = 100pF

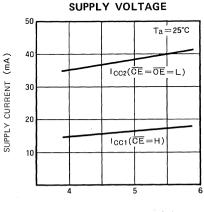
Outputs 0.8V and 2V




## MITSUBISHI LSIS M5M23256-XXXP

### 262144-BIT(32768-WORD BY 8-BIT)MASK-PROGRAMMABLE ROM

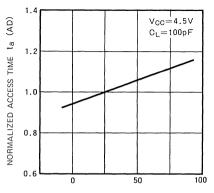
#### **CAPACITANCE** ( $T_a = 25$ °C, f = 1MHz)


Sumbal	Parameter	Parameter Conditions -		Limits		
Symbol	Farameter	Conditions	Min	Тур	Max	Unit
C _{IN}	Input capacitance	V _{IN} =0V		4	6	pF
Соит	Output capacitance	V _{OUT} =0V		8	12	pF

#### TYPICAL PERFORMANCE DATA

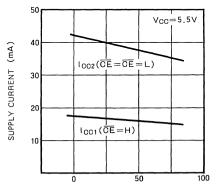


SUPPLY VOLTAGE VCC (V)


SUPPLY CURRENT VS.



SUPPLY VOLTAGE VCC (V)


.

#### NORMALIZED ACCESS TIME VS. AMBIENT TEMPERATURE



AMBIENT TEMPERATURE Ta (°C)

SUPPLY CURRENT VS. AMBIENT TEMPERATURE



AMBIENT TEMPERATURE Ta (°C)





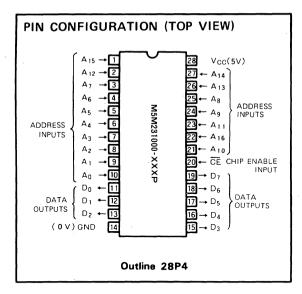
#### DESCRIPTION

The Mitsubishi M5M231000-XXXP is 1048576-bit maskprogrammable high speed read-only memory.

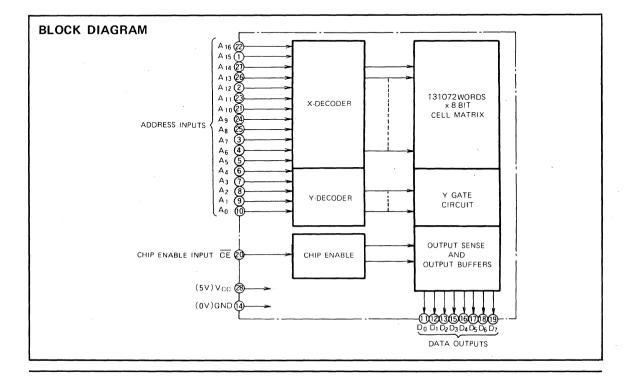
The M5M231000-XXXP is fabricated by N-channel polysilicon gate technology and available in a 28-pin DIL package.

The XXX in type code is a three-digit decimal number assigned by Mitsubishi to identify the customer's specification to which the ROM has been programmed.

#### **FEATURES**


- 131072 word x 8-bit organization
- ONE line control CE
- Low power supply current (I_{CC}) Active . . 80mA (max) Standby . 30mA (max)
- Single 5V power supply
- 3ngle 5v power supplier
   3-state output buffer
- Input and output TTL-compatible
- Standard 28-pin DIL package

#### FUNCTION


Set the CE terminals to the read mode (low level.)

Low level input to  $\overline{CE}$  and address signals to the address inputs (A₀ ~ A₁₆) make the data contents of the designated address location available at the data output (D₀ ~ D₇).

When the  $\overline{CE}$  signal is high, data output are in a floating



state and the device is in the standby mode or power-down mode.





### 1048576-BIT (131072-WORD BY 8-BIT) MASK-PROGRAMMABLE ROM

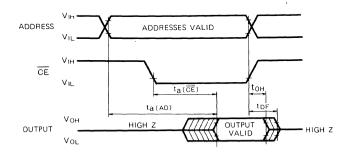
#### **ABSOLUTE MAXIMUM RATINGS***

Temperature under bias $\dots \dots \dots$	С
Storage temperature $\dots \dots -65^{\circ}C \sim +150^{\circ}$	С
All input or output voltage ^{**}	

#### COMMENT

Exposure to absolute maximum rating conditions for extended periods affects device reliability.

** With respect to Ground.


#### D.C. ELECTRICAL CHARACTERISTICS ( $T_a=0-70$ °C, $V_{CC}=5V\pm 10\%$ , unless otherwise noted)

Symbol	Parameter			Limits		
		Conditions	Min	Тур	Max	Unit
Li	Input leakage current	V _{IN} =5.5V	- 10		10	μA
ILO	Output Leakage current	V _{OUT} =5.5V	- 10		10	μA
ICC1	V _{CC} current standby	CE=V _{IH}		15	30	mA
I _{CC2}	V _{CC} current active	CE =VIL		40	80	mA
VIL	Input low voltage		-0.1		0.8	V
Vін	Input high voltage		2.0		$V_{CC} + 1$	V
Vol	Output Iow voltage	I _{OL} =2.1mA			0.45	V
Voн	Output high voltage	$I_{OH} = -400 \mu A$	2.4			V

#### A.C. ELECTRICAL CHARACTERISTICS (Ta=0~70°C, V_{CC}=5V $\pm$ 10%, unless otherwise noted)

Symbol	Parameter	Conditions	Limits-25		Limits-30		Unit
Symbol	i al al le tel	Conditions		Max	Min	Max	onit
ta(AD)	Address to output delay	CE=VIL		250		300	ns
ta(CE)	CE to output delay			250		300	ns
t DF	Output enable high to output float	CE=VIL	0	80	0	100	ns
t он	Output hold from CE		0		0		ns

#### A.C. WAVEFORMS



#### **Test Conditions for A.C. Characteristics**

#### **CAPACITANCE** ( $T_a=25^{\circ}C$ , f=1MHz)

		Conditions	Lim	its	Unit
Symbol	Parameter	Conditions	Min	Max	Unit
CIN	Input capacitance	V _{IN} =0V		10	pF
Cout	Output capacitance	V _{OUT} =0V		15	pF



Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods

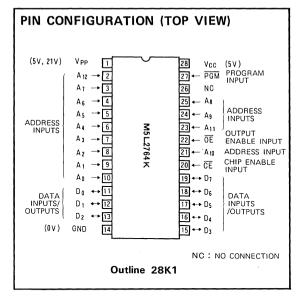
*,* 

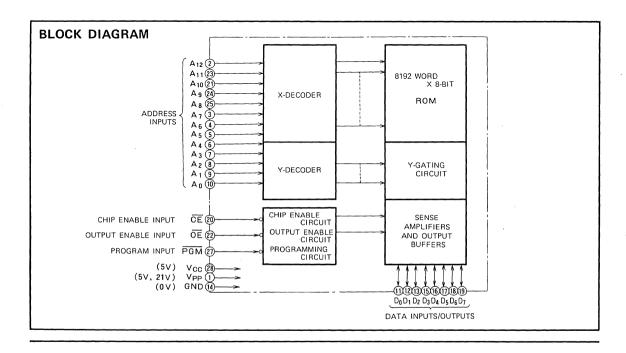
## **MOS EPROM**





## MITSUBISHI LSIS M5L2764K. -2


65536-BIT (8192-WORD BY 8-BIT) ERASABLE AND ELECTRICALLY REPROGRAMMABLE ROM


#### DESCRIPTION

The Mitsubishi M5L2764K is a high-speed 65536-bit ultraviolet erasable and electrically reprogrammable read only memory. It is suitable for microprocessor programming applications where rapid turn-around is required. The M5L2764K is fabricated by N-channel double polysilicon gate technology and is available in a 28-pin DIL package with a transparent lid.

#### **FEATURES**

- 8192 Word x 8-bit Organization
- Access Time M5L2764K-2 200 ns (Max) M5L2764K 250 ns (Max)
- Two Line Control OE, CE
- Low Power Current (I_{CC}) Active ..... 150 mA (Max) Standby .... 35 mA (Max)
- Single 5V Power Supply
- 3-State Output Buffer
- Input and Output TTL-Compatible in Read and Program Mode
- Standard 28-pin DIL Package
- Single Location Programming with One 50 ms Pulse
- Fast programming algorithm
- Interchangeable with INTEL 2764







## MITSUBISHI LSIS M5L2764K, -2

#### FUNCTION

#### Read

Set the  $\overline{CE}$  and  $\overline{OE}$  terminals to the read mode (low level). Low level input to  $\overline{CE}$  and  $\overline{OE}$  and address signals to the address inputs  $(A_0 \sim A_{12})$  make the data contents of the designated address location available at the data input/output  $(D_0 \sim D_7)$ . When the  $\overline{CE}$  or  $\overline{OE}$  signal is high, data input/output are in a floating state.

When the  $\overline{CE}$  signal is high, the device is in the standby mode or power-down mode.

In the read mode VPP must be at VCC level.

#### Programming

#### (Fast programming algorithm)

First set  $V_{CC} = 6V$ ,  $V_{PP} = 21V$  and then set an address to first address to be programmed. After applying 1 ms program pulse (PGM) to the address, verify is performed. If the output data of that address is not verified correctly, apply one more 1 ms program pulse. The programmer continues 1 ms pulsethen-verify routines until the device verify correctly or fifteen of these pulse-then-verify routines have been completed. The programmer also maintains its total number of 1 ms pulses applied to that address in register X. And then applied a program pulse 4 times of register X value long as an overprogram pulse. When the programming procedure above is finished, step to the next address and repeat this procedure till last address to be programmed. (See P.6-9)

#### (Conventional programming algorithm)

The device enters the programming mode when 21V is supplied to the V_{PP} power supply input and  $\overline{CE}$  is at low level. A location is designated by address signals (A₀~A₁₂), and the data to be programmed must be applied at 8-bits in parallel to the data inputs (D₀~D₇). A program pulse to the PGM at this state will effect programming. Only one programming pulse is required, but its width must satisfy the condition 45 ms  $\leq t_{PW} \leq 55$  ms.

#### Erase

Erase is effected by exposure to ultraviolet light with a wavelength of 2537Å at an intensity of appoximately 15WS/cm². Sunlight and fluorescent light may contain ultraviolet light sufficient to erase the programmed information. For any operation in the read mode, the transparent lid should be covered with opaque tape.

#### **MODE SELECTION**

Pins Mode	CE(20)	OE(22)	PGM(27)	V _{PP} (1)	V _{CC} (28)	Outputs (11~13, 15~19)
Read	VIL	VIL	. VIH	Vcc	Vċc	Data out
Standby	Viн	×*	×*	Vcc	Vcc	Floating
Program	VIL	×*	V _{IL}	VPP	Vcc	Data in
Program verify	VIL	VIL	ViH	Vpp	Vcc	Data out
Program inhibit	ViH	X*	×*	VPP	Vcc	Floating

*: X can be either VIL or VIH

#### ABSOLUTE MAXIMUM RATINGS (Note 1)

Symbol	· Parameter	Limits	Unit
Topr	Temperature under bias	- 10~ 80	°C
Tstg	Storage temperature	- 65~ 125	°C
Vii	All input or output voltage (Note 2)	-0.6~7	v
V1 2	V _{PP} supply voltage during programming (Note 2)	-0.6~26.5	v

Note 1: Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods affects device reliability.

2: With respect to Ground.

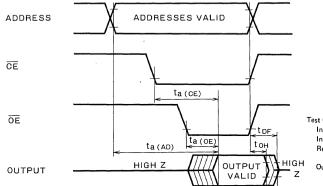


## MITSUBISHI LSIs M5L2764K, -2

#### 65536-BIT (8192-WORD BY 8-BIT) ERASABLE AND ELECTRICALLY REPROGRAMMABLE ROM

#### **READ OPERATION**

 $Ta = 0^{\circ}$  to 70°C,  $V_{CC} = 5V \pm 5\%$ ,  $V_{PP} = V_{CC}$ 


#### **D.C. CHARACTERISTICS**

Symbol		Tataa	Limits		Ünit	
Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
16	Input load current	V _{IN} =5.25V			10	μA
ILO	Output leakage current	V _{OUT} =5.25V			10	μA
IPP1	VPP current read	V _{PP} =5.25V			15	mA
ICC1	V _{CC} current standby	<u>CE</u> =V _{IH}			35	mA
I _{CC2}	V _{CC} current active	$\overline{CE} = \overline{OE} = V_{1L}$			150	mA
VIL	Low-level input voltage		-0.1		0.8	V
VIH	High-level input voltage		2.0		V _{CC} +1	V
Vol	Low-level output voltage	I _{OL} =2.1mA			0.45	V
VoH	High-level output voltage	I _{OH} =-400μA	2.4			V

#### A.C. CHARACTERISTICS

Churchart	<b>.</b>	<b>T</b>	M5L2	764K-2	M5L2	764 K	Unit
Symbol	Parameter	Test conditions	Min	Max	Min	Max	
ta ( _{AD)}	Address to output delay	CE=OE=VIL		200		250	ns
ta (CE)	CE to output delay	0E=VIL		200		250	ns
ta (OE)	Output enable to output delay	CE=VIL	10	70	10	100	ns
t df	Output enable high to output float	CE = VIL	0	60	0	90	ns
tон	Output hold from CE or OE	<u>CE</u> = <u>OE</u> =V _{IL}	0		0		ns

#### AC WAVEFORMS



Test Conditions for A.C. Characteristics Input Voltage: VIL = 0.8V, VIH = 2.2V Input Rise and Fall Times:  $\leq 20$ ns Reference Voltage at Timing Measurement: Inputs 1V and 2V

Output Load: 1 TTL gate, CL = 100pF

Outputs 0.8V and 2V

#### CAPACITANCE (T_a = 25°C, f = 1 MHz)

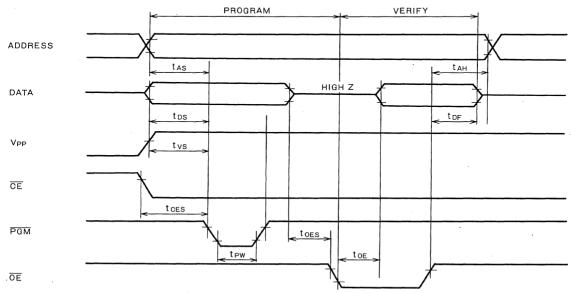
Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
CIN	Input capacitance	V _{IN} = 0 V		4	6	pF
Cout	Output capacitance	V _{OUT} = 0 V		8	12	pF



#### **MITSUBISHI LSIs**

## M5L2764K, -2

#### 65536-BIT (8192-WORD BY 8-BIT) ERASABLE AND ELECTRICALLY REPROGRAMMABLE ROM


#### PROGRAM OPERATION CONVENTIONAL PROGRAMMING ALGORITHM (Ta=25±5°C, V_{CC}=5V±5%, V_{PP}=21±0.5V unless otherwise noted) D.C. CHARACTERISTICS

Cumbral	Parameter	Test conditions		Limits	Max 10	Unit
Symbol	Parameter	Test conditions	Min	Тур	Max	Onit
L	Input current	VIN=VIL or VIH			10	μA
Vol	Low-level output voltage (verify)	I _{OL} =2.1mA			0.45	V
VoH	High-level output voltage (verify)	I _{OH} =-400 µ A	2.4			V
I _{CC2}	V _{CC} supply current (active)				100	mA
VIL	Low-level input voltage		-0.1		0.8	V
ViH	High-level input voltage		2.0		V _{CC} +1	V
Ipp	Vpp supply current	CE=VIL=PGM			30	mA

#### A.C. CHARACTERISTICS

Symbol	Parameter	Test conditions		Limits		Unit
Symbol	Falanielei	rest conditions	Min	Тур	Max	Onit
tas	Address setup time		2			μs
toes	OE setup time		20			μs
tos	Data setup time		2			μS
tан	Address hold time		0			μs
t dh	Data hold time		2			μs
t _{DF}	. Chip enable to output delay		0		130	ns
tvs	VPP setup time		2			μs
tpw	PGM pulse width (programming)		45	50	55	ms
toes	CE setup time		2			μS
t oe	Data valid from OE				150	ns

#### AC WAVEFORMS



 $\begin{array}{ll} \mbox{Test Conditions for AC Characteristics} \\ \mbox{Input Voltage:} & V_{IL} = 0.8V, V_{IH} = 2.2V \\ \mbox{Input Rise and Fall Times:} & \leq 20ns \\ \mbox{Reference Voltage at Timing Measurement:} \end{array}$ 

Inputs 1V and 2V Outputs 0.8V and 2V



## MITSUBISHI LSIS M5L2764K, -2

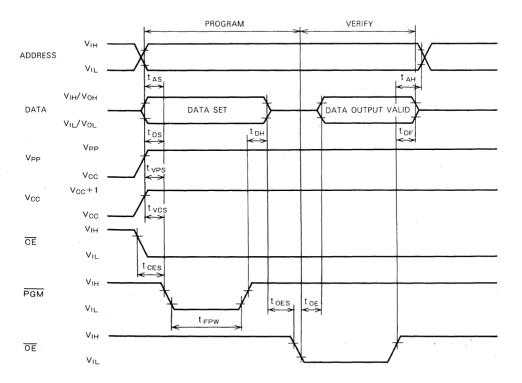
65536-BIT (8192-WORD BY 8-BIT) ERASABLE AND ELECTRICALLY REPROGRAMMABLE ROM

## FAST PROGRAMMING ALGORITHM

**DC CHARACTERISTICS** (Ta =  $25 \pm 5^{\circ}$ C, V_{CC} =  $6V \pm 0.25V$ , V_{PP} =  $21V \pm 0.5V$ , unless otherwise noted)

Symbol	Parameter	Test conditions		Limits		
			Min	Түр	Max	Unit
1 _{LI}	Input current	VIN=VILOR VIH			10	μA
Vol	Output low voltage	I _{OL} =2.1mA			0.45	v
Voн	Output high voltage	I _{OH} =-400μA	2.4			V
VIL	Input low voltage		-0.1		0.8	V
VIH	Input high voltage		2.0		Vcc	V
I CC2	V _{CC} supply current				100	mA
	V _{PP} supply current	CE = VIL = PGM		· · · · · · · · · · · · · · · · · · ·	30	mA

#### AC CHARACTERISTICS (Ta = $25\pm5^{\circ}$ C, V_{CC} = 6V±0.25V, V_{PP} = $21V\pm0.5V$ , unless otherwise noted)


Sumbol	Dessentes	Test conditions		Limits		Unit	
Symbol	Parameter	Test conditions	Min	Тур	Max	Unit	
t _{AS}	Address setup time		2			μs	
toes	OE set up time		20			μs	
t _{DS}	Data setup time		2			μs	
t _{AH}	Address hold time		0			μs	
t _{DH}	Data hold time		2			μs	
t _{DF}	Chip enable to output float delay		0		130	ns	
t _{vcs}	V _{CC} setup time		2			μs	
t _{VPS}	V _{PP} setup time		2			μs	
tFPW	PGM initial program pulse width		0.95	1	1.05	ms	
t _{OPW}	PGM over program pulse width	,	3.8		63	ms	
t _{CES}	CE setup time		2			μs	
t _{OE}	Data valid from OE				150	ns	

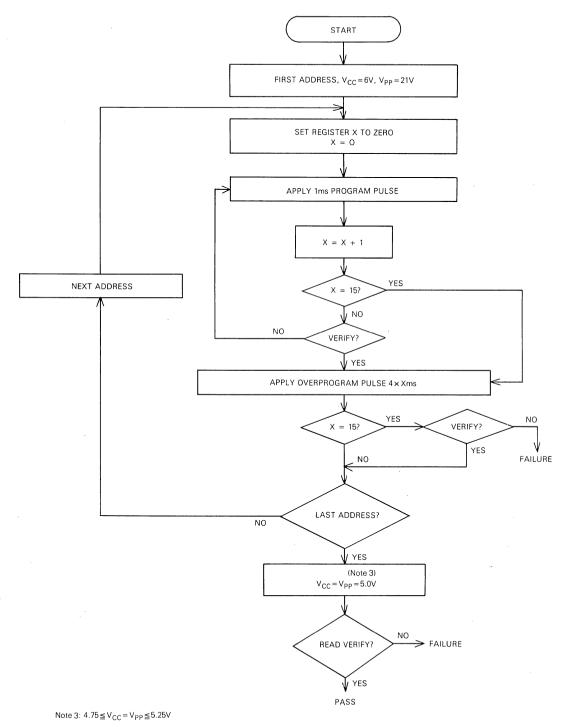


## MITSUBISHI LSIS

#### 65536-BIT (8192-WORD BY 8-BIT) ERASABLE AND ELECTRICALLY REPROGRAMMABLE ROM

#### AC WAVEFORMS




Test conditions for A.C. characteristics Input voltage:  $V_{1L}$  =0.8V,  $V_{1H}$  =2.2V Input rise and fall times:  $\leqq 20ns$  Reference voltage at timing measurement: Input 1V and 2V Output 0.8V, and 2V



## MITSUBISHI LSIS M5L2764K, -2

#### 65536-BIT (8192-WORD BY 8-BIT) ERASABLE AND ELECTRICALLY REPROGRAMMABLE ROM

## FAST PROGRAMMING ALGORITHM FLOW CHART



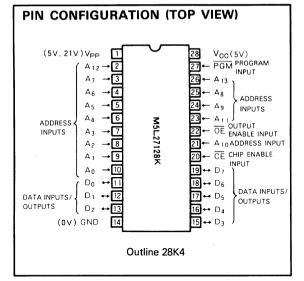


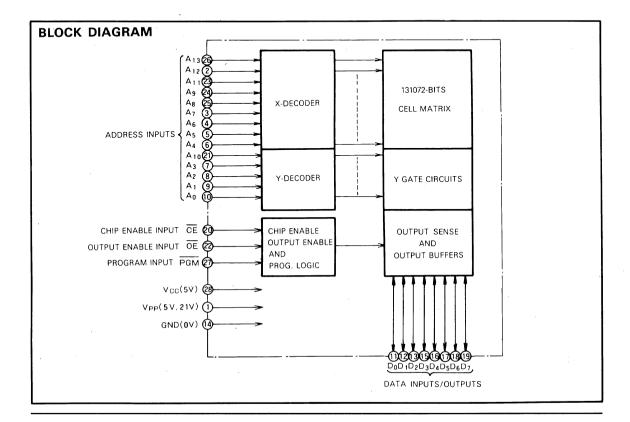


## MITSUBISHI LSIS M5L27128K, -2

131 072-BIT(16384-WORD BY 8-BIT) ERASABLE AND ELECTRICALLY REPROGRAMMABLE ROM

#### DESCRIPTION


The Mitsubishi M5L27128K is a high-speed 131072-bit ultraviolet erasable and electrically reprogrammable read only memory. It is suitable for microprocessor programming applications where rapid turn-around is required. The M5L27128K is fabricated by N-channel double polysilicon gate technology and is available in a 28-pin DIL package with a transparent lid.


#### FEATURES

- 16384 word × 8 bit organization
- Two line control OE, CE
- Single 5V power supply
- 3-State output buffer
- Input and output TTL-compatible in read and program mode
- Standard 28-pin DIL package
- Fast programming algorithm
- Interchangeable with INTEL 27128

#### APPLICATION

• Microcomputer systems and peripheral equipment







## MITSUBISHI LSIS M5L27128K, -2

#### FUNCTION

#### Read

Set the  $\overline{CE}$  and  $\overline{OE}$  terminals to the read mode (low level). Low level input to  $\overline{CE}$  and  $\overline{OE}$  and address signals to the address inputs ( $A_0 \sim A_{13}$ ) make the data contents of the designated address location available at the data input/output ( $D_0 \sim D_7$ ). When the  $\overline{CE}$  or  $\overline{OE}$  signal is high, data input/output are in a floating state.

When the CE signal is high, the device is in the standby mode or power-down mode.

#### Programming

#### (Fast programming algorithm)

First set  $V_{CC} = 6V$ ,  $V_{PP} = 21V$  and then set an address to first address to be programmed. After applying 1 ms program pulse (PGM) to the address, verify is performed. If the output data of that address is not verified correctly, apply one more 1 ms program pulse. The programmer continues 1 ms pulsethen-verify routines until the device verify correctly or fifteen of these pulse-then-verify routines have been completed. The programmer also maintains its total number of 1 ms pulses applied to that address in register X. And then applied a program pulse 4 times of register X value long as an overprogram pulse. When the programming procedure above is finished, step to the next address and repeat this procedure till last address to be programmed. (See P.6-15)

#### (Conventional programming algorithm)

The device enters the programming mode when 21V is supplied to the V_{PP} power supply input and  $\overline{CE}$  is at low level. A location is designated by address signals (A₀ ~ A₁₃), and the data to be programmed must be applied at 8-bits in parallel to the data inputs (D₀ ~ D₇). A program pulse to the PGM at this state will effect programming. Only one programming pulse is required, but its width must satisfy the condition 45 ms  $\leq t_{PW} \leq 55$  ms.

#### Erase

Erase is effected by exposure to ultraviolet light with a wavelength of 2537Å at an intensity of appoximately 15WS/cm². Sunlight and fluorescent light may contain ultraviolet light sufficient to erase the programmed information. For any operation in the read mode, the transparent lid should be covered with opaque tape.

#### MODE SELECTION

Pins	CE(20)	0E(22)	PGM(27)	V _{PP} (1)	V _{CC} (28)	Outputs (11~13, 15~19)
Read	VIL	VIL	VIH	Vcc	Vcc	Data out
Standby	VIH	×*	×*	Vcc	Vcc	Floating
Program	VIL	ViH	V _{IL}	V _{PP}	Vcc	Data in
Program verify	VIL	VIL	VIH	VPP	Vcc	Data out
Program inhibit	ViH	×*	×*	VPP	Vcc	Floating

*: X can be either VIL or VIH.

#### ABSOLUTE MAXIMUM RATINGS (Note 1)

Symbol	Parameter	Limits	Unit
Topr	Temperature under bias	- 10~80	°C
Tstg	Storage temperature	- 65 - 125	°C
V ₁₁	All input or output voltage (Note 2)	-0.6~7	V
VI 2	V _{PP} supply voltage during programming (Note 2)	-0.6~26.5	V

Note 1: Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods affects device reliability.

2: With respect to Ground.



#### 131 072-BIT(16384-WORD BY 8-BIT) ERASABLE AND ELECTRICALLY REPROGRAMMABLE ROM

#### **READ OPERATION**

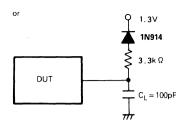
#### DC ELECTRICAL CHARACTERISTICS (Ta=0~70°C, V_{CC}=5V±5%, V_{PP}=V_{CC}, unless otherwise noted)

C	Parameter	Test conditions	{	Limits		Unit
Symbol	Parameter	lest conditions	Min	Тур	Max	Unit
I _{LI}	Input load current	V _{IN} =5.25V			10	μA
ILO	Output leakage current	V _{OUT} = 5.25V			10	μA
IPP1	V _{PP} current read	V _{PP} =5.25V			5	mA
Icc1	V _{CC} current standby	$\overline{CE} = V_{IH}$		-	45	mA
ICC2	V _{CC} current Active	CE = OE -VIL			100	mA
VIL	Input low voltage		0.1		0.8	V
VIH	Input high voltage		2.0		$V_{CC} + 1$	V
VOL	Output low voltage	1 _{0L} =2.1mA			0.45	v
Vон	Output high voltage	I _{OH} =-400µ A	2.4			v

Note 3: Typical values are at  $Ta = 25^{\circ}C$  and nominal supply voltages.

#### AC ELECTRICAL CHARACTERISTICS (Ta=0~70°C, V_{CC}=5V±5%, V_{PP}=V_{CC}, unless otherwise noted)

			T	Limits				
Symbol	Parameter	Test conditions	M5L2	M5L27128K-2		128K	Unit	
			Min	Max	Min	Max		
ta(AD)	Address to output delay	$\overline{CE} = \overline{OE} = V_{IL}$		200		250	ns	
ta(CE)	CE to output delay	OE = VIL		200		250	ns	
ta(OE)	Output enable to output delay	CE = VIL		75		100	ns	
1 DF	Output enable high to output float	CE = VIL	0	60	0	85	ns	
t он	Output hold from CE or OE	$\overline{CE} = \overline{OE} = V_{IL}$	0		0		ns	


Note 4: V_{CC} must be applied simultaneously or before V_{PP} and removed simultaneously or after V_{PP}

# AC WAVEFORMS



Test conditions for A.C. characteristics Input voltage:  $V_{LL}=0.45V$ ,  $V_{IH}=2.4V$ Input rise and fall times:  $\leqq 20ns$ Reference voltage at timing measurement: Inputs 1V and 2V Output 0.8V, and 2V

Output load: 1TTL gate + C₁ (100pF)



#### CAPACITANCE

0 mbal	Parameter	Test conditions		Unit		
Symbol		Test conditions	Min	Тур	Max	Unit
C _{IN}	Input capacitance (Address, CE, OE, PGM)			4	6	pF
COUT	Output capacitance	$T_a = 25^{\circ}C$ , f= 1MHz, $V_1 = V_0 = 0V$		8	12	pF



#### 131 072-BIT(16384-WORD BY 8-BIT) ERASABLE AND ELECTRICALLY REPROGRAMMABLE ROM

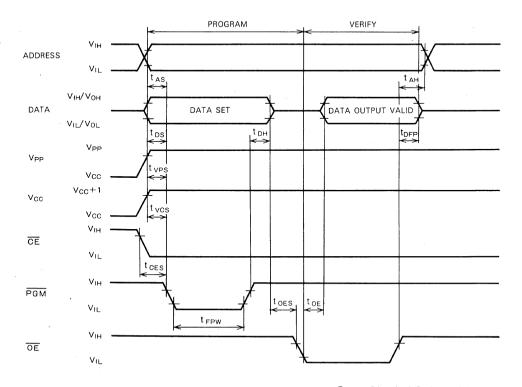
**PROGRAM OPERATION** 

# FAST PROGRAMMING ALGORITHM

DC ELECTRICAL CHARACTERISTICS (Ta=25±5°C, V_{CC}=6V±0.25V, V_{PP}=21V±0.5V, unless otherwise noted)

Symbol	Parameter			Limits			
3911001	Farameter	Test conditions	Min	Түр	Max	Unit	
LI	Input current	VIN=VIL or VIH	1		10	μA	
VOL	Output low voltage	I _{OL} =2.1mA			0.45	V	
Vон	Output high voltage	$I_{OH} = -400\muA$	2.4			v	
V _{1L}	Input low voltage		-0.1		0.8	v	
VIH	Input high voltage		2.0		Vcc	v	
I _{CC2}	V _{CC} supply current				100	mA	
	V _{PP} supply current	CE = VIL = PGM			30	mA	

### AC ELECTRICAL CHARACTERISTICS (Ta = $25\pm5^{\circ}$ C, V_{CC} = $6V\pm0.25V$ , V_{PP} = $21V\pm0.5V$ , unless otherwise noted)

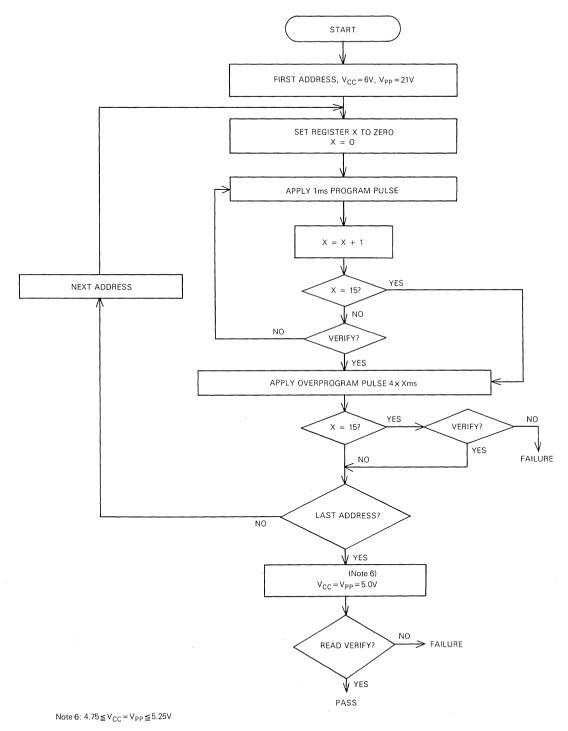

Symbol	Description	Test conditions		Limits		Unit
Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
t _{AS}	Address setup time		2			μs
toEs	OE set up time		2			μs
t _{DS}	Data setup time		2			μs
t _{AH}	Address hold time		0			μs
t _{DH}	Data hold time		2			μs
t _{DFP}	Output enable to output float delay		0		130	ns
tvcs	V _{CC} setup time		2			μs
t _{VPS}	V _{PP} setup time		2			μs
t _{FPW}	PGM initial program pulse width		0.95	1	1.05	ms
t _{OPW}	PGM over program pulse width		3.8		63	ms
t _{CES}	CE setup time		2			μs
t _{OE}	Data valid from OE				150	ns

Note 5: V_{CC} must be applied simultaneously or before V_{PP} and removed simultaneously or after V_{PP}.



### 131 072-BIT(16384-WORD BY 8-BIT) ERASABLE AND ELECTRICALLY REPROGRAMMABLE ROM

# AC WAVEFORMS




Test conditions for A.C. characteristics Input voltage: V_{IL} = 0.45V, V_{IH} = 2.4V Input rise and fall times:  $\leq 20ns$ Reference voltage at timing measurement: Input 0.8V and 2V Output 0.8V, and 2V



131 072-BIT(16384-WORD BY 8-BIT) ERASABLE AND ELECTRICALLY REPROGRAMMABLE ROM

# FAST PROGRAMMING ALGORITHM FLOW CHART





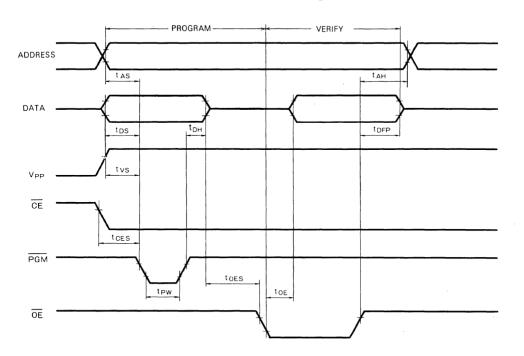
131 072-BIT(16384-WORD BY 8-BIT) ERASABLE AND ELECTRICALLY REPROGRAMMABLE ROM

# **CONVENTIONAL PROGRAMMING ALGORITHM**

#### DC ELECTRICAL CHARACTERISTICS (Ta = 25 ±5°C, V_{PC} = 5V±5%, V_{PP} = 21V±0.5V, unless otherwise noted)

Cumbol	Deservator	Test conditions		Limits		Unit
Symbol	Parameter	Test conditions	Min	Тур	Max	
L	Input current	$V_{IN} = V_{IL} \text{ or } V_{IH}$			10	μA
Vol	Output low voltage	I _{OL} =2.1mA			0.45	V
Vон	Output high voltage	$I_{OH} = -400 \mu A$	2.4			V
VIL	Input low voltage		-0.1		0.8	v
Vін	Input high voltage		2.0		$V_{CC} + 1$	V
I _{CC2}	V _{CC} Supply current				100	mA
IPP2	V _{PP} Supply current	$\overline{CE} = V_{IL} = \overline{PGM}$			30	mA

#### AC ELECTRICAL CHARACTERISTICS (Ta = 25±5°C, V_{CC} = 5V±5%, V_{PP} = 21V±0.5V, unless otherwise noted)

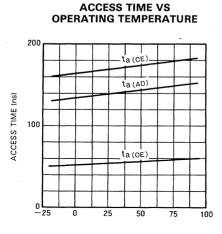

Cumbel	Descentes	Test sourditions		Limits		Unit
Symbol	Parameter	Test conditions	Min	Тур	Max	
tas	Address set up time		2			μs
toes	OE setup time		2			μs
tos	Data setup time		2			μs
t _{AH}	Address hold time		0			μs
tон	Data hold time		2			μs
tDFP	Output enable to output delay		0		130	ns
tvs	V _{PP} setup time		2			μs
tpw	PGM Pulse width (during program)		45	50	55	ms
tCES	CE set up time		2			μs
toE	Data valid from OE				150	ns

Note 7:  $V_{CC}$  must be applied simultaneously or before  $V_{PP}$  and removed simultaneously or after  $V_{PP}$ .



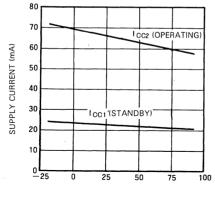
### 131 072-BIT(16384-WORD BY 8-BIT) ERASABLE AND ELECTRICALLY REPROGRAMMABLE ROM

### AC WAVEFORMS



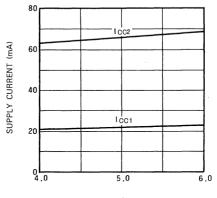

Test conditions for A.C. characteristics Input rise and fall time:  $\leq 20$ ns Input voltage: V_{IL} = 0.45V, V_{IH} = 2.4V Reference voltage at timing measurement: Input 0.8V and 2V Outputs 0.8V and 2V



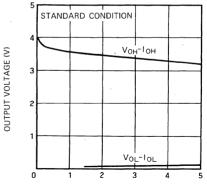

#### 131 072-BIT(16384-WORD BY 8-BIT) ERASABLE AND ELECTRICALLY REPROGRAMMABLE ROM

#### **TYPICAL CHARACTERISTICS**




OPERATING TEMPERATURE ta (°C)

SUPPLY CURRENT VS OPERATING TEMPERATURE




OPERATING TEMPERATURE Ta (°C)

#### SUPPLY CURRENT VS SUPPLY VOLTAGE



SUPPLY VOLTAGE Vcc (V)



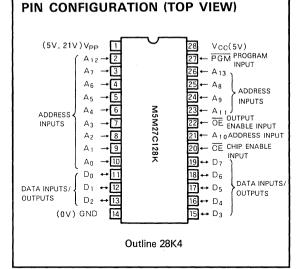
#### **OUTPUT CHARACTERISTICS**

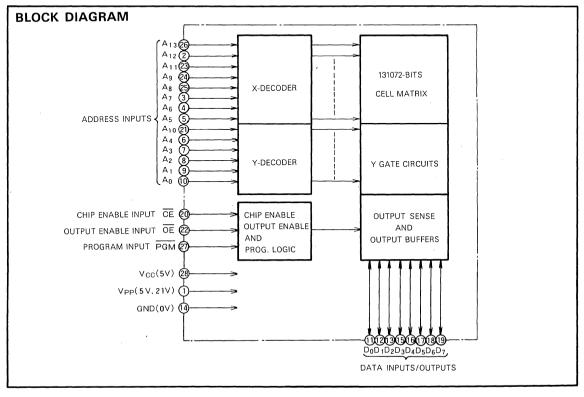
OUTPUT CURRENT (mA)





#### DESCRIPTION


The Mitsubishi M5M27C128K is a high-speed 131072-bit ultraviolet erasable and electrically reprogrammable read only memory. It is suitable for microprocessor programming applications where rapid turn-around is required. The M5M27C128K is fabricated by N-channel double polysilicon Memory gate and CMOS technology for peripheral circuits, and available in a 28 pin DIL package with a transparent lid.


#### **FEATURES**

- 16384 word x 8 bit organization
- Two line control OE, CE
- Low power current (I_{CC}): Active . . . . 30mA (max.) Standby . . . 1mA (max.)
- Single 5V power supply
- 3ngle 5v power supp
   3-State output buffer
- Input and output TTL-compatible in read and program mode
- Standard 28-pin DIL package
- Fast programming algorithm
- Interchangeable with M5L27128K

#### APPLICATION

Microcomputer systems and peripheral equipment







## FUNCTION

#### Read

Set the  $\overline{CE}$  and  $\overline{OE}$  terminals to the read mode (low level). Low level input to  $\overline{CE}$  and  $\overline{OE}$  and address signals to the address inputs ( $A_0 \sim A_{13}$ ) make the data contents of the designated address location available at the data input/output ( $D_0 \sim D_7$ ). When the  $\overline{CE}$  or  $\overline{OE}$  signal is high, data input/output are in a floating state.

When the  $\overline{\text{CE}}$  signal is high, the device is in the standby mode or power-down mode.

#### Programming

#### (Fast programming algorithm)

First set  $V_{CC} = 6V$ ,  $V_{PP} = 21V$  and then set an address to first address to be programmed. After applying 1 ms program pulse (PGM) to the address, verify is performed. If the output data of that address is not verified correctly, apply one more 1 ms program pulse. The programmer continues 1 ms pulsethen-verify routines until the device verify correctly or fifteen of these pulse-then-verify routines have been completed. The programmer also maintains its total number of 1 ms pulses applied to that address in register X. And then applied a program pulse 4 times of register X value long as an overprogram pulse. When the programming procedure above is finished, step to the next address and repeat this procedure till last address to be programmed. (See P.6-24)

#### (Conventional programming algorithm)

The device enters the programming mode when 21V is supplied to the V_{PP} power supply input and  $\overline{CE}$  is at low level. A location is designated by address signals (A₀ ~ A₁₃), and the data to be programmed must be applied at 8-bits in parallel to the data inputs (D₀ ~ D₇). A program pulse to the PGM at this state will effect programming. Only one programming pulse is required, but its width must satisfy the condition 45 ms  $\leq t_{PW} \leq 55$  ms.

#### Erase

Erase is effected by exposure to ultraviolet light with a wavelength of 2537Å at an intensity of appoximately 15WS/cm². Sunlight and fluorescent light may contain ultraviolet light sufficient to erase the programmed information. For any operation in the read mode, the transparent lid should be covered with opaque tape.

#### **MODE SELECTION**

Pins	CE(20)	0E(22)	PGM(27)	V _{PP} (1)	V _{CC} (28)	Outputs (11~13, 15~19)
Read	VIL	VIL	VIH	Vcc	Vcc	Data out
Standby	VIH	×*	×*	Vcc	Vcc	Floating
Program	VIL	ViH	VIL	Vpp	Vcc	Data in
Program verify	VIL	VIL	VIH	VPP	Vcc	Data out
Program inhibit	VIH	×*	×*	Vpp	Vcc	Floating

*: X can be either VII or VIH.

#### **ABSOLUTE MAXIMUM RATINGS** (Note 1)

Symbol	Parameter	Limits	Unit
Topr	Temperature under bias	- 10~80	°C
Tstg	Storage temperature	- 65~- 125	°C
Vii	All input or output voltage (Note 2)	-0.6~7	V
Vi 2	V _{PP} supply voltage during programming (Note 2)	-0.6~22.0	V

Note 1: Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods affects device reliability.

2: With respect to Ground.

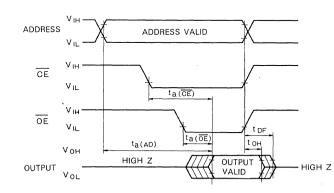


## 131 072-BIT(16384-WORD BY 8-BIT) CMOS ERASABLE AND ELECTRICALLY REPROGRAMMABLE ROM

#### **READ OPERATION**

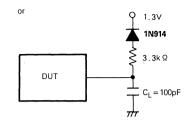
# DC ELECTRICAL CHARACTERISTICS (Ta=0~70°C, V_{CC}=5V±5%, V_{PP}=V_{CC}, unless otherwise noted)

Symbol	Parameter	Test servitions		Limits		110.0
Symbol		Test conditions	Min	Тур	Max	Unit
1 _{L1}	Input load current	V _{IN} =5.25V			10	μA
1 _{LO}	Output leakage current	V _{OUT} =5.25V			10	μA
IPP1	V _{PP} current read	V _{PP} =5.25V		1	100	μA
1	V _{CC} current standby	<u>CE</u> =V _{IH}			1	mA
ICC1	VCC current standby	<u>CE</u> =V _{CC}		1	100	μA
1	V _{CC} current Active	$\overline{CE} = \overline{OE} = V_{1L}$			30	mA
ICC2	A CC content Active	f=4MHz			10 100 1 100 30 30 0.8 V _{CC} +1	mA
VIL	Input low voltage		-0.1		0.8	V
VIH	Input high voltage		2.0		Vcc+1	V
VOL	Output low voltage	1 _{0L} =2.1mA			0.45	V
Vон	Output high voltage	I _{OH} =-400µ A	2.4			V


Note 3: Typical values are at  $Ta = 25^{\circ}C$  and nominal supply voltages.

#### AC ELECTRICAL CHARACTERISTICS (Ta=0~70°C, V_{CC}=5V±5%, V_{PP}=V_{CC}, unless otherwise noted)

			Limits						
Symbol	Parameter	Test conditions	M5M27C128K-2		M5M27C128K		M5M27C128K-3		Unit
			Min	Max	Min	Max	Min	Max	
ta(AD)	Address to output delay	$\overline{OE} = \overline{OE} = V_{IL}$		200		250		300	ns
ta(CE)	CE to output delay	0E = VIL		200		250		300	ns
ta(OE)	Output enable to output delay	CE=VIL		75		100		120	ns
t DF	Output enable high to output float	CE = VIL	0	60	0	85	0	105	ns
tон	Output hold from CE or OE	$\overline{CE} = \overline{OE} = V_{IL}$	0		0		0		ns


Note 4: V_{CC} must be applied simultaneously V_{PP} and removed simultaneously V_{PP}.

# **AC WAVEFORMS**



Test conditions for A.C. characteristics Input voltage: VIL=0.45V, VIH=2.4V Input rise and fall times:  $\leq 20$ ns Reference voltage at timing measurement: Inputs 1V and 2V Output 0.8V, and 2V

Output load: 1TTL gate + C1 (100pF)



# CAPACITANCE

Symbol	D	Test conditions			Unit	
Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
C _{IN}	Input capacitance (Address, CE, OE, PGM)	$T = 25^{\circ}0$ (= 1)(1)= $V_{1} = V_{2} = 0$ )(		4	6	pF
C _{OUT}	Output capacitance	$T_a = 25^{\circ}C$ , f= 1MHz, $V_1 = V_0 = 0V$		8	12	pF



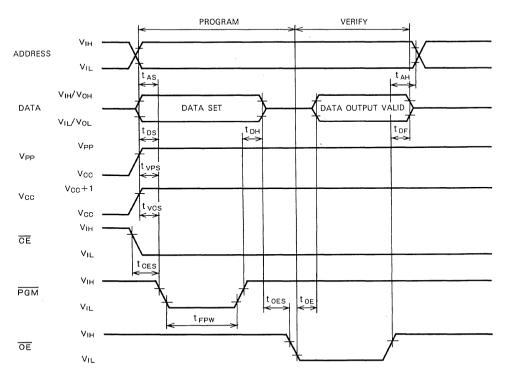
# 131 072-BIT(16384-WORD BY 8-BIT) CMOS ERASABLE AND ELECTRICALLY REPROGRAMMABLE ROM

#### PROGRAM OPERATION

# FAST PROGRAMMING ALGORITHM

DC ELECTRICAL CHARACTERISTICS (Ta=25±5°C, V_{CC}=6V±0.25V, V_{PP}=21V±0.5V, unless otherwise noted)

Symbol	Parameter	Test conditions		11-34		
Зупрог			Min	Тур	Max	Unit
1 _U	Input current	VIN=VILOR VIH			10	μA
VOL	Output low voltage	I _{OL} =2.1mA			0.45	v
Voн	Output high voltage	I _{OH} =-400μA	2.4			V
VIL	Input low voltage		-0.1		0.8	V
VIH	Input high voltage		2.0		Vcc	V
I _{CC2}	V _{CC} supply current				30	mA
PP2	V _{PP} supply current	CE=VIL=PGM			30	mA

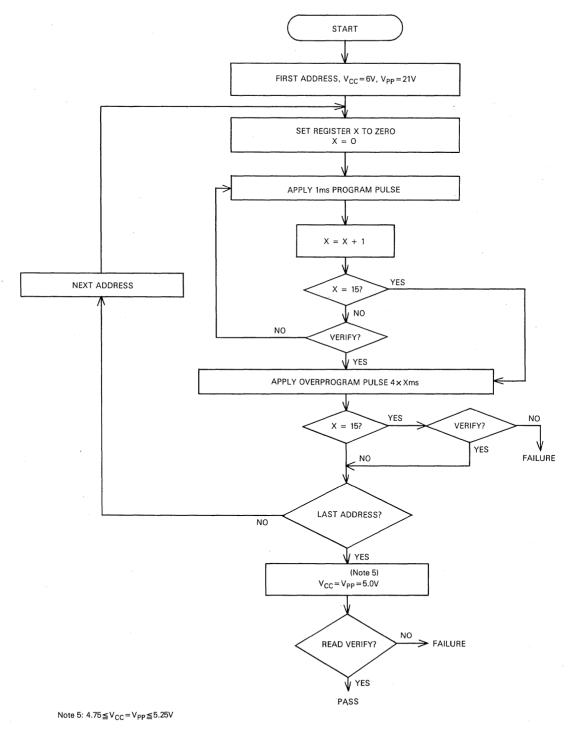

#### AC ELECTRICAL CHARACTERISTICS (Ta=25±5°C, V_{CC}=6V±0.25V, V_{PP}=21V±0.5V, unless otherwise noted)

Sumb -1	Parameter	Test conditions		Unit		
Symbol			Min	Тур	Max	Unit
t _{AS}	Address setup time		2			μs
t _{OES}	OE set up time		2			μs
t _{DS}	Data setup time		2			μS
t _{AH}	Address hold time		0			μs
t _{DH}	Data hold time		2			μs
t _{DF}	Chip enable to output float delay		0		130	ns
t _{vcs}	V _{CC} setup time		2			μs
t _{VPS}	V _{PP} setup time		2			μs
t _{FPW}	PGM initial program pulse width		, 0.95	1	1.05	ms
t opw	PGM over program pulse width		3.8		63	ms
tces	CE setup time		2			μs
t _{OE}	Data valid from OE				150	ns



# 131 072-BIT(16384-WORD BY 8-BIT) CMOS ERASABLE AND ELECTRICALLY REPROGRAMMABLE ROM

## AC WAVEFORMS




Test conditions for A.C. characteristics Input voltage: V_{IL} = 0.45V, V_{IH} = 2.4V Input rise and fall times:  $\leq 20 ns$  Reference voltage at timing measurement: Input 1V and 2V Output 0.8V, and 2V



#### 131 072-BIT(16384-WORD BY 8-BIT) CMOS ERASABLE AND ELECTRICALLY REPROGRAMMABLE ROM

# FAST PROGRAMMING ALGORITHM FLOW CHART



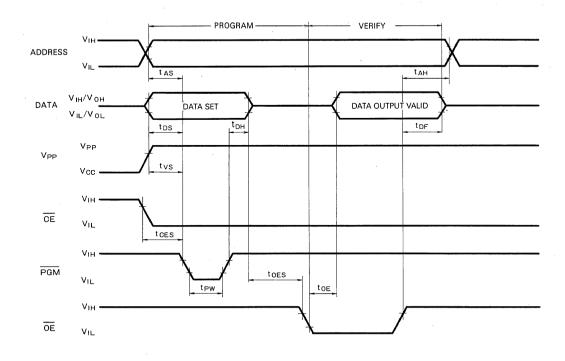


# 131 072-BIT(16384-WORD BY 8-BIT) CMOS ERASABLE AND ELECTRICALLY REPROGRAMMABLE ROM

# CONVENTIONAL PROGRAMMING ALGORITHM

#### DC ELECTRICAL CHARACTERISTICS (Ta=25±5°C, V_{CC}=5V±5%, V_{PP}=21V±0.5V, unless otherwise noted)

Symbol	Parameter	Test conditions		Limits			
Symbol	Parameter	Test conditions	Min	Тур	Max	Unit	
ILI	Input current	V _{IN} =V _{IL} or V _{IH}			10	μA	
VOL	Output low voltage	I _{OL} =2.1mA			0.45	V	
Vон	Output high voltage	$I_{OH} = -400 \mu A$	2.4			v	
VIL	Input low voltage		-0.1		0.8	V	
VIH	Input high voltage		2.0		Vcc+1	V	
I CC2	V _{CC} Supply current				30	mA	
IPP	V _{PP} Supply current	$\overline{CE} = V_{IL} = \overline{PGM}$			30	mA	


#### AC ELECTRICAL CHARACTERISTICS (Ta=25±5°C, V_{CC}=5V±5%, V_{PP}=21V±0.5V, unless otherwise noted)

Symbol	Parameter	Test conditions				
бутьої		Test conditions	Min	Тур	Max	Unit
tas	Address set up time		2			// S
toes	OE setup time		2			μs
t _{DS}	Data setup time		2			μs
t _{AH}	Address hold time		0			μs
tон	Data hold time		2			μs
tDF	Chip enable to output delay		0		130	ns
tvs	V _{PP} setup time		2			μs
tpw	PGM Pulse width (during program)		45	50	55	ms
tCES	CE setup time		2			μs
toE	Data valid from OE				150	ns



### 131 072-BIT(16384-WORD BY 8-BIT) CMOS ERASABLE AND ELECTRICALLY REPROGRAMMABLE ROM

# AC WAVEFORMS



Test conditions for A.C. characteristics Input rise and fall time:  $\leq$ 20ns Input voltage: V_{IL} = 0.45V, V_{IH} = 2.4V Reference voltage at timing measurement: Input 1V and 2V Outputs 0.8V and 2V



# **MOS EAROM**





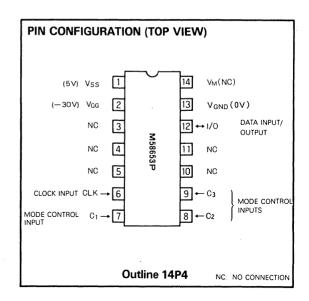
# MITSUBISHI LSIS

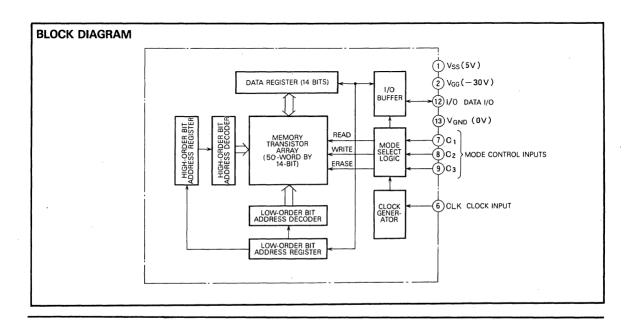
# 700-BIT (50-WORD BY 14-BIT) ELECTRICALLY ALTERABLE ROM

#### DESCRIPTION

The M58653P is a serial input/output 700 bit electrically erasable and reprogrammable ROM organized as 50 words of 14 bits, and fabricated using MNOS technology. Data and addresses are transferred serially via a one-bit bidirectional bus.

#### FEATURES


- Word-by-word electrically alterable
- Non-volatile data storage ..... 10 years (min)
- Write/erase time ..... 20ms/word
- Typical power supply voltages . . . . . . -30V, +5V
- Number of erase-write cycles . . . . . . . 10⁵ times (min)
- Number of read access unrefreshed. . .10⁹ times (min)
- 5V I/O interface


#### **APPLICATION**

 Non-volatile channel memories for electronic tuning systems and field-reprogrammable read-only memory systems

#### FUNCTION

The address is designated by two consecutive one-of-tencoded digits. Seven modes—accept address, accept data, shift data output, erase, write, read, and standby—are all selected by a 3-bit code applied to  $C_1$ ,  $C_2$ , and  $C_3$ . Data is stored by internal negative writing pulses that selectively tunnel charges into the  $SiO_2-Si_3N_4$  interface of the gate insulators of the MNOS memory transistors.







#### PIN DESCRIPTION

Pin	Name	Functions
1/0	1/0	In the accept address and accept data modes, used for input. In the shift data output mode, used for output. In the standby, read, erase and write modes, this pin is in a floating state.
VM	Test	Used for testing purposes only. It should be left unconnected during normal operation.
V _{SS}	Chip substrate voltage	Normally connected to+5V.
V _{GG}	Power supply voltage	Normally connected to -30V.
CLK	Clock input	14kHz timing reference. Required for all operating modes. High-level input is possible during standby mode.
$C_1 \sim C_3$	Mode control input	Used to select the operation mode.
VGND	Ground voltage	Connected to ground (OV)

#### **OPERATION MODES**

C1	C2	Сз	Functions
Ĥ	н	н	Standby mode: The contents of the address registers and the data register remain unchanged. The output buffer is held in the floating state.
н	н	L	Not used.
н	Ľ	н	Erase mode. The word stored at the addressed location is erased. The data bits after erasing are all low-level.
н	L	L	Accept address mode: Data presented at the I/O pin is shifted into the address registers one bit with each clock pulse. The address is designated by two one-of-ten-coded digits.
L	н	н	Read mode: The addressed word is read from the memory into the data register.
L	н	L	Shift data output mode: The output driver is enabled and the contents of the data register are shifted to the I/O pin one bit with each clock pulse.
L	L	н	Write mode: The data contained in the data register is written into the location designated by the address registers.
L	L	L	Accept data mode: The data register accepts serial data from the I/O pin one bit with each clock pulse. The address registers remain unchanged.



# MITSUBISHI LSIS

# 700-BIT (50-WORD BY 14-BIT) ELECTRICALLY ALTERABLE ROM

#### ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Limits	Unit
V _{GG}	Supply voltage		0.340	v
Vi	Input voltage	With respect to VSS	0.3~-20	v
Vo	Output voltage		0.3~-20	v
Tstg	Storage temperature range		- 40 ~ 125	r
Topr	Operating free-air temperature range		-10~70	r

# **RECOMMENDED OPERATING CONDITIONS** ( $Ta = -10 \sim 70$ °C, unless otherwise noted.)

Symbol		Limits			Unit	]
	Parameter		Nom	Max	Unit	Note 1: The order of V _{SS} V
V _{GG} -V _{SS}	Supply voltage	- 32.2	- 35	- 37.8	V	With on, VGG is tur
Vss-VgND	Supply voltage	4.75	5	6	V	With off, V _{SS} is turn
ViH	High-level input voltage	Vss-1		V _{SS} +0.3	V	
VIL	Low-level input voltage	V _{SS} -6.5		V _{SS} -4.25	V	

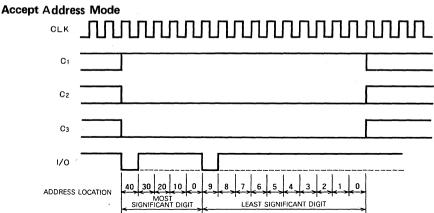
Note 1: The order of V_{SS} V_{GG} with on or off. With on, V_{GG} is turned on after V_{SS} is done. With off, V_{SS} is turned off after V_{GG} is done.

# **ELECTRICAL CHARACTERISTICS** (Ta = -10 - 70°C, V_{GG}-V_{SS} = $-35V \pm 8$ %, V_{SS}-V_{GND} = 5V - 5%. unless otherwise noted.)

	Parameter			Limits			
Symbol Parameter	Parameter	Test conditions	Min	Тур	Max	Unit	
VIH	High-level input voltage		V _{SS} -1		V _{SS} +0.3	V	
VIL	Low-level input voltage		V _{SS} -6.5		Vss-4.25	v	
Ι _Ι	Low-level input current	$V_{I} - V_{SS} = -6.5V$			± 10	μA	
IOZL	Off-state output current, low-level voltage applied	V ₀ -V _{SS} =-6.5V			± 10	μA	
Vон	High-level output voltage	$I_{OH} = -200 \mu A$	$V_{SS} - 1$			V	
Vol	Low-level output voltage	$I_{OL} = 10 \mu A$			V GND + 0.5	i V	
IGG	Supply current from VGG	$I_0 = 0\mu A$		5.5	8.8	mA	

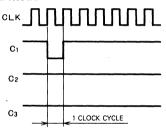
#### Note 2: Typical values are at Ta=25°C and nominal supply voltage.

# TIMING REQUIREMENTS ( $T_a = -10 \sim 70$ °C, $V_{GG} - V_{SS} = -35 V \pm 8$ %, $V_{SS} - V_{GND} = 5 V - 5$ %. unless otherwise noted.)

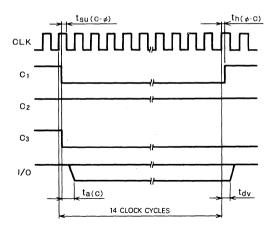

	Parameter	Alternative	Tool of the second		Limits		
Symbol		symbols	Test conditions	Min	Тур	Max	Unit
f(φ)	Clock frequency	fø		11.2	14	16.8	kHz
D( \$\$)	Clock duty cycle	Dø		30	50	55	%
ťw(w)	Write time	tw		16	20	24	ms
tw(E)	Erase time	te		16	20	24	ms
tr, tf	Risetime, fall time	tr, tf				1	μs
tsu(c−¢)	Control setup time before the fall of the clock pulse	tcs		0			ns
$th(\phi - c)$ .	Control hold time after the rise of the clock pulse	t _{CH}		0			ns

#### SWITCHING CHARACTERISTICS (Ta = $-10 \sim 70$ °C, V_{GG} = $-35V \pm 8$ %, unless otherwise noted.)

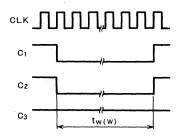
	Symbol Parameter A	Alternative	Test conditions		Limits		Unit
Symbol	Symbol Parameter symbols		Test conditions	Min	Тур	Max	Onit
ta(c)	Read access time	tpw	$C_{L} = 100 PF \frac{V_{OH} = V_{SS} - 2V}{V_{OL} = V_{GND} + 1.5V}$			20	μs
		Τs	$N_{EW} = 10^4$ , $t_{W}(w) = 20 ms$ $t_{W}(E) = 20 ms$	10			Year
ts	Unpowered nonvolatile data retention time	Τs	$N_{EW} = 10^5$ , $\frac{t_{W(W)} = 20 \text{ ms}}{t_{W(E)} = 20 \text{ ms}}$	1			Year
New	Number of erase/write cycles	Nw		10 ⁵			Times
NRA	Number of read access unrefreshed	NRA		10 ⁹			Times
tdv	Data valid time	tew				20	μs



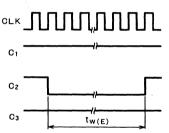

#### TIMING DIAGRAM



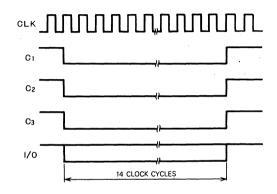

Note 3: The address is designated by two one-of-ten-coded digits. The figure shows designation of the address 49.





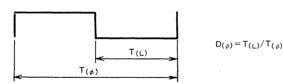


#### Shift Data Output Mode




Write Mode

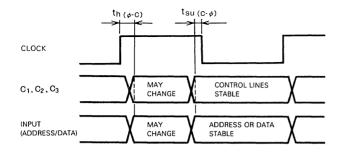


#### **Erase Mode**

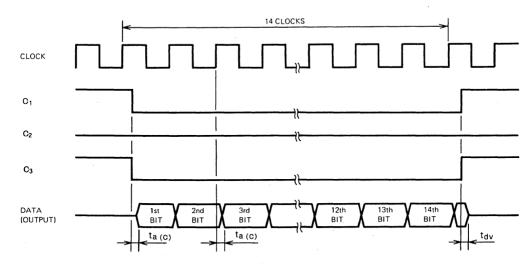



#### Accept Data Mode





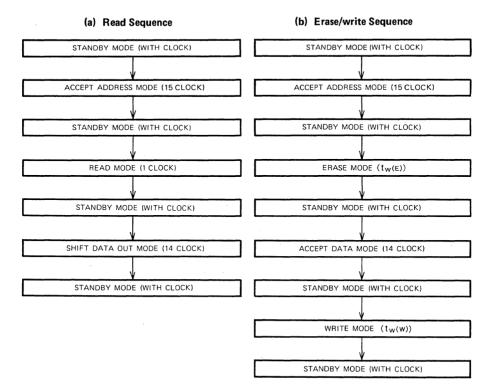

• The difinition of clock duty cycle, D ( $\phi$ )




• Timing of data input and mode control inputs

Mode control inputs,  $C_1$ ,  $C_2$ ,  $C_3$  and input signal my change, when clock is 'H' level.




#### • Timing of data output



The 1st bit of output data is output after access time of  $t_{a(C)}$  from the mode control transition. And other bits are output after  $t_{a(C)}$  from positive edge of clock.



• Operating sequential flow







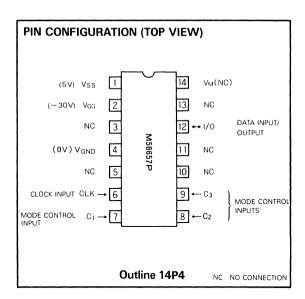
# MITSUBISHI LSIS M58657P

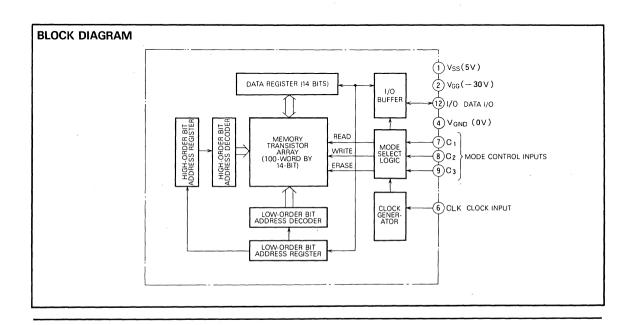
# 1400-BIT (100-WORD BY 14-BIT) ELECTRICALLY ALTERABLE ROM

#### DESCRIPTION

The M58657P is a serial input/output 1400 bit electrically erasable and reprogrammable ROM organized as 100 words of 14 bits, and fabricated using MNOS technology. Data and addresses are transferred serially via a one-bit bidirectional bus.

#### FEATURES


- Word-by-word electrically alterable
- Non-volatile data storage . . . . . . . . . 10 years (min)
- Typical power supply voltages .....-30V, +5V
- Number of erase-write cycles . . . . . . 10⁵ times (min)
- Number of read access unrefreshed. . .10⁹ times (min)
- 5V I/O interface


#### APPLICATION

 Non-volatile channel memories for electronic tuning systems and field-reprogrammable read-only memory systems

#### FUNCTION

The address is designated by two consecutive one-of-tencoded digits. Seven modes—accept address, accept data, shift data output, erase, write, read, and standby—are all selected by a 3-bit code applied to  $C_1$ ,  $C_2$ , and  $C_3$ . Data is stored by internal negative writing pulses that selectively tunnel charges into the  $SiO_2-Si_3N_4$  interface of the gate insulators of the MNOS memory transistors.







#### **PIN DESCRIPTION**

Pin	Name	Functions
1/0	1/0	In the accept address and accept data modes, used for input. In the shift data output mode, used for output. In the standby, read, erase and write modes, this pin is in a floating state.
VM	Test	Used for testing purposes only. It should be left unconnected during normal operation.
Vss	Chip substrate voltage	Normally connected to +5 V.
V _{GG}	Power supply voltage	Normally connected to -30V.
CLK	Clock input	14kHz timing reference. Required for all operating modes. High-level input is possible during standby mode.
$C_1 \sim C_3$	Mode control input	Used to select the operation mode.
V _{GND}	Ground voltage	Connected to ground (OV)

#### **OPERATION MODES**

C1	C2	Сз	Functions		
н	н	н	Standby mode: The contents of the address registers and the data register remain unchanged. The output buffer is held in the floating state.		
н	н	L	Not used.		
н	L H Erase mode: The word stored at the addressed location is erased. The data bits after erasing are all low-level.				
н	L	L	Accept address mode: Data presented at the I/O pin is shifted into the address registers one bit with each clock pulse. The address is designated by two one-of-ten-coded digits.		
L	н	н	Read mode: The addressed word is read from the memory into the data register.		
L	н	L	Shift data output mode: The output driver is enabled and the contents of the data register are shifted to the I/O pin one bit with each clock pulse.		
L	L	н	Write mode: The data contained in the data register is written into the location designated by the address registers.		
L	L	L	Accept data mode: The data register accepts serial data from the I/O pin one bit with each clock pulse. The address registers remain unchanged.		



#### **ABSOLUTE MAXIMUM RATINGS**

Symbol	Parameter	Conditions	Limits	Unit
V _{GG}	Supply voltage		0.3~-40	V
VI	Input voltage	With respect to VSS	0.3~-20	v
Vo	Output voltage		0.3~-20	v
⊤stg	Storage temperature range		- 40 ~ 125	r
Topr	Operating free-air temperature range		- 10 ~ 70	°C

#### **RECOMMENDED OPERATING CONDITIONS** ( $Ta = -10 \sim 70$ °C, unless otherwise noted.)

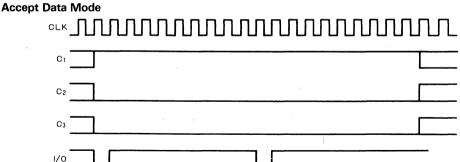
Symbol	Parameter	Limits		Unit		
Symbol	Faiameter	Min	Nom	Max	Onit	
V _{GG} -V _{SS}	Supply voltage	- 32.2	- 35	- 37.8	v	Note 1: The order of V _{SS} V _{GG} with on or off.
Vss-Vgnd	Supply voltage	4.75	5	5 6 V With on, VGG is tur	With on, VGG is turned on after VSS is d	
ViH	High-level input voltage	Vss-1		V _{SS} +0.3	V	With off, $V_{SS}$ is turned off after $V_{GG}$ is o
VIL	Low-level input voltage	V _{SS} -6.5		V _{SS} -4.25	V	

# **ELECTRICAL CHARACTERISTICS** ( $T_a = -10 - 70$ °C, $V_{GG} - V_{SS} = -35V \pm 8$ %, $V_{SS} - V_{GND} = 5$ V - 5%. unless otherwise noted.)

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
ViH	High-level input voltage		V _{SS} - 1		V _{SS} + 0.3	v
VIL	Low-level input voltage		Vss-6.5		Vss-4.25	V
հլ	Low-level input current	V ₁ -V _{SS} =-6.5V			± 10	μA
loz∟	Off-state output current, low-level voltage applied	$V_0 - V_{SS} = -6.5V$			± 10	μA
Vон	High-level output voltage	$I_{OH} = -200 \mu A$	V _{SS} - 1			V
Vol	Low-level output voltage	$I_{OL} = 10 \mu A$			V _{GND} +0.5	v
IGG	Supply current from VGG	$I_0 = 0 \mu A$		5.5	8.8	mA

#### Note 2: Typical values are at Ta=25°C and nominal supply voltage.

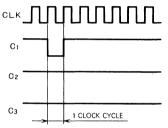
# TIMING REQUIREMENTS ( $Ta = -10 \sim 70$ °C, $V_{GG} = V_{SS} = -35V \pm 8$ %, $V_{SS} = V_{GND} = 5V - 5$ %. unless otherwise noted.)


Symbol	Parameter	Alternative	Test conditions		Unit		
Symbol .		symbols	rest conditions	Min	Түр	Max	Onit
f(¢)	Clock frequency	fø		10	14	17	kHz
D(	Clock duty cycle	Dφ		30	50	55	%
tw(w)	Write time	tw		- 16	20	24	ms
tw(E)	Erase time	te		16	20	24	ms .
tr tf	Risetime, falltime	tr, tf				1	μs
tsu(c−¢)	Control setup time before the fall of the clock pulse	tcs		0			ns
$th(\phi - c)$	Control hold time after the rise of the clock pulse	tсн		0			ns

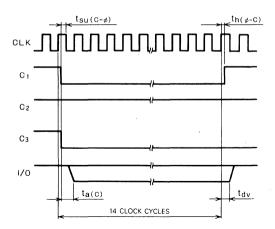
# SWITCHING CHARACTERISTICS (Ta = $-10 \sim 70$ °C, V_{GG} = $-35V \pm 8$ %, unless otherwise noted.)

Sumbal	Parameter	Alternative	Test conditions		Limits		Unit
Symbol		symbols	Test conditions	Min	Тур	Max	Unit
ta(c)	Read access time	tew	$C_{L} = 100 p F \frac{V_{OH} = V_{SS} - 2V}{V_{OL} = V_{GND} + 1.5V}$			20	μs
	Unpowered nonvolatile data retention time	Τ _S	$N_{EW} = 10^4$ $t_{W(W)} = 20 ms$ $t_{W(E)} = 20 ms$	10			Year
ts		Τ _S	$N_{EW} = 10^5$ $t_{W(W)} = 20 ms$ $t_{W(E)} = 20 ms$	1			Year
NEW	Number of erase/write cycles	Nw		10 ⁵			Times
NRA	Number of read access unrefreshed	NRA		10 ⁹			Times
tdv	Data valid time	tew				20	μs

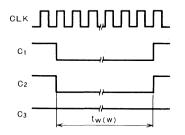



# TIMING DIAGRAM

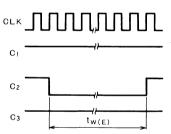



ADDRESS LOCATION 90 80 70 60 50 40 30 20 10 0 9 8 7 6 5 4 3 2 1 0 MOST SIGNIFICANT DIGIT

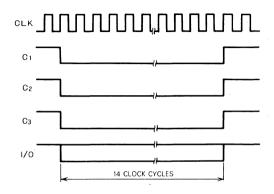
Note 3: The address is designated by two one-of-ten-coded digits. The figure shows designation of the address 99.


#### **Read Mode**



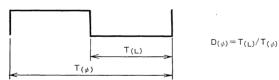

#### Shift Data Output Mode




#### Write Mode

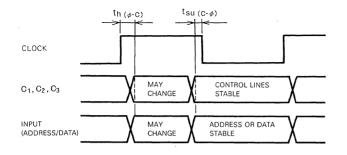


#### **Erase Mode**

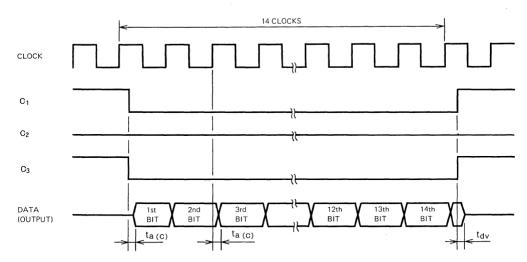



#### Accept Data Mode






• The difinition of clock duty cycle, D ( $\phi$ )

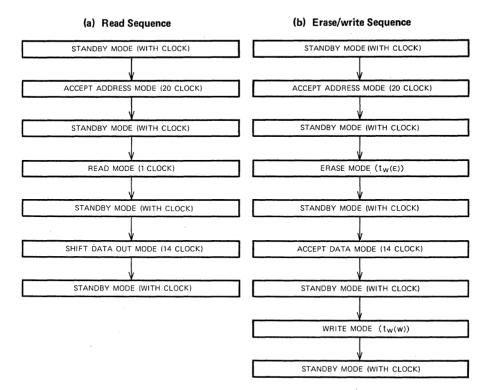



• Timing of data input and mode control inputs

Mode control inputs,  $C_1$ ,  $C_2$ ,  $C_3$  and input signal my change, when clock is 'H' level.



# • Timing of data output




The 1st bit of output data is output after access time of  $t_{a(C)}$  from the mode control transition. And other bits are output after  $t_{a(C)}$  from positive edge of clock.



.

• Operating sequential flow







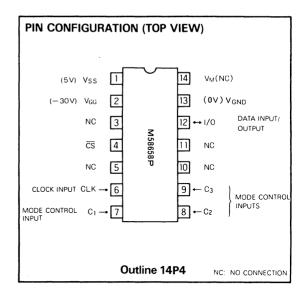
# MITSUBISHI LSIS

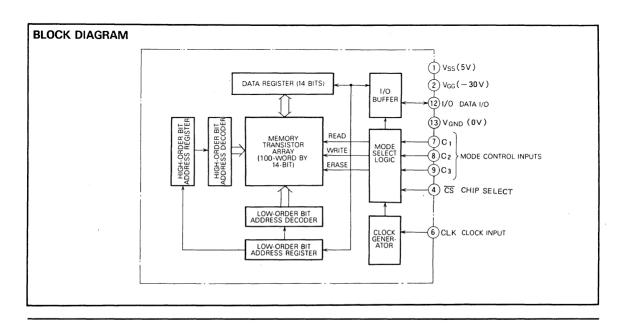
#### 320-BIT (20-WORD BY 16-BIT) ELECTRICALLY ALTERABLE ROM

#### DESCRIPTION

The M58658P is a serial input/output 320 bit electrically erasable and reprogrammable ROM organized as 20 words of 16 bits, and fabricated using MNOS technology. Data and addresses are transferred serially via a one-bit bidirectional bus.

#### FEATURES


- Word-by-word electrically alterable
- Non-volatile data storage . . . . . . . . . 10 years (min)
- Typical power supply voltages ....-30V. +5V
- Number of read access unrefreshed. . .10⁹ times (min)
- 5V I/O interface


#### APPLICATION

 Non-volatile channel memories for electronic tuning systems and field-reprogrammable read-only memory systems

#### FUNCTION

The address is designated by two consecutive one-of-four coded digits. Eight modes-accept address, AD accept address, accept data, shift data output, erase, write, read, and standby-are all selected by a 3-bit code applied to C₁, C₂, and C₃. Data is stored by internal negative writing pulses that selectively tunnel charges into the SiO₂-Si₃N₄ interface of the gate insulators of the MNOS memory transistors.







#### **PIN DESCRIPTION**

Pin	Name	Functions
1/0	1/0	In the accept address AD accept address and accept data modes, used for input. In the shift data output mode, used for output. In the standby, read, erase and write modes, this pin is in a floating state.
VM	Test	Used for testing purposes only. It should be left unconnected during normal operation.
Vss	Chip substrate voltage	Normally connected to +5V.
V _{GG}	Power supply voltage	Normally connected to -30V.
CLK	Clock input	Required for all operating modes, when $\overline{\text{CS}}$ is low.
$C_1 \sim C_3$	Mode control input	Used to select the operation mode.
VGND	Ground voltage	Connected to ground (OV)
<u>CS</u>	Chip select	Used for chip selection in "L"

# **OPERATION MODES**

Ct	C2	C3	Functions		
н	н	н	Standby mode: The contents of the address registers and the data register remain unchanged. The output buffer is held in the floating state.		
н	н	L	Additional data (AD) accept address: Data presented at the I/O pin is shifted into the AD address registers one bit with each clock pulse. The address is designated by two one-of-four coded digits. 4-word address is assigned in this mode.		
н	L H Erase mode: The word stored at the addressed location is erased. The data bits after erasing are all low-level				
н	L	L	Accept address mode: Data presented at the I/O pin is shifted into the address registers one bit with each clock pulse. The address is designated by two one-of-four-coded digits. 16-word address is assigned in this mode.		
L	н	н	Read mode: The addressed word is read from the memory into the data register		
L	н	L	Shift data output mode: The output driver is enabled and the contents of the data register are shifted to the I/O pin one bit with each clock pulse.		
L	L	н	Write mode. The data contained in the data register is written into the location designated by the address registers		
L	L	Ĺ	Accept data mode: The data register accepts serial data from the I/O pin one bit with each clock pulse. The address registers remain unchanged.		

#### **ABSOLUTE MAXIMUM RATINGS**

Symbol	Parameter	Conditions	Limits	Unit
V _{GG}	Supply voltage		0.3~-40	v
VI	Input voltage	With respect to V _{SS}	0.3~-20	V
Vo	Output voltage		0.3~-20	v
Tstg	Storage temperature range	· · · · · · · · · · · · · · · · · · ·	- 40 ~ 125	r
Topr	Operating free-air temperature range	Provide the second s	-10-70	τ

# **RECOMMENDED OPERATING CONDITIONS** ( $Ta = -10 \sim 70$ °C, unless otherwise noted.)

Symbol	Parameter		Limits			
Symbol	- raiameter	Min	Nom	Max	Unit	
V _{GG} -V _{SS}	Supply voltage	- 32.2	- 35	- 37.8	v	
Vss-VgND	Supply voltage	4.75	5	6	v	
ViH	High-level input voltage	V _{SS} -1		V _{SS} +0.3	V	
VIL	Low-level input voltage	Vss-6.5		V SS-4.25	v	



Symbol	Parameter	Test conditions		Limits		Unit
			Min	Тур	Max	Unit
VIH	High-level input voltage		V _{SS} - 1		V _{SS} + 0.3	V
VIL	Low-level input voltage		V _{SS} -6.5		V _{SS} -4.25	v
ار	Low-level input current CLK, C1, C2, C3, I/O	V _I -V _{SS} =-6.5V	-10		+ 10	μA
RI	Input pull-up resistance, CS			30		kΩ
IOZL	Off-state output current, low-level voltage applied	$V_{0}-V_{SS} = -6.5V$	-10		+ 10	μA
Vон	High-level output voltage	$I_{OH} = -200 \mu A$	V _{SS} – 1			v
VOL	Low-level output voltage	$I_{OL} = 10 \mu A$			V GND + 0.5	v
lgg	Supply current from VGG	$I_0 = 0\mu A$		5.5	8.8	mA

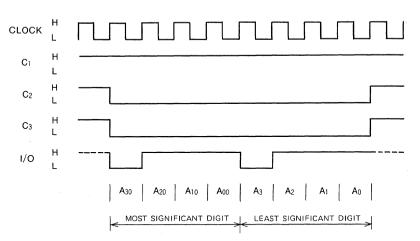
Note 1: Typical values are at Ta =  $25^{\circ}$ C and V_{GG}-V_{SS} = -35V.

# $\frac{\text{TIMING REQUIREMENTS (Ta = -10 - 70\%, V_{GG} - V_{SS} = -35V \pm 8\%, V_{SS} - V_{GND} = 5V - \frac{+20\%}{5\%}, \text{ unless otherwise noted.)}}{}$

Symbol	Parameter	<b>T</b>		Unit		
Symbol	Farameter	Test conditions	Min	Тур	Max	
$T_{L(\phi)}$	Negative clock pulse width		30			μs
Τ _{Η(φ)}	Positive clock pulse width		33			μs
Τ(φ)	Clock period				300	μs
t _w	Write time		16	20	24	ms
t _E	Erase time		16	20	24	ms
t _r , t _f	Risetime, fall time				1	μs
t _{su}	Control setup time before the fall of the clock pulse		1			μs
th	Control hold time after the rise of the clock pulse		0			μs
t _{ss}	Clock control setup time before the fall of $\overline{CS}$		1			μs
t _{hs}	Clock control hold time after the rise of $\overline{CS}$		1			μS

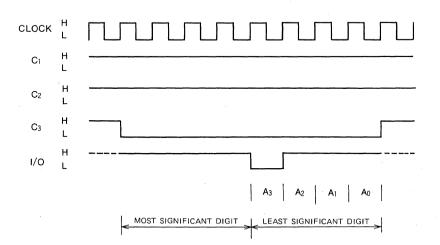
# SWITCHING CHARACTERISTICS (Ta = $-10 \sim 70$ °C, V_{GG} = -35V ± 8 %. unless otherwise noted.)

Symbol	Parameter	Alternative symbols	Test conditions	Limits			Unit
				Min	Түр	Max	
ta(c)	Read access time	tew	$C_{L} = 100 pF $ $V_{OH} = V_{SS} - 2V$ $V_{OL} = V_{GND} + 1.5V$			20	μS
ts	Unpowered nonvolatile data retention time	Τs	$N_{EW} = 10^4$ , $t_{W(W)} = 20 ms$ $t_{W(E)} = 20 ms$	10			Year
		Τs	$N_{EW} = 10^5$ , $\frac{t_{W(W)}}{t_{W(E)}} = 20 \text{ ms}$	1			Year
NEW	Number of erase/write cycles	Nw		10 ⁵			Times
NRA	Number of read access unrefreshed	NRA		10 ⁹			Times
tdv	Data valid time	tpw				20	μs




# MITSUBISHI LSIS

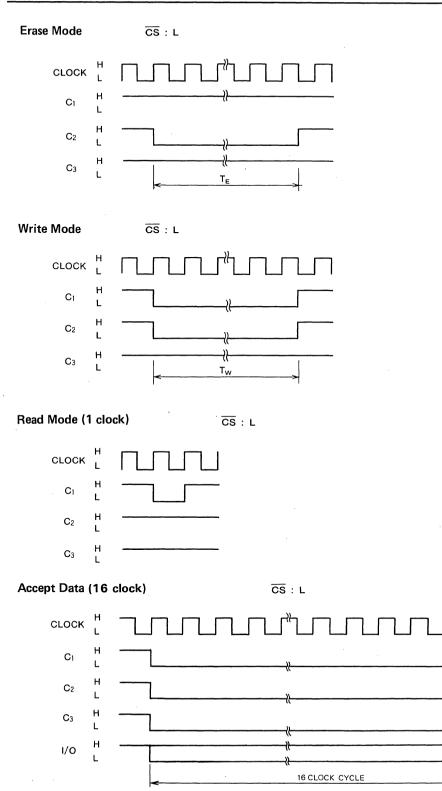
#### 320-BIT (20-WORD BY 16-BIT) ELECTRICALLY ALTERABLE ROM


#### TIMING DIAGRAM

Accept Address Mode (8 clock) CS : L

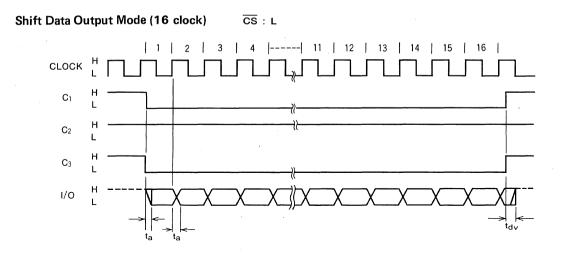


Note 2: The addresses from  $A_{00}$  to  $A_{33}$  are designated by two one-of-four coded digits. The above figure shows designation of address  $A_{33}$  (decimal address 15).

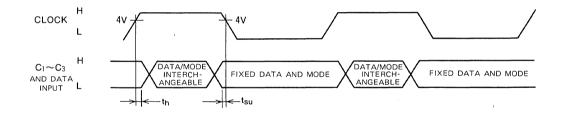

AD Accept Address Mode (8 clock) CS : L



Note 3: In the AD accept address mode, the higher four are set high, and the lower four digits are designated by one of the four coded digits. This address mode allows designation of addresses from A₀ to A₃. Each address has a 16 bits. The above figure shows designation of address A₃.

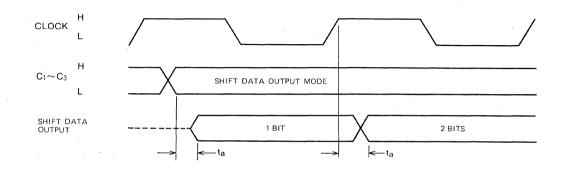



# MITSUBISHI LSIS




# 320-BIT (20-WORD BY 16-BIT) ELECTRICALLY ALTERABLE ROM



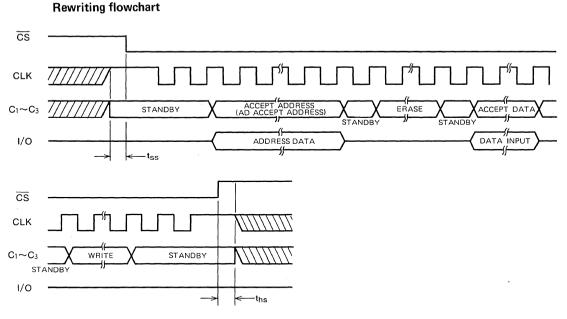



#### Timing of clock, C₁, C₂, C₃, and data input



Note 4:  $C_1 \sim C_3$  and accept data (AD accept data) are interchnageable while the clock is set high.

# Timing of clock, C₁, C₂, C₃, and data input

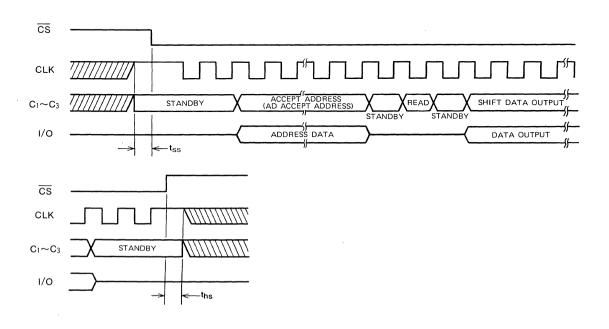





# MITSUBISHI LSIS

#### 320-BIT (20-WORD BY 16-BIT) ELECTRICALLY ALTERABLE ROM

#### **Operation flowchart**

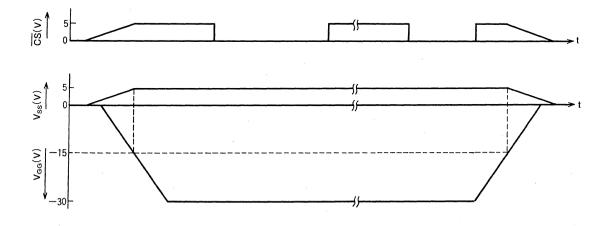



Note 5: One or more clock are required for standby between modes.

6: Set  $\overline{CS}$  to the low level after the lapse of  $t_{SS}$  and CLK has been set high and  $C_1 \sim C_3$  have been set to the standby mode.

7: Keep CLK to the high level and  $C_1 \sim C_3$  to "standby" from the time when  $\overline{CS}$  is set high to the lapse of ths.

# **Read Flowchart**






# 320-BIT (20-WORD BY 16-BIT) ELECTRICALLY ALTERABLE ROM

## **Power-on/off Conditions**

With power-on, V_{GG} is applied after V_{SS} has been applied. With power-off, V_{SS} is cut after V_{GG} has been cut. For power-on and off, hold  $\overline{CS}$  in V_{SS} or floating state. The recommended timing chart for power-on and off is as follows.







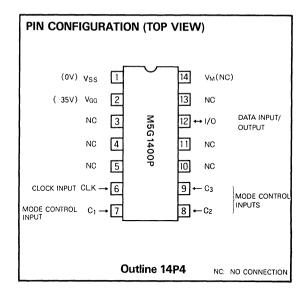
# MITSUBISHI LSIS M5G 1400P

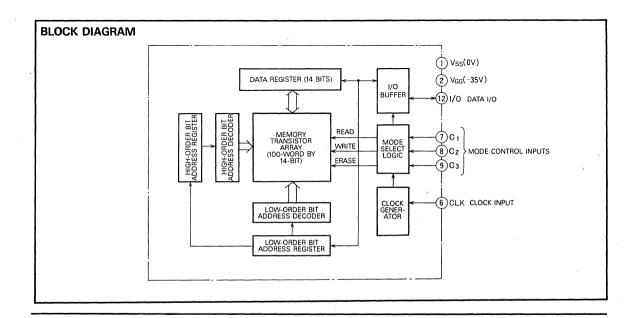
# 1400-BIT (100-WORD BY 14-BIT) ELECTRICALLY ALTERABLE ROM

#### DESCRIPTION

The M5G1400P is a serial input/output 1400-bit electrically erasable and reprogrammable ROM organized as 100 words of 14 bits, and fabricated using MNOS technology. Data and addresses are transferred serially via a one-bit bidirectional bus.

## FEATURES


- Word-by-word electrically alterable
- Non-volatile data storage: ..... 10 years (min)
- Write/erase time: ..... 20ms/word
- Single 35V power supply
- Number of erase-write cycles: ..... 10⁵ times (min)
- Number of read access unrefreshed:---- 10⁶ times (min)
- Interchangeable with GI's ER1400 in pin configuration and electrical characteristics


### APPLICATION

 Non-volatile channel memories for electronic tuning systems and field-reprogrammable read-only memory systems

#### FUNCTION

The address is designated by two consecutive one-of-tencoded digits. Seven modes—accept address, accept data, shift data output, erase, write, read, and standby—are all selected by a 3-bit code applied to  $C_1$ ,  $C_2$ , and  $C_3$ . Data is stored by internal negative writing pulses that selectively tunnel charges into the SiO₂—Si₃N₄ interface of the gate insulators of the MNOS memory transistors.







# 1400-BIT (100-WORD BY 14-BIT) ELECTRICALLY ALTERABLE ROM

# **PIN DESCRIPTION**

Pin	Name	Functions
1/0	1/0	In the accept address and accept data modes, used for input. In the shift data output mode, used for output. In the standby, read, erase and write modes, this pin is in a floating state.
VM	Test	Used for testing purposes only. It should be left unconnected during normal operation.
V _{SS}	Chip substrate voltage	Normally connected to ground.
V _{GG}	Power supply voltage	Normally connected to -35V.
CLK	Clock input	14kHz timing reference. Required for all operating modes. High-level input is possible during standby mode.
$C_1 \sim C_3$	Mode control input	Used to select the operation mode.

## **OPERATION MODES**

C1	C2	C3	Functions
н	н	Н	Standby mode: The contents of the address registers and the data register remain unchanged. The output buffer is held in the floating state.
н	н	L	Not used.
н	·L	н	Erase mode: The word stored at the addressed location is erased. The data bits after erasing are all low-level.
н	L	L	Accept address mode: Data presented at the I/O pin is shifted into the address registers one bit with each clock pulse. The address is designated by two one-of-ten-coded digits.
L	н	н	Read mode: The addressed word is read from the memory into the data register.
L	н	L	Shift data output mode: The output driver is enabled and the contents of the data register are shifted to the I/O pin one bit with each clock pulse.
L	L	н	Write mode. The data contained in the data register is written into the location designated by the address registers.
L	L	Ĺ	Accept data mode: The data register accepts serial data from the I/O pin one bit with each clock pulse. The address registers remain unchanged.



# 1400-BIT (100-WORD BY 14-BIT) ELECTRICALLY ALTERABLE ROM

## **ABSOLUTE MAXIMUM RATINGS**

Symbol	Parameter	Conditions	Limits	Unit
V _{GG}	Supply voltage		0.3~-40	v
VI	Input voltage	With respect to VSS	0.3~-20	v
Vo	Output voltage		0.3~-20	v
Tstg	Storage temperature range		-65~150	ĉ
Topr	Operating free-air temperature range		-10~70	C

# **RECOMMENDED OPERATING CONDITIONS** ( $Ta = -10 \sim 70 \,^{\circ}C$ , unless otherwise noted.)

			Limits	11-14	7	
Symbol	Parameter	Min	Nom	Max	Unit	
VGG	Supply voltage	- 32.2	- 35	-37.8	V	1
Vss	Supply voltage (GND)		0		V	1
Vін	High-level input voltage	Vss-1		V _{SS} +0.3	V	
VIL	Low-level input voltage	V _{SS} -15		V _{SS} -8	V	7

Note 1:

Note 1: The order of V_{SS} V_{GG} with on or off. With on, V_{GG} is turned on after V_{SS} is done. With off, V_{SS} is turned off after V_{GG} is done.

#### ELECTRICAL CHARACTERISTICS ( $T_a = -10 - 70 \degree$ , $V_{GG} = -35 V \pm 8 \%$ , unless otherwise noted.)

		Test conditions		Unit		
Symbol	Parameter	Test conditions	Min	Тур	Мах	Onit
VIH	High-level input voltage		V _{SS} – 1		V _{SS} +0.3	V
VIL	Low-level input voltage		V _{SS} -15		V _{SS} -8	V
հլ	Low-level input current	$V_{I} = -15V$			± 10	μA
IOZL	Off-state output current, low-level voltage applied	$V_0 = -15V$			± 10	μA
Vон	High-level output voltage	$I_{OH} = -200 \mu A$	$V_{SS} - 1$			V
VoL	Low-level output voltage	$I_{OL} = 10 \mu A$			$V_{\rm SS}-12$	V
IGG	Supply current from V _{GG}	$I_0 = 0 \mu A$		5.5	8.8	mA

#### Note 2: Typical values are at Ta=25°C and nominal supply voltage.

#### TIMING REQUIREMENTS ( $Ta = -10 \sim 70^{\circ}C$ , $V_{GG} = -35V \pm 8$ %, unless otherwise noted.)

Cartal	Parameter	Alternative	Test conditions		Unit		
Symbol	rarameter	symbols		Min	Тур	Max	Unit
f(	Clock frequency	fø		11.2	14	16.8	kHz
D(	Clock duty cycle	Dφ		30	50	55	%
tw(w)	Write time	tw		16	20	24	ms
tw(E)	Erase time	te		16	20	24	ms
tr, tf	Risetime, falltime	tr, tf				1	μs
$tsu(c-\phi)$	Control setup time before the fall of the clock pulse	tcs		0			ns
$th(\phi-c)$	Control hold time after the rise of the clock pulse	tсн		0			ns

# SWITCHING CHARACTERISTICS (Ta = $-10 \sim 70 \,$ °C, V_{GG} = $-35V \pm 8 \,$ %, unless otherwise noted.)

Symbol	Parameter	Alternative	Test conditions		Limits		Unit
Symbol	ratatiletei	symbols	Test conditions	Min	Тур	. Max	Onic
ta(c)	Read access time	tpw	$C_{L} = \begin{array}{c} V_{OH} = V_{SS} - 2V \\ V_{OL} = V_{SS} - 8V \end{array}$			20	μs
		Ts .	$N_{EW} = 10^4$ , $t_{W(W)} = 20 ms$ $t_{W(E)} = 20 ms$	10			Year
ts	Unpowered nonvolatile data retention time	Τs	$N_{EW} = 10^5$ , $t_{W(W)} = 20 \text{ ms}$ $t_{W(E)} = 20 \text{ ms}$	1			Year
NEW	Number of erase/write cycles	Nw		10 ⁵			Times
N _{RA}	Number of read access unrefreshed	N _{RA}		106	10 ⁹		Times
tdv	Data valid time	tew				20	μs



# APPLICATIONS

8

# APPLICATION OF 64K-BIT DYNAMIC RAM

#### Technology

Since the introduction of the 1K RAM in 1970, the development of dynamic RAM devices has progressed at a rate which has seen capacities multiplied by four in approximately two years, the latest stage of development being the 64K RAM.

Today's modern RAM devices take the user into consideration, and 64K dynamic RAMs which operate off a single 5V power supply are common.

We will describe here the new technology which made possible the development of a highly integrated, high-performance 64K RAM which operates from a single 5V supply.

#### 1. Cell Structure and Process Technology

The M5K4164AP 64K RAM makes use of the same twolevel n-channel polysilicon gate process and one-transistor cell structure used in the triple power supply 16K RAM (M5K4116P/S) which has been used in large quantities.

To achieve a high-density RAM, the masks are manufactured using electron beam technology.

In addition, the geometries on several critical levels of the M5K4164AP are  $2.5 \sim 3.0 \mu$ m, necessitating the use of positive photo-resist (for resolution and delineation control) as well as dry-plasma processing at these critical levels.

Fig. 1.1 shows the cross-section of the cell structure with Table 1.1 summarizing a comparison of the basic parameters of the device with the 16K RAM.

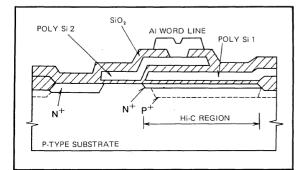



Fig. 1.1 Hi-C structure memory cell cross-section

#### Table 1.1 Main parameters

Parameter	16K RAM	64K RAM
Memory cell area	350 μ m ²	$143 \mu \mathrm{m}^2$
Chip area	16. 3mm ²	23.9 $\mu$ m ²
Available channel length	4 μ m	2 µ m
Gate oxide film	850 Å	400 Å
Diffusion layer depth	1.0 µ m	0.4μm
Diffusion layer width	4.0μm	2.5µm
Aluminum width	4.0 μ m	3.0 µ m

#### 2. Substrate Bias Circuit

In order to facilitate the operation from a single 5V supply, the M5K4164AP makes use of an on-chip substrate bias circuit. This bias circuit consists of a ring oscillator, driver circuit, charge pump circuit, and decoupling capacitors. The circuit supplies a bias to the substrate of approximately -3.5V for Vcc = 5V (Refer to Fig. 1.2)

The substrate bias circuit has the following functions.

- It prevents destruction of storage data and disturbance of bipolar transistor operation caused by input undershoot which causes an injection of electrons from the input terminals to the substrate.
- A reduction in the capacitance of the pn junction formed by the substrate and internal circuit nodes enables an increase in circuit operation speed.
- The transistor threshold voltage (V_{TH}) modulation due to a bias substrate is reduced, resulting in increased circuit operating speed and stability.

As shown in Fig. 1.3, the substrate bias for high values of V_{CC} is lower than for the standby mode due to the effect of increased impact ionization current. Adequate margin, however, is maintained against a value of V_{IL} min of -2V.

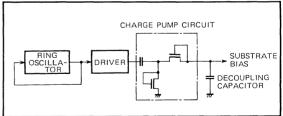



Fig. 1.2 Substrate bias circuit

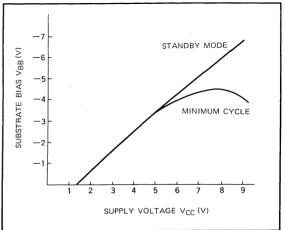



Fig. 1.3 Substrate bias vs supply voltage



(M5K4164AP, M5K4164ANP)

#### 3. Reduced Power Consumption and Noise

For operation from a 5V supply, it is necessary to reduce the transistor threshold voltage,  $V_{TH}$ . This, however, invites error operation due to noise. For this reason, circuits required to operate from low voltages only make use of transistors with a low  $V_{TH}$ , while those requiring noise immunity are implemented with transistors having a high value of  $V_{TH}$ . This scheme insures stable operation.

To lower the peak circuit current, a significant problem in memory system design, and provide for high-speed operation, the ratioless driver circuit shown in Fig. 1.4 was used.

With this circuit, the current flowing in transistors  $Q_1$ and  $Q_2$  for changes in the output waveform is practically zero. Fig. 1.5 shows the peak current waveforms. The figure shows that the peak currents are kept less than 100mA irrespective of transition on RAS and CAS.

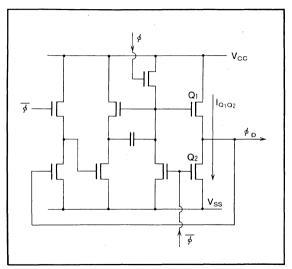
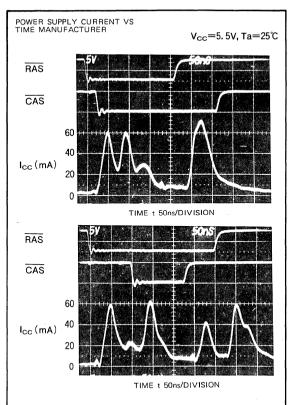




Fig. 1.4 Driver circuit







# (M5K4164AP, M5K4164ANP)

#### 4. Soft Error Reduction

Reduction pattern sizes and lower supply voltages for 64K RAM devices which result in smaller storage charges also result in a higher susceptibility to alpha particles causing soft errors.

These soft errors are caused by alpha particles from minute amounts (ppm order) of uranium and thorium which are present in the IC package and decay. These particles cause the formation of electron-hole pairs in the substrate which collect on the surface and can destroy data.

All floating nodes of dynamic circuits are susceptible to such radiation-induced errors and for RAM operation, errors can occur when such phenomena occur in the memory cells and bit lines (including the sense amplifier).

To prevent such soft errors, three approaches are possible.

- 1) Increase the stored charge in the memory cells.
- 2) Increase the sense amplifier sensitivity and the bit line signal level.
- Prevent alpha particles from reaching the chip circuits. As described below, the M5K4164AP makes use of these techniques to reduce the effects of alpha radiation.

#### (1) Bootstrapped Word Line Voltage

Designs of 64K dynamic RAM devices which must operate on 5V supplies must strive to write data into memory with the voltage  $V_{CC}$  as well as increase the charge stored in the memory cells in order to reduce the effects of soft errors. This in effect means raising the word line voltage to above the value of  $V_{CC}$  +  $V_{TH}$  for write and read operations.

Previously, this increase in voltage was accomplished by means of the coupling capacitance between the word line and the delay circuit. However, the increased capacitance resulted in a slow risetime of the word line voltage to  $V_{CC}$ , as well as increased power consumption. To eliminate these problems a circuit design such as that shown in Fig. 1.6 is used. The transistor  $\Omega_2$  is kept off until the word line voltage reaches  $V_{CC}$ . This has the word line charge capacity.  $C_2$  is then charged by means of transistor  $\Omega_3$  after which  $\Omega_2$  is turned on to connect the word line and  $C_2$ . The use of this circuit enables increase of the word line voltage without sacrificing operating speed and power consumption, thereby cutting soft error rates by 90%.

#### (2) High-Capacity (Hi-C) Memory Cell

The increase of memory cell stored charge requires an increase in the memory cell capacitance Cs. Limited chip area, however, places restrictions on the size of the memory cell itself. For this reason the Hi-C structure shown in Fig. 1.1 was used. This cell structure makes use of the normal silicon oxide layer and the P+ and n+ junction capacitance. The process for Hi-C memory cell structure requires two additional ion implantation steps and involves the risk of deterioration of the refresh time, an important characteristic of a dynamic RAM device. By selecting the ion

implantation level properly, the junction capacitance can be increased without deterioration in the refresh time characteristic. For Hi-C structured cells, a portion of the minority carriers formed in the P+ layer are recombined, resulting in an effective reduction in soft errors. Such ion implantation has achieved a 30% increase in the memory cell capacitance and a reduction in soft error rate to 1/12 of the error rate of a normally structured cell, as shown in Fig. 1.7.

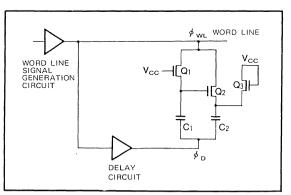



Fig. 1.6 Bootstrapped word line voltage generation circuit

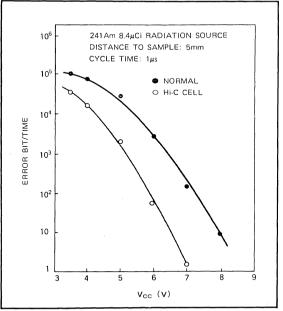



Fig. 1.7 Soft error rate dependency on supply voltage



#### (3) Sense Amplifier Circuit

Increasing the sensitivity of the sense amplifier circuit is another effective method of reducing soft errors. Fig. 1.8 shows part of the sense amplifier circuit used by Mitsubishi Electric. High sensitivity with respect to the control signals  $\phi 1$ ,  $\phi 2$ , and  $\phi 3$  plays an important role in this amplifier's operation. After the data read from the memory cell is passed to the sense amplifier, the  $\phi 3$  signal is controlled to separate the bit line and cut off the noise that is present on the bit line when sensing begins. Smooth sensing begins with the signal  $\phi 1$  applied so that the minute potential difference is amplified. Next,  $\phi 2$  is applied and amplified at high speed. By careful adjustment of the timing of the three control signals  $\phi 1$ ,  $\phi 2$ , and  $\phi 3$ , detection of the potential differences as low as 30mV can be achieved without sacrificing speed in this sense amplifier circuit.

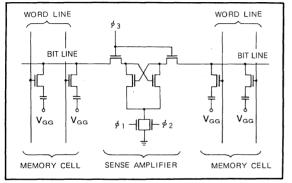



Fig. 1.8 Sense amplifier circuit

#### (4) 128 Refresh Method

When the sense and amplifier sensitivity (offset) and other factors are considered, it is clear that it is important to maximize the read voltage applied from the memory cell to the bit line. The electrical charge, Q, read from the memory cell determines the voltage change  $\Delta V$  by the following relationship

 $\Delta V \approx Q/C_{B}$  (for  $C_{B} \ggg C_{S})$ 

where  $C_{B}\xspace$  is the bit line and  $Cs\xspace$  is the memory cell capacitance.

From this relationship it is seen that to make  $\Delta V$  large  $C_B$  must be made small. To satisfy this condition the 128 refresh method is used to implement a single bit line with 64 memory cells, a technique which reduces the length of the bit line. Fig. 1.9 shows the chip layout. The memory cells are broken into 64x256 bit units which are narrow, long blocks. The column decoders are located in three blocks totalling 256 decoders at the end of the bit line.

Using this arrangement, the bit line capacitance can be minimized.

#### (5) Mold regin

In addition to circuit and device structure improvements aimed at reducing soft errors, the design goal of  $10^{-6}$  / (device hours) requires further improvements.

When this is done, however, alpha particles emitted from the mold regin material itself cause errors, making material selection critical. The mold resin chosen exhibits an alpha radiation level of  $0.05\alpha/cm^2$  (hour), below the measurement sensitivity of an ion chamber. This is low enough that the resulting alpha particle generation level is 1/10 or less that of old material itself.

System evaluations of the M5K4164AP treated in such a manner indicate that the design goal of  $10^{-7}$ /(device hours) for soft error has been achieved.

		256 COLUMN DECODERS	
HSE		64×256 MEMORY CELLS	AND UITS
FRE	RS	256 SENSE AMPLIFIERS	
R/REFRESH OL	DECODE	64x256 MEMORY CELLS	GENERATOR
BUFFER, CONTROI		256 COLUMN DECODERS	ENER
	ROW	64x256 MEMORY CELLS	
RES	256	256 SENSE AMPLIFIERS	TIMING INPUT/O
ADDRESS		64×256 MEMORY CELLS	≓≚
		256 COLUMN DECODERS	

Fig. 1.9 M5K4164AP Chip arrangement



## **Functional Description**

The M5K4164AP is a 64K-bit dynamic RAM which operates off a single 5V supply and has a refresh function built in at pin 1. It can be used in a wide range of applications from large mainframes to microcomputers.

This section presents a functional description of the M5K4164AP and examines how it can be used in design of a memory system.

#### 1. Block Diagram

Fig. 1.10 shows the block diagram of the M5K4164AP. To preserve the refresh cycle used for 16k dynamic RAM devices, two 32k blocks (of 128 rows (refresh address) x 256 columns each) were arranged one on top of the other.

In the center of each block is located 256 sense amplifiers making a total of 512 amplifiers in all.

On one end of each of these two array blocks is located one row decoder.

To prevent crosstalk between the column address lines and bit lines, the column decoders are located at the ends of the bit lines opposite to the sense amplifiers. A total of three rows of column decoders are used.

The central column decoder is used commonly by the two blocks.

#### 2. Memory Cell

As shown in Fig. 1.11, the memory cell consists of one transistor and one capacitor. Data is stored as a one or zero depending upon the amount of electrical charge stored in the capacitor through the transistor  $\Omega$ .

Because leakage current would result in the stored charge of the cell being reduced with time, the data must be refreshed within 2ms.

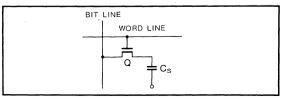



Fig. 1.11 Memory cell

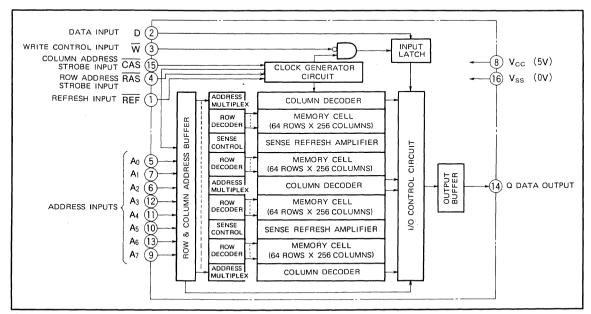



Fig. 1.10 Block diagram



## (M5K4164AP, M5K4164ANP)

#### 3. Clock Timing

The M5K4164AP has four clock inputs:  $\overrightarrow{RAS}$ ,  $\overrightarrow{CAS}$ ,  $\overrightarrow{W}$ ,  $\overrightarrow{REF}$ . Among these,  $\overrightarrow{RAS}$  and  $\overrightarrow{CAS}$  are the basic clock inputs for the memory operation. The  $\overrightarrow{RAS}$  input is generally used for memory cell data amplification and refresh operation while the  $\overrightarrow{CAS}$  is used for data read and write operations only.

To enable the design of a memory system with a large timing margin, it is necessary to know the timing relationships between these two clock inputs and the internal clock signals generated by these clocks.

Fig. 1.13 shows the timing parameters of the RAS and CAS clocks while Fig. 1.14 and 1.15 show their relationships to the internal clock timing.

For read or write operations,  $\overline{RAS}$  goes low after which the falling edge of  $\overline{CAS}$  initiates the cycle.

After the read or write is completed, both signals return to a high level and the precharging operation is performed for the next cycle.

For this timing relationship to work, the external  $\overline{RAS}$  clock must follow the changes of the internally generated  $\overline{RAS}$  clock. To simplify the setting of the timing relationships of the external  $\overline{RAS}$  and  $\overline{CAS}$  clocks, the internal  $\overline{CAS}$  clock  $\phi_{CAS}$ ,  $\phi_{\overline{CAS}}$  is controlled by the external  $\overline{RAS}$  clock. Fig. 12 shows the internal  $\overline{RAS}$  and  $\overline{CAS}$  clock generating circuit.

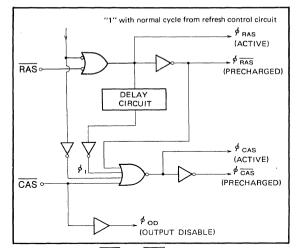



Fig. 1.12 Internal RAS and CAS clock generating circuit

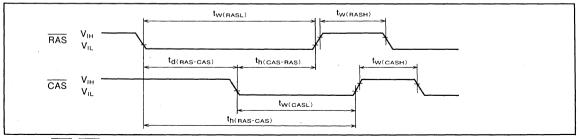



Fig. 1.13 RAS, CAS timing

#### (1) CAS Falling Edge Timing (Fig. 1.14)

The memory system design must be such that the falling edge timing of  $\overline{CAS}$  does not critically affect the access time. In other words as shown by the solid line in Fig. 1.14, the internal  $\phi_{CAS}$  phase is prevented by the delay phase  $\phi_1$  from approaching  $t_{d(RAS-CAS)}$  max. This type of operation is referred to as gated  $\overline{CAS}$ .

This gated  $\overline{CAS}$  feature permits  $\overline{CAS}$  to be activated at anytime between the minimum and maximum value of  $t_{d(RAS-CAS)}$  without affecting access time.

For gated CAS operation, if the generation of internal clock phase  $\phi_{CAS}$  is delayed, the effective pulse width of  $\phi_{CAS}$  is reduced. For this reason, the rising edge of CAS is specified by  $t_{h(RAS-CAS)}$  which is reference to RAS rather than  $t_{w(CASL)}$ . This applies to the column address, W and D inputs hold time as well.

As shown by the dotted line in Fig. 1.14, if  $\overline{CAS}$  falls to a low level after t_{d(RAS-CAS)} max, the  $\phi_{CAS}$  phase is generated upon the falling edge of  $\overline{CAS}$ .

The minimum and maximum values of  $t_{d(RAS-CAS)}$ , the delay time  $\overline{RAS}$  to  $\overline{CAS}$ , are specified for the M5K4164AP. Operation within the  $t_{d(RAS-CAS)}$  max limit ensures that the access time for the device is guaranteed. This value may be exceeded without causing data storage or reading errors but the access time will be increased.

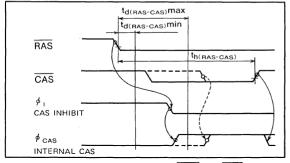



Fig. 1.14 The timing relationship of RAS and CAS falling edges to internal clock signals (gated CAS operation)

#### (2) CAS Rising Edge Timing (Fig. 1.15)

As shown in Fig. 1.15, the internally generated  $\overline{CAS}$  circuit precharge signal  $\phi_{\overline{CAS}}$  is generated with a timing that is related to the relationship between  $\overline{RAS}$  and the  $\overline{CAS}$  rising edge.

For a  $\overline{CAS}$  rising edge occurring before the  $\overline{RAS}$  rising edge,  $\phi_{\overline{CAS}}$  is generated with the  $\overline{CAS}$  rising edge as a reference point (as shown in Fig. 1.15 as a solid line). If however the  $\overline{CAS}$  rising edge occurs after that of  $\overline{RAS}$ ,  $\phi_{\overline{CAS}}$  is generated with the  $\overline{RAS}$  rising edge as a reference (shown as dotted line in Fig. 1.15).

However, the data in the output buffer is cleared upon the occurrence of the rising edge of  $\overline{CAS}$  regardless of the state of  $\overline{RAS}$ . The required pulse width for clear is  $t_w$  (CASH).

In this manner, the output data can be maintained for a long period while the internal precharge width is made large.

As described above, if the  $\overline{CAS}$  rising edge occurs after that of  $\overline{RAS}$ , the internal  $\overline{CAS}$  pulse width becomes not  $t_{w(CASL)}$  but  $t_{h(CAS-RAS)}$ . Consideration should be given to this point in circuit design.

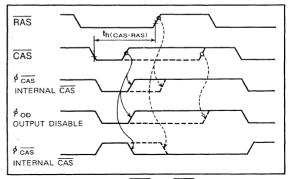



Fig. 1.15 Relationship of RAS and CAS rising edges to internal clock timing



# (M5K4164AP, M5K4164ANP)

#### 4. Address Timing

Addressing of any one of the 65,536 memory cells of the M5K4164AP requires the internal latching of two 8-bit multiplexed address ( $A_0$  to  $A_7$ ) by means of clocks RAS and CAS. First, the row address is latched by the falling edge of RAS. This selects 512 memory cells from the total of 65,536 memory cells. Fig. 1.16 shows the timing relationships for this operation.

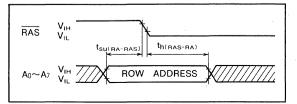



Fig. 1.16 Row address latching timing relationships

The setup time  $t_{su(RA-RAS)}$  and holdtime  $t_h(RAS-RA)$  are specified with the RAS falling edge as a reference point.

The falling edge of  $\overline{CAS}$  latches the column address. This selects one cell from among the 512 cells selected by  $\overline{RAS}$ . Fig. 1.17 shows the timing relationships for this operation. The setup time  $t_{su}(CA-CAS)$  and the hold time  $t_{h}(CAS-CA)$  are specified with the falling edge of  $\overline{CAS}$  as a reference, while the hold time  $t_{h}(RAS-CA)$  is specified with the falling edge of  $\overline{RAS}$  as a reference point.

For these operations two timing parameters must be considered. One is the column address setup time  $t_{su}$  (CA-CAS) which is specified as minus 5ns, minimum. This means that the column address may be input anytime up to 5ns after the CAS falling edge.

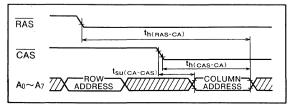



Fig. 1.17 Column address latch timing

The other parameter is the column address hold time  $t_{h(RAS\cdot CA)}$ . For the previously described gated  $\overline{CAS}$  operation, if  $\overline{RAS}$  to  $\overline{CAS}$  delay time  $t_{d(RAS\cdot CAS)}$  is set between the specified minimum and maximum values, the time

from  $\overline{RAS}$ ,  $t_h(RAS-CA)$  and time from  $\overline{CAS}$ ,  $t_h(CAS-CA)$  must both be satisfied as the column address hold time. This applies to both the  $\overline{W}$  and D signals to be described later.

The time required to switch from row address to column address is referred to as the multiplex time  $(t_{MUX})$ . This timing is shown in Fig. 1.18.

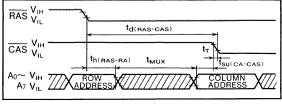



Fig. 1.18 Address multiplex timing

The multiplex time  $t_{\mbox{MUX}}$  is given by the following expression:

As long as the access time,  $t_{a(RAS)}$  from  $\overline{RAS}$  does not exceed the maximum value, the following expression determines the maximum value of  $t_{MUX}$  is achieved by the following conditions.

td(RAS-CAS) = maximum

t_{a(RAS-RA)} = minimum

t_{su}(CA-CAS) = minimum

Table 1.2 shows actual values of  $t_{MUX}$  maximum for  $t_T$  = 5ns.

Table 1.2 Maximum multiplex time

Device Parameter	t _{MUXmax}	td(RAS-CAS)	th(RAS-RA)	t _{su(CA-CAS)}
M5K4164AP-12	40ns	60ns	15ns	0ns
M5K4164AP-15	50ns	75ns	20ns	0ns

If the timing is set to satisfy the above described, operation is guaranteed for both read and write functions. To simplify the following description, the timing parameters for address inputs has been eliminated unless absolutely required.



#### 5. Read Cycle

Fig. 1.19 shows the timing parameters for the read cycle.

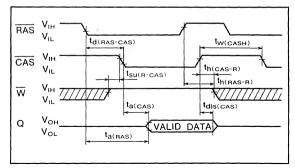



Fig. 1.19 Read cycle timing

In this read cycle,  $\overline{RAS}$  and  $\overline{CAS}$  are made active, and the W input is set to a high level. The setup time,  $t_{su(R-CAS)}$ before  $\overline{CAS}$ , resulting in output of the data stored in the memory cell at pin Q. The time for the falling edge of  $\overline{RAS}$ and  $\overline{CAS}$  to the output is defined as the  $\overline{RAS}$  access time  $t_{a(RAS)}$  and the  $\overline{CAS}$  access time  $t_{a(CAS)}$  respectively.

The RAS access time depends on the RAS to CAS delay time,  $t_a(RAS)$  and  $t_d(RAS CAS)$ .

As can be seen from this figure, by setting  $t_d(RAS-CAS)$  before  $t_d$  for gated  $\overline{CAS}$  operation,  $t_a(RAS)$  does not depend on the value of  $t_d(RAS-CAS)$  and is constant.

For  $t_d(RAS-CAS)$  set after  $t_d$ ,  $t_a(RAS)$  depends upon the value of  $t_d(RAS-CAS)$ . For this condition,  $t_a(RAS)$  is given by the following expression.

$$t_{a(RAS)} = t_{d(RAS-CAS)} + t_{a(CAS)} \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots (2)$$

Equation (2) expresses only the electrical characteristics of the RAM device, the guaranteed access time being given by the following expression.

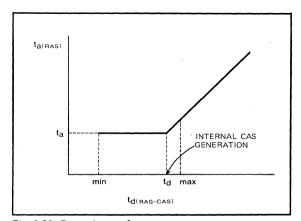



Fig. 1.20 Dependency of ta(RAS) on td(RAS-CAS)

 $t_{a(RAS)} \leq t_{d(RAS-CAS)} \max + t_{a(CAS)} \max \cdots \cdots \cdots (3)$ 

In equation (3), for a value of  $t_{d(RAS-CAS)}$  greater than the maximum value ( $t_{a(RAS)}$ ) increases by the increased amount only.

During a read operation when the output is active, inputs  $\overline{RAS}$  and  $\overline{W}$  have no effect on the output. Only raising  $\overline{CAS}$  to a high level will put the output in the high-impedance state.

The time from the rising edge of  $\overline{CAS}$  until the output goes into the high-impedance state is defined as the output disable time ( $t_{dis}(CAS)$ ). This time,  $t_{dis}(CAS)$  is the period for the RAM output to go to the open state and should be distinguished from that time the output states to go to VOH and VOL.

If the pulse width  $t_{w(CASH)}$  is satisfied for  $\overline{CAS}$ , operation is guaranteed for any arbitrary timed rising edge after the next cycle, simplifying the design with respect to  $\overline{CAS}$ timing.

The read cycle parameters  $t_{h(CAS-R)}$  and  $t_{h(RAS-R)}$ determine the read cycle ending time. Operation is guaranteed if either of these parameters are satisfied.

#### 6. Write Cycle

Three types of write cycles are specified; early write, read write and read modify write.

#### (1) Early Write Cycle

Fig. 1.21 illustrates the timing relationship for this cycle.

This cycle is selected for applications such as I/O common applications in which the output is held at high impedance during the writing of data into the memory cell.

This cycle is executed by causing the  $\overline{W}$  input to fall before  $\overline{\text{CAS}}.$ 

The  $\overline{W}$  and D inputs are latched by  $\overline{CAS}$ , then the data write is executed, the  $\overline{W}$  and D input timing parameters  $t_{su}(W-CAS)$ ,  $t_{su}(D-CAS)$ ,  $t_{h}(CAS-W)$ , and  $t_{h}(CAS-D)$  are determined by the falling edge of  $\overline{CAS}$  as a reference point.

Two points here are worthy of consideration. First is the write pulse setup time  $t_{su(W-CAS)}$ . This parameter is specified as minus 10ns, minimum.

The significance of this is that  $\overline{W}$  inputs may occur anytime within before 10ns of the falling edge  $\overline{CAS}$ .

However, should the  $\overline{W}$  input falling edge occur after  $\overline{CAS}$ , the rising edge of  $\overline{W}$  is determined not by  $t_{h(CAS-W)}$ , but by  $t_{w(W)}$ .

The other point for consideration is setting  $t_{d}(RAS-CAS)$  between the minimum and maximum values. For this condition, gated  $\overline{CAS}$  operation requires that as hold time the time from  $\overline{RAS}$  for the  $\overline{W}$  and D input,  $t_{h}(RAS-W)$  and  $t_{s}(RAS-D)$  and time from  $\overline{CAS}$ ,  $t_{h}(CAS-W)$  and  $t_{h}(CAS-D)$  both must be satisfied.



# (M5K4164AP, M5K4164ANP)

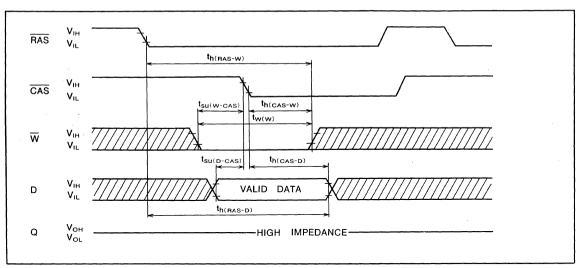



Fig. 1.21 Early write cycle timing

#### (2) Read Write Cycle Timing

This cycle is used in applications where data is to be read out of memory while new data is being written into a memory cell.

The timing parameters for this read write cycle are shown in Fig. 1.22.

For this type of cycle, the  $\overline{W}$  input signal falls after  $t_d(RAS-W)$  min and  $t_d(CAS-W)$  min.

The data read timing is the same as the read cycle. Since the read data is latched into an output buffer,  $\overline{W}$ 

input can be made active without disabling the output.

Since the D input is latched by the falling edge of the  $\overline{W}$  input, the  $\overline{W}$  input falling edge is determined as a reference point for the D input setup time  $t_{su(D-W)}$  and hold time  $t_{h(W-D)}$ .

Data is written into the memory cell between the time the  $\overline{W}$  input signal falls and  $\overline{RAS}$  and  $\overline{CAS}$  rise. This time is specified as  $t_{h(W-RAS)}$  and  $t_{h(W-CAS)}$  and both of these must be satisfied.

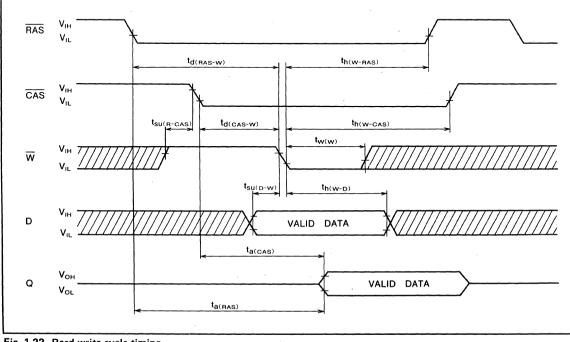



Fig. 1.22 Read write cycle timing



# (M5K4164AP, M5K4164ANP)

#### (3) Read Modify Write Cycle

This cycle is used in applications such as ECC (see section on ECC) on which memory cell data is read and verified for correctness, the correct data being written into the cell if an error is detected. Fig. 1.23 shows the timing parameters of the read modify write cycle.

The RAM operation is the same as the previously described read write cycle except that after the data is read, data is written so the cycle is slightly extended.

The minimum time for the read modify write cycle is given by the following expression.

 $t_{CRMW} \min = t_{a(RAS)} \max + t_{MOD} + t_{h(W-RAS)} \min$ +  $t_{w(RASH)} \min + 3t_{T} \cdots \cdots \cdots \cdots \cdots (4)$  In equation (4),  $t_{MOD}$  is the time required for incorrect data to be rewritten correctly, and is a function of system design. In the device specifications  $t_{CRMW}$  min is specified for  $t_{MOD} = 0$ .

As previously described, the M5K4164AP write cycle mode is determined by the  $\overline{W}$  input falling edge timing. This falling edge timing does not limit the operation of the RAM but merely controls the output state. If the  $\overline{W}$  input falling edge does not satisfy the conditions described for the three write modes, data will be writen but the output state will be indeterminate.

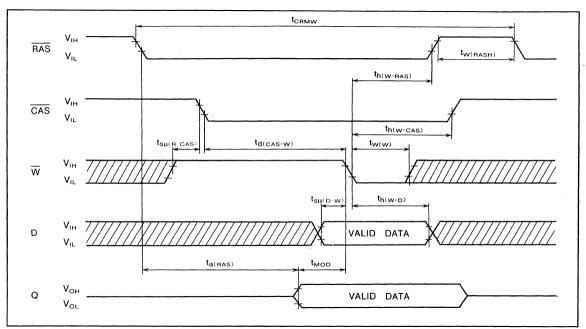



Fig. 1.23 Read modify write cycle timing



#### 7. Page Mode Timing

Page mode operation is successive memory operations at multiple column locations within the same row address.

As with normal operation, page mode operation can be carried out in the read, early write, read write or read modify write modes. The timing parameters particular to the page mode of operation are shown in Fig. 1.24. The other parameters are the same as for normal cycles.

To perform page mode read and write operations, the RAS low-level pulse width,  $t_{w(RASL)}$  must be increased, the maximum value being 10 $\mu$ s. The high-level CAS pulse width,  $t_{w(CASH)}$  is specified separately for the normal mode cycle and page mode. For the page mode, the pulse width must be increased. For details refer to the specifications.

For page mode operation the hold time  $t_h(CAS \cdot RAS)$  must be satisfied for even the last cycle, as shown in Fig. 1.24. This applies to  $\overline{W}$  as well.

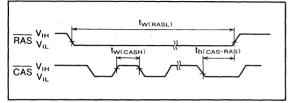



Fig. 1.24 Page mode cycle timing

#### 8. Refresh

Referring to the block diagram of Fig. 1.10, for each  $\overline{RAS}$  cycle, one word line is selected for each of the upper and lower blocks, enabling access to 512 memory cells. Next, the 512 sense amplifiers operate to amplify and refresh the cell data. Address signal A₇ (ROW) has no connection with this refresh operation since it is used as a block select address for data read and write operations.

#### 9. RAS Only Refresh Timing

 $\overline{RAS}$  only refresh is performed by setting  $\overline{CAS}$  to high which sets the output to high-impedance while refresh is performed.

Both distributed and burst mode refresh can be performed.

Fig. 1.25 shows the timing parameters for RAS only refresh operation.

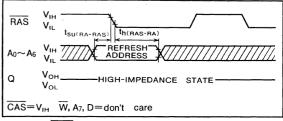



Fig. 1.25 RAS-only refresh timing

#### 10. Hidden Refresh Timing

Hidden refresh is accomplished by setting  $\overline{CAS}$  to low after a read cycle to hold the data in the valid state while refresh is performed.

Both distributed and burst mode refresh are possible. Fig. 1.26 shows the timing parameters for hidden refresh operations.

Data latched in the output buffer by the read cycle is refreshed during the hidden refresh cycles by  $\overline{RAS}$ . Therefore output data is held indefinitely as long as hidden refreshing is continued.

Timing design is simplified because the  $\overline{W}$  signal may be changed in any state during hidden refreshing.

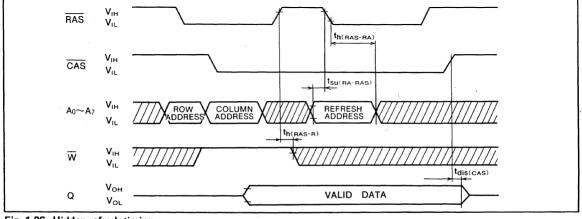



Fig. 1.26 Hidden refresh timing



#### 11. Refresh Operations Using Pin 1

To simplify the refresh operation, a function absolutely essential to dynamic RAM operation, two special refresh functions easier to use than the conventional  $\overline{RAS}$  clock refresh have been provided.

These functions are automatic refresh and self refresh.

These special functions are implemented by an on-chip refresh counter, address multiplexer, and timer, along with the associated control circuity. The following is an operational description of these circuits.

#### (1) Refresh Control Circuit

Fig. 1.27 shows a block diagram of the refresh circuit which makes use of Pin 1. The control circuit controls not only the refresh counter, address multiplexer and timer as shown in Fig. 1.27, but RAS and CAS circuits as well.

Pin 1 refreshing is controlled externally by the  $\overline{\text{REF}}$  input and internally by the  $\overline{\text{RAS}}$  signal which is generated by the refresh control circuit.

During pin 1 refresh operations, the CAS circuit with the exclusion of the output buffer is inhibited to prevent data writing and reading.

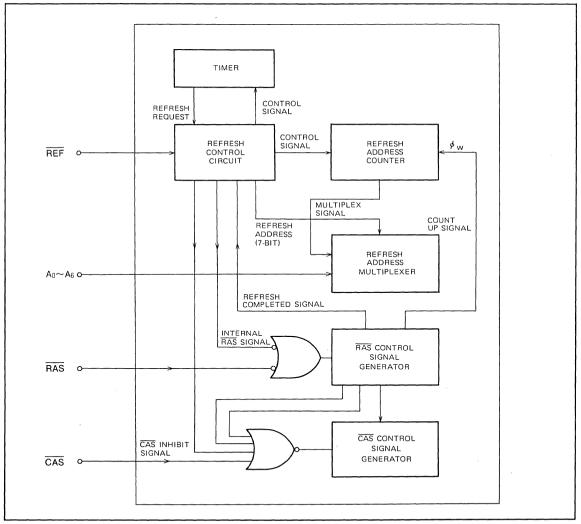



Fig..1.27 Refresh circuit block diagram



# (M5K4164AP, M5K4164ANP)

#### (2) Refresh Counter circuit

The M5K4164AP on-chip refresh counter consists of a 7-bit toggle-type counter, the individual counter output being used as the refresh address bit.

For automatic refresh operations, the refresh counter counts up synchronized to the internal clock signal  $\phi_w$  which is synchronized in turn to the REF input, 128 REF pulses required to cycle to the original state. For self refresh operation, the refresh counter is free-running with a period of from 12 to 16 $\mu$ s, counting up in synchronous to the refresh request signal REF REQ (described afterwards). A complete cycle and return to the original state requiring that the REF input be held low for 16 $\mu$ s x 128 (approx.) = 2ms.

The above described counting operation is performed approximately in synchronous with the refresh operation completion. The output of the refresh counter,  $Q_0$  to  $Q_6$  (refresh address) is held until the next refresh cycle, forming the address for the next cycle.

The refresh counter outputs are initialized by approximately 8 dummy cycles of RAS, RAS/CAS, or REF. Therefore, no special initialization is required for this refresh counter.

However, the contents of the counter, that is the toggle counter flip-flop states, cannot be reset or preset externally during power up or dummy cycles.

For this reason, using both normal RAS and pin 1 refresh will cause the specified refresh time to be exceeded, and therefore should be avoided.

#### (3) Address Multiplexer

Fig. 1.28 shows the M5K4164AP on chip address multiplexer.

The address multiplexer consists of two MOS transistors at the address buffer inputs and the associated control signals (MUX,  $\overline{MUX}$ ).

During a normal cycle,  $\overline{MUX}$  is high and MUX is low, so that only the external address  $A_0$  to  $A_6$  is input.

For pin 1 refresh operations,  $\overline{MUX}$  is low and MUX is high so that the refresh counter output signals  $Q_0$  to  $Q_6$  only are input to the address buffer.

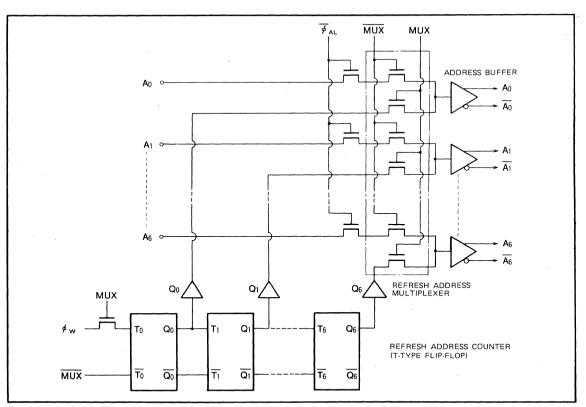



Fig. 1.28 Refresh address counter and multiplexer circuits



(M5K4164AP, M5K4164ANP)

#### (4) Timer Circuit

Fig. 1.29 shows the timer circuit block diagram while Fig. 1.30 illustrates its timing.

In the circuit of Fig. 1.29, the oscillator provides the substrate bias as well. The other circuits are active when  $\overrightarrow{\mathsf{REF}}$  is low.

When  $\overrightarrow{\text{REF}}$  goes low, transistor  $\Omega_1$  turns on,  $\Omega_2$  turns off and the charge stored in  $C_2$  passes through the rectifying circuit  $C_1$  and  $\Omega_1$  to discharge upon the falling edge of the oscillator output signal. The charge for one cycle of the oscillator output is proportional to the ratio of the capacitance of  $C_1$  and  $C_2$ .

The ratio of C₁ to C₂ is chosen such that the voltage across C₂ for an oscillator repetition period of 12 to 16 $\mu$ s is approximately equal to the threshold voltage of the next gate. When the C₂ voltage reaches V_{TH}, the refresh request signal REFREQ goes active, causing the RAM refresh operation similar to the automatic Refresh external signal REF. When C₂ is charged by REFREQ, REFREQ goes low, causing a repetition of the above described timer operation.

As long as the REF signal is kept low, this operation will automatically continue refreshing all memory cells every 2ms.

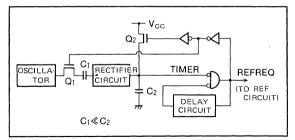



Fig. 1.29 Timer circuit block diagram

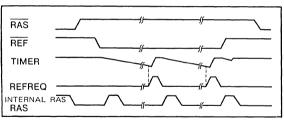



Fig. 1.30 Timer circuit timing

#### 12. Automatic Refresh Timing

Automatic refresh is accomplished in the same manner as  $\overline{RAS}$  only refresh but without providing the refresh address data.

Fig. 1.31 shows the timing of the automatic refresh operation.

Automatic refresh begins when  $\overline{\text{REF}}$  is set to low  $t_{d(\text{RAS-REF})}$  after  $\overline{\text{RAS}}$  goes high.

Shortly after the refresh cycle begins the internal RAS signal begins to operate to strobe the refresh counter output and perform the refresh.

The  $\overline{\text{REF}}$  input is internally latched. When the refresh operation is complete an internal refresh complete signal causes the chip to be precharged. Therefore, it is not necessary to use the  $\overline{\text{REF}}$  input to determine the precharge time greatly simplifying the timing design of  $\overline{\text{REF}}$ .

It is also possible to perform hidden refreshing by holding the  $\overline{CAS}$  input low after a read cycle. The timing is very similar to the  $\overline{RAS}$  hidden refresh operation timing. For details refer to the specifications.

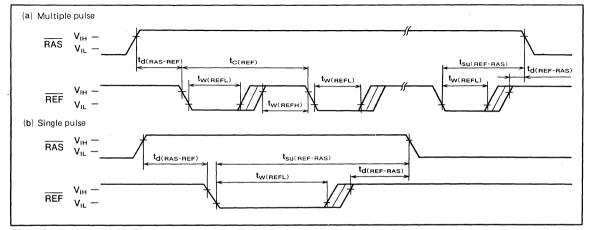



Fig. 1.31 Automatic refresh timing



# MITSUBISHI LSIS

# (M5K4164AP, M5K4164ANP)

#### 13. Self Refresh Timing

Self refresh is generally used for battery backup of memory contents.

Fig. 1.32 shows the self refresh timing relationships from which it can be seen that they are quite similar to those of automatic refresh. Self refresh begins when  $\overline{\text{REF}}$  is set to low t_d(RAS-REF) after  $\overline{\text{RAS}}$  is set to high.

Shortly after the beginning of the refresh cycle, the internal RAS signal begins to operate to strobe the refresh counter and perform the refresh operation.

As long as  $\overline{RAS}$  is high and  $\overline{REF}$  is low, the RAM will be

automatically refreshed. This operation is repeated with a period of from 12 to  $16\mu$ s. After 2ms, the refresh counter has gone through all of the row address, refreshing all of the memory cells. Self refresh ends when REF is set to high but setting REF to high may not terminate the internal operation of the circuit (refer to Fig. 1.30) so that one cycle time of t_{d(REF-RAS)} is required between setting REF to high and RAS to low.

As with automatic refresh, hidden refreshing is possible. For details refer to the specifications.

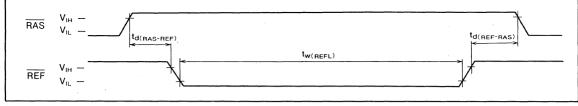



Fig. 1.32 Self refresh timing

#### 14. Notes on the Use of Pin 1

(1) When pin 1 is not to be used to refresh the chip, it should be handled in the following manner.

Since pin 1 refresh is inhibited by setting the  $\overline{\text{REF}}$ input to high, the input should be set between V_{IH} min and V_{IH} max. (The pin 1 input leakage current for V_{IN} = 6.5V is guaranteed to be below 10µA.)

(2) When the above method is not possible, pin 1 should be left open. Since as shown in Fig. 1.33 as MOS transistor is used to connect a pull-up resistor between the input terminals and  $V_{CC}$ , the terminal will be held to a high level ( $V_{CC}$ ) when left open.

However, when the input is set low in order to perform a refresh operation, a current flows from V_{CC} to the input terminal. This resistance is made a very high value (approximately  $3M\Omega$ ) in order to guarantee the specified leakage current of  $10\mu$ A maximum for V_{IN} = 0V.

This high resistance results in pin 1 being susceptible to the effects of external noise so that if pin 1 is to be left open, such noise should be considered carefully.

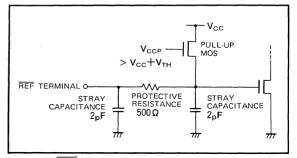



Fig. 1.33 REF input equivalent circuit



## (M5K4164AP, M5K4164ANP)

#### M5K4164AP Bit Map

To facilitate the generation of worst-case pattern checking and the optimization of test sequences, it is necessary to know the internal topology of a memory device. This section will examine the internal topology of the M5K4164AP.

#### 1. Memory Array

Fig. 1.34 shows the dual in-line package as viewed from above with pin 1 to the upper right. It illustrates the memory cell layout.

The row decoder is located to the left of the memory cells while the column decoder is located parallel to the cells.

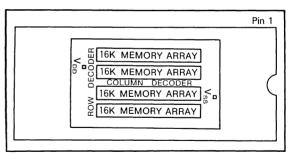



Fig. 1.34 Memory array location

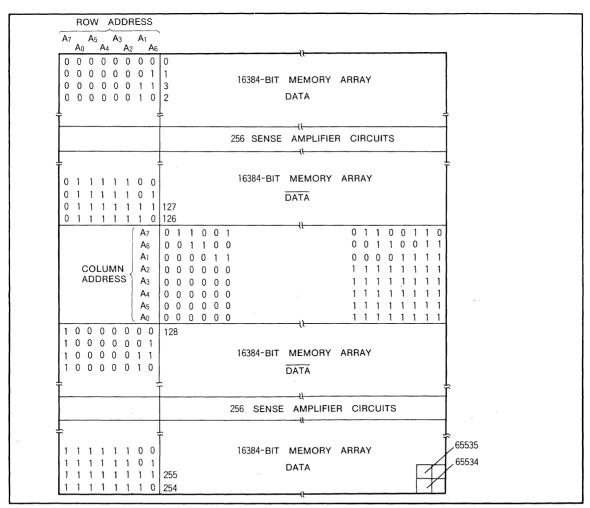



Fig. 1.35 Address decoder location



#### 2. Address Decoder

Fig. 1.35 shows the address decoder. To optimize pattern layout, the decoder is arranged as shown in Fig. 1.35. For this reason, with  $A_0$  (row) as the least significant bit and  $A_7$  (column) as the most significant bit, sequential binary addresses will not address adjacent cells in order.

For the arrangement of Fig. 1.35, Table 1.3 shows the addresses that will be accessed for sequentially incremented binary addresses if  $A_6$  (row) is the least significant bit and  $A_0$  (column) is the most significant bit.

#### Table 1.3 Address coding

				Col	umn			>	-				Ro	w –			
	(MS	B)														(L:	SB)
Cell No.	<b>A</b> 0	<b>A</b> 5	<b>A</b> 4	A ₃	A ₂	A ₁	<b>A</b> 6	<b>A</b> 7		<b>A</b> 7	<b>A</b> 0	<b>A</b> 5	<b>A</b> 4	<b>A</b> 3	A2	Aı	A ₆
0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0
	0	0	0	Ο.	0	0	0	0		0	0	0	0	0	0	0	1
													:				
				1													
				i					Ì				÷				
				i									i				
				i													
: 32767	0	1	1	:	1	1	1	1		1	1	1	1	1	1	1	1
32/0/	0	1	1	' :	1	1	1	1		<u>ا</u>	1		:	'	'	'	'
				ł									-				
05505				. :													
65535	1	1	1	1	1	I	I	1		1	1	ł	1	1	1	1	1

#### 3. Bit Topology

For the purposes of simplified explanation, we have assumed thus far that the memory cells are located in an orderly fashion in a matrix. For actual devices, however, techniques required to increase the density on the chip dictate that an arrangement such as shown in Fig. 1.36 is used.

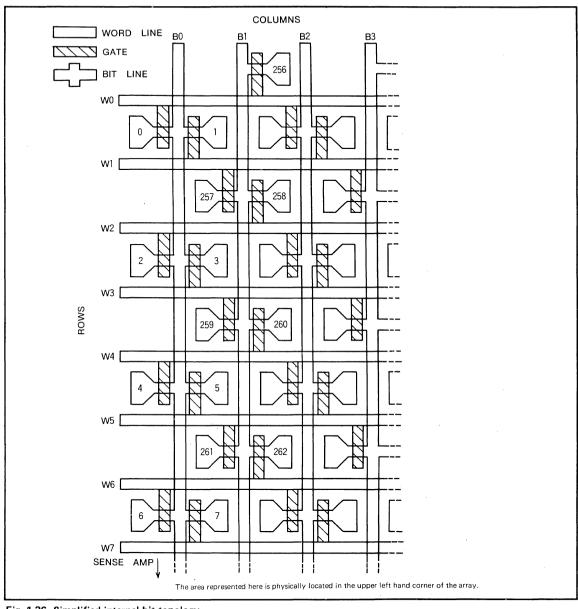
For this reason, this layout must be considered carefully when designing tests which detect interference between adjacent cells.

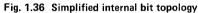
#### 4. Data Polarity

Because the sense amplifiers are located in the center of the bit lines of the M5K4164AP, half of the data matrix is stored in inverted form. While this has absolutely no effect on actual operation, it must be considered if a test is to be devised which will test all cells in the charged state. This bit inversion pattern is given in Table 1.4.

A ₀ (row)	Input data	Memory cell data	Output data
0	1	1	1
U	0	0	0
1	1	0 .	1
	0	1	0
0	1	0	1
U	0	1	0
1	1	1	1
	0 .	0	0
	1	(row) data 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	$(row) \qquad data \qquad cell data \\ 0 \qquad 1 \qquad 1 \\ 0 \qquad 0 \\ 1 \qquad 0 \\ 1 \qquad 0 \\ 0 \qquad 1 \\ 1 \qquad 0 \\ 0 \qquad 1 \\ 1 \qquad 0 \\ 0 \qquad 0$

#### Table 1.4 Data polarity arrangement


Write operation Read operation




## **MITSUBISHI LSIs**

# **64K-BIT DYNAMIC RAM**

# (M5K4164AP, M5K4164ANP)







#### **Memory System Design Considerations**

New memory systems designs are making use of dynamic RAM, static RAM, EPROM and other semiconductor memory devices. All of these devices have some general design considerations in common. This application note will examine some of the delicate timing considerations involved in the design of a dynamic RAM board.

#### 1. Power Distribution

Fig. 1.37 shows the current waveform of an M5K4164AP dynamic RAM. Note that when  $\overline{RAS}$  and  $\overline{CAS}$  go low, the row or column address latch and buffer are charged, and that when  $\overline{RAS}$  and  $\overline{CAS}$  go high, the row or column address latch and buffer are precharged, resulting in a transient current waveform. The 60 to 80mA current pulse of approximate width 50ns and a risetime of 10 – 20ns represents the risetime which is observed at 50ms per division. With rise and fall times of this magnitude harmonic noise components above 10MHz are generated. It is therefore necessary when designing the board power distribution to suppress such noise and provide the device with a clean supply voltage. Decoupling capacitors should be used which are capable of charging a small loop.

Fig. 1.38 (a) shows the lumped constant equivalent circuit for a PC board. L_S and R_S represent the PC board inductance and resistance respectively. If we let the L_X and R_S of a 10mil wide 2-ounce copper pattern be 10nH/inch and 4m $\Omega$ /inch, then the generated spike voltage is given by the following expression.

$$L_{s} \cdot \frac{di}{dt} = 10 \text{ nH} \times 10 \times \frac{80 \text{ mA}}{10 \text{ ns}} = 800 \text{ mV}$$
  

$$R_{s} \cdot i = 4 \text{ m } \Omega \times 10 \times 80 \text{ mA} = 3.2 \text{ mV}$$

Since the effect of the series resistance  $R_s$  compared to that of the series inductance is very small, it may be neglected. The series resistance of  $L_s$  is frequency dependent, increasing with increasing frequencies.

To reduce the level of the spike voltage, as shown in Fig. 1.38 (b), a decoupling capacitor is used to decrease the series resistance. This is done by shortening the PC board current loop.

For a  $0.1\mu$ F capacitor value used with a 250ns cycle RAM, the spike voltage is given by the following expression.

$$V = \frac{1}{C} \int i10 dt = \frac{80 \text{ mA}}{0.1 \mu \text{ F}} \times 50 \text{ ns} = 40 \text{ mV}$$

This yields an acceptable value of spike voltage.

It is recommended that ceramic capacitors with good high frequency characteristics are used as the decoupling capacitors in memory arrays. The decoupling capacitor is connected between the memory  $V_{CC}$  and the ground with as short a lead dressing as possible. In addition, as bulk decoupling a solid tantalum capacitor is required. This type of capacitor has a better transient response than other large value capacitors and can be used with one capacitor per 16-memory devices between  $V_{CC}$  and the ground.

The power supply traces for a memory array should be made as wide as possible and it is recommended that they be arranged in a grid. Fig. 1.39 (a) shows an example of such an arrangement.

As another method, the use of multi-layer boards is possible, and is an effective method in simplifying power distribution.

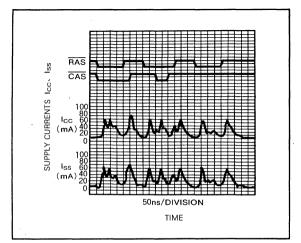



Fig. 1.37 Supply current vs time RAS/CAS cycle RAS-only cycle

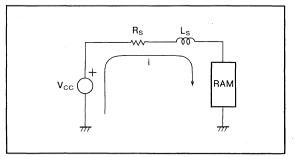



Fig. 1.38 (a) PC board trace equivalent circuit



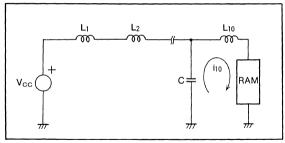



Fig. 1.38 (b) PC board trace equivalent circuit with decoupling capacitors

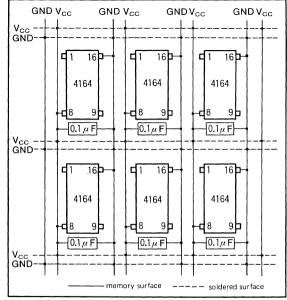
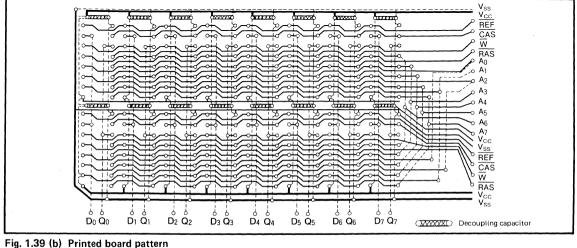



Fig. 1.39 (a) Gridded power distribution and decoupling capacitors

#### 2. Signal Distribution


The next most important consideration in the design of a memory system is the design of memory signal (address, data, and control signals) distribution.

For the case of the M5K4164AP dynamic RAM, two types of chip enable signals exist; RAS and CAS. If these are to be driven by TTL circuits, it is very important to keep the driving TTL device as close as possible to the RAM array. This minimizes the transmission line impedance mismatch between the RAM array loaded line and the TTL driver. Another technique is the use of a damping resistor located close to the driver. The value of this resistor is selected to provide a good waveform at the RAM input, the usual values being in the range 10 to  $50\Omega$ . This technique brings the output impedance of the driver close to the line impedance which minimizes waveform overshoot and undershoot.

To eliminate crosstalk from  $\overline{RAS}$  and  $\overline{CAS}$ , the  $\overline{RAS}$  and  $\overline{CAS}$  signal lines should be kept at 90° to the traces for other signals. If this is impossible, they should be kept as far as possible from traces of other signals. In addition the address and data signal traces should be kept as short as possible. Fig. 1.39 (b) shows an example of a printed board pattern for a 128K-bite memory system.

#### 3. Logical Considerations

Far memory systems with critical timing, it is necessary to consider the propagation delay to surrounding ICs. To minimize signal delay, gate selection and the use of the same IC package for related signals are effective in reducing the difference in delays between signals. To reduce the capacitive loading on drivers, it is necessary to limit the number of drivers per memory array. For RAS and CAS, 8 memories/driver and for address 16 memories/driver are recommended.



I. 1.39 (b) Printed board pattern



## (M5K4164AP, M5K4164ANP)

## M5K4164AP Refresh Methods

The refreshing of the M5K4164AP cell matrix requires the refreshing of 128 row addresses at least every 2ms. In addition to the previously available  $\overrightarrow{RAS}$ -only refresh method, the M5K4164AP provides  $\overrightarrow{REF}$  (pin 1) automatic refreshing, and self-refreshing. This section will cover the application of  $\overrightarrow{REF}$  refresh operations.

#### 1. Automatic Refresh

Automatic refresh begins after RAS precharge  $(\overline{RAS}-V_{IH})$  upon setting  $\overline{REF}$  (pin 1) to low. This method is quite similar to the  $\overline{RAS}$ -only refresh with the refresh address counter output present as a 7-bit word for automatic refreshing the refresh counter being automatically incremented at the end of the refresh cycle. Fig. 1.40 shows the automatic refresh timing.

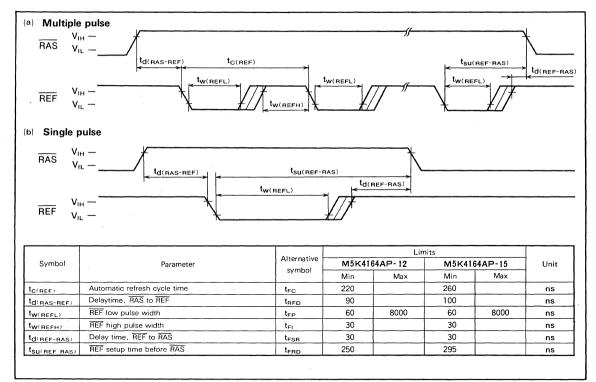



Fig. 1.40 Automatic refresh timing



# (M5K4164AP, M5K4164ANP)

Automatic refresh has many advantages over the  $\overline{RAS}$ only refresh method generally used previously. As shown in Fig. 1.41,  $\overline{RAS}$ -only refresh generally requires logic circuitry. This consists of the row-address, column-address and refresh address multiplexer and refresh address counter. With automatic refresh, the dotted area shown in Fig. 1.41 may be eliminated.

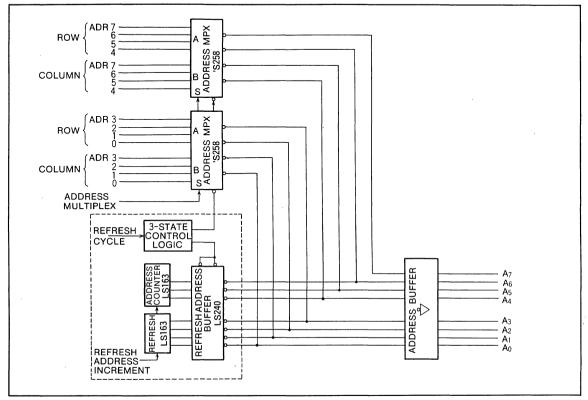



Fig. 1.41 Address multiplexer and refresh address counter

By decoding  $\overrightarrow{RAS}$ , one bank of a complex memory system may be selected, while for  $\overrightarrow{RAS}$ -only refresh  $\overrightarrow{RAS}$  is fed to all portions of the memory requiring the decoder as shown in Fig. 1.42 (a). With automatic refresh,  $\overrightarrow{RAS}$  is used

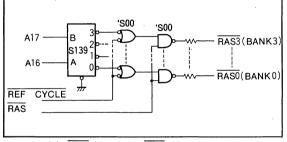



Fig. 1.42 (a) RAS decoder in RAS-only refresh

during the memory cycle and  $\overline{\text{REF}}$  for the refresh cycle independently so that the gate shown in Fig. 1.42 (b) can be eliminated.

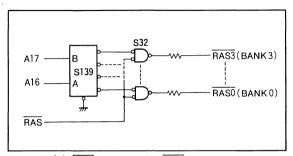



Fig. 1.42 (b)  $\overline{RAS}$  decoder using  $\overline{REF}$  pin



Another feature of automatic refresh is that the timing of the refresh controller is simplified. The timing for  $\overline{RAS}$ only refresh and automatic refresh is shown in Fig. 1.43 (a) and Fig. 1.43 (b) respectively.

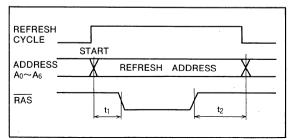



Fig. 1.43 (a) RAS-only refresh timing

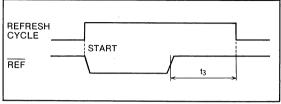



Fig. 1.43 (b) Automatic refresh timing

For  $\overline{RAS}$ -only, the controller disables the address multiplexer upon entering the memory cycle while it enables the refresh counter output. Next, after a delay time of  $t_1$  (required because of the address buffer delay time and row address setup time  $t_{su}(RA-RAS)$ ,  $\overline{RAS}$  is set to low. The refresh cycle ends at the time  $t_2$  that  $\overline{RAS}$  is precharging.

In contrast to this, the automatic refresh controller sets  $\overline{\mathsf{REF}}$  to low simultaneously with the beginning of the refresh cycle, and after the  $\overline{\mathsf{RAS}}$  precharge time  $t_3$ , the refresh cycle ends. For this reason, there is no necessity to consider the settling time for address selection.

#### 2. Self Refresh

Self refresh, similar to automatic refresh, sets REF low after RAS precharge occurs, beginning the internal refresh cycle. This method of refresh ignores all other inputs as long as RAS is high and REF is low, making use of an internal timer to automatically refresh the row addresses every  $12 - 16\mu$ s which enables all cells to be refreshed within 2ms. The rising edge of  $\overline{\text{REF}}$  terminates the refresh operation and after one cycle (td(REF-RAS))a normal readwrite cycle is entered. Fig. 1.44 shows the timing for the self refresh cycle. Self refresh is an extremely effective method of providing memory backup by means of a secondary power supply. As shown in Fig. 1.45, most of the required functions are implemented within the chip for the RAS-only refresh with a simplified external circuit. This results in low power consumption and a long life for the secondary power supply.

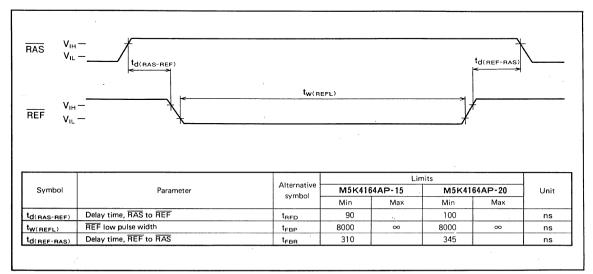



Fig. 1.44 Self-refresh timing

(M5K4164AP, M5K4164ANP)

As described above, self refresh may not be used in the  $\overline{RAS}$ -only refresh mode. In designs using two refresh counters (internal and external) which operate independently, guaranteeing the refresh (2ms) time is difficult.

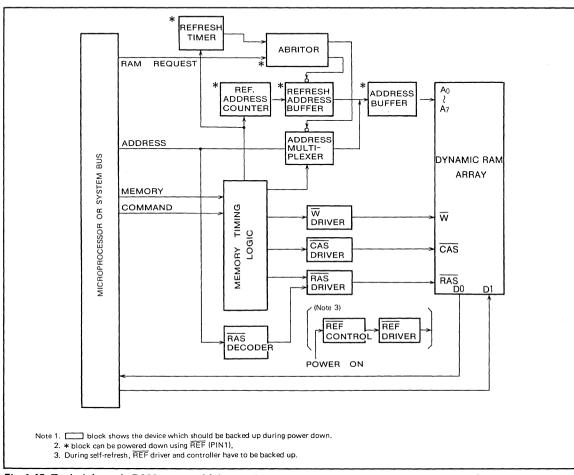



Fig. 1.45 Typical dynamic RAM system with battery back up



## (M5K4164AP, M5K4164ANP)

#### 3. Design Example

The design example shows the increased effectiveness of  $\overline{\text{REF}}$  (pin 1) refresh when the M5K4164AP is used as the memory for a microprocessor. This design example illustrates the interface between the M5K4164AP and the microprocessor.

When using REF for the microprocessor memory in interface, two methods are possible. One is asynchronous refresh and the other involves synchronously refreshing the memory. The former technique is not affected by the microprocessor status (i.e., reset, wait state, DMA, and CPU clock). However, control logic is somewhat complex. While

the second method makes use of simple control logic, the microprocessor must satisfy the refresh operation timing conditions.

Fig. 1.46 through 1.48 show the block diagram, schematic diagram, and timing deiagram for the asynchronous refresh example. For this example, the refresh cycle counter refresh request (REFREQ) starts the refresh cycle independently of the microprocessor operation. The arbiter determines whether the microprocessor (RAMREQ) or refresh cycle counter (REFREQ) has access to the RAM.

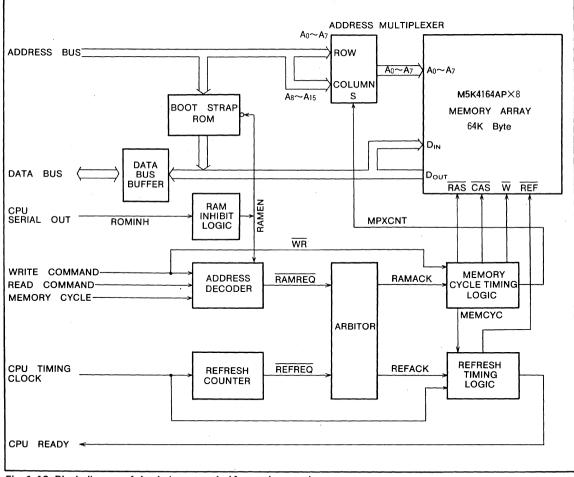



Fig. 1.46 Block diagram of the design example (Ansynchronous)



MULTIPLEXER BOOTSTRAP ROM LS257×2 ADDRESS BUS AF ~ A8 A15 M5L2716K } A8 í6 A4~A7 4 1Ą Ŕ Α, 4١ AA 4A A 10 A 6 3Y 8 1B AC~AF 4 9 LS373 A0~A7 9 2Y Α5 8 4B MICROPROCESSOR 1Y 8 A۸ ADDRESS LATCH D7 7 D₇ 4Y Аз IA. A0~A3 4 6 MEMORY ARRAY 6 ЗY Αz 1Δ 5 5 В 2Y ALE Aı **м5к4164ар**×8 A8~AB 4 4 4 DATA BUS BUFFER 4 Αo 3 3 LS245 RAS 3 ADC 8 2 CAS 2 AD0 ~ AD7 1 AÒ W MPXCNT 1 Do M5L8085AP DIR G Αn A 0 D 0 OE CE 8 D7 D₅ D3 D₂ Dı De D4 D٥ 8 CPURDY READY CPUREADY TIMING ¢ LS51(2/2) SOL RESET OUT ARBITOR S3 50ns RC RAMACK -<del>Q</del> 100ns ך RAMREQ WF MEMORY CYCLE TIMING LOGIC delayline 10/M LS51(1/2) 150ns MEMCYC 1 2 CLR REFR S31 ł REFRESH TIMING LOGIC 2QE Þ2A CLOCK OUT `1QC n ᠊ᠮ LS393 Note 1. ____ indicates the logic for REF function. (Note 2) QВ  $\overline{O}$ REFRESH CYCLE COUNTER 2. CPUCLK 3MHz MAX. Minimum frequency should be selected >1A R R not to exceed the refresh memory cycle. LS74 (128 cycles within 2ms interval.)

# (M5K4164AP, M5K4164ANP)

64K-BIT DYNAMIC

RAM

**MITSUBISHI LSIs** 

Fig. 1.47 Design example of microprocessor interface (Ansynchronous)

MITSUBISHI ELECTRIC

8-29

# (M5K4164AP, M5K4164ANP)

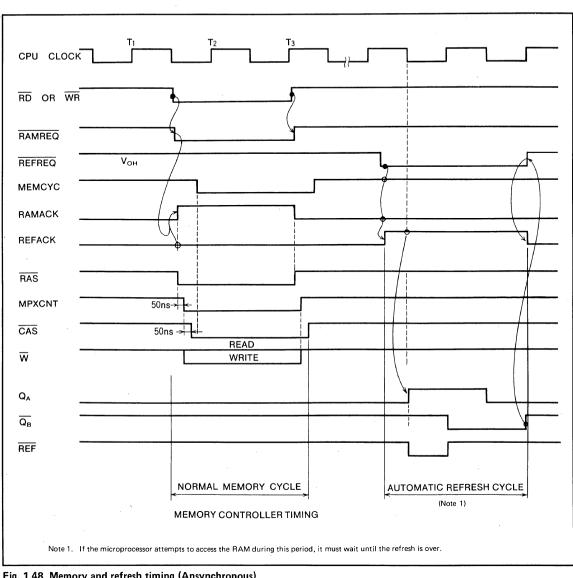
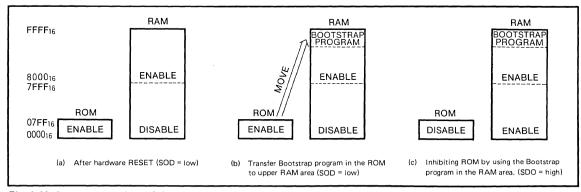



Fig. 1.48 Memory and refresh timing (Ansynchronous)




## (M5K4164AP, M5K4164ANP)

A bootstrap ROM, commonly used in this type of memory system, is shown in the example. This is used to load the initial program of a RAM-based system into RAM from disk, for system initialization. In this example, the SOD (Serial Out Data) of the M5L8085AP is used to select either the bootstrap ROM or RAM as shown in Fig. 1.49.

Fig. 1.50 and 1.51 show the schematic diagram and timing for the synchronous refresh example. In this

example a Z80 microprocessor is used with synchronous refresh. As shown in Fig. 1.51, after the Z80 fetch instruction, the refresh operation is performed ( $T_3$  and  $T_4$  state).

In this manner refresh is performed synchronously with microprocessor operation. As mentioned previously, this type of operation involves a variety of limitations which must be considered carefully when designing such a system. (i.e., wait state, DMA, reset and CPU clock cycle)



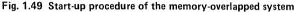





Fig. 1.50 Design example of microprocessor interface (Synchronous)



# MITSUBISHI LSIS 64K-BIT DYNAMIC RAM

(M5K4164AP, M5K4164ANP)

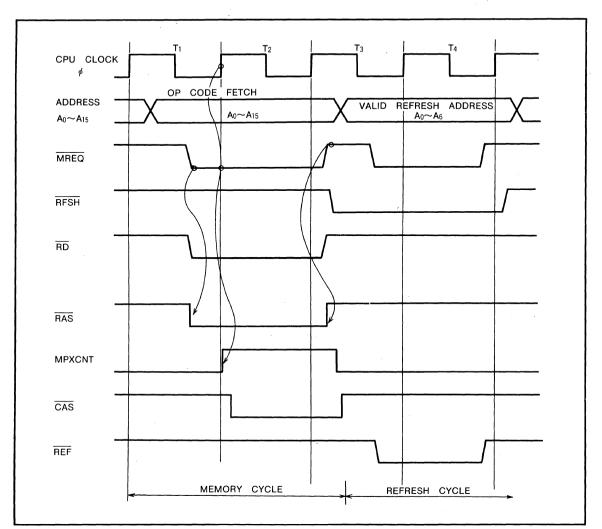



Fig. 1.51 OP code fetch and refresh timing



# MITSUBISHI LSIS

# STATIC RAM TECHNOLOGY

#### Introduction

Static RAM, though inferior to dynamic RAM in density of integration, is used for a wide variety of applications. It is easy to use as it does not reguire clocks, refresh operation or related controlling peripheral ICs. In addition, static RAMs are available for equipment requiring high-speed operation or battery backup in case of power failure.

#### 1. Classification of Static RAM

Static RAMs are classified into the following:

- (1) medium-speed NMOS for easy use and economy
- (2) ultra-high speed NMOS for computer application
- (3) CMOS for battery backup.

Mitsubishi Electric Corporation provides the following lineup of static RAM.

- (1) Medium-speed NMOS M58725P
- (2) Ultra-high-speed NMOS M5M2167S/P, M5M2168S/P
- (3) CMOS

	M5M5116P,	M5M5117P,
1	M5M5118P.	M5M5165P

#### 2. History of Mitsubishi Memory Cells

The history of Mitsubishi memory cells is illustrated in Fig. 2.1. Mitsubishi Electric began producing 256-bit E/E type memory cells and later shifted over to high resistive load

types, diminishing cell area and cutting power consumption of memory cells. A high resistive load, which is available up to 100M $\Omega$  has reduced the cell current to as low as 10nA/ cell. CMOS was started at 1K bits, developed into 4K bits and then to 16K bits. The standby supply current consumed in the cells and in periferal circuits is as low as the leakage current. The specified value is  $20\mu$ A, but the typical value is less than  $1\mu A$ , enabling long term battery buckup operation, CMOS, however, has suffered the disadvantage of poor production costs due to its larger cell area. In the past, either economical NMOS or low power CMOS had to be selected to match the application. But, the situation has somewhat changed with the appearance of 64K bit memories, incorporating NMOS and CMOS technology. The mixture of high resistive load NMOS cells and CMOS peripherals, realized the hybrid which has the economy of NMOS and the low power of CMOS. Mitsubishi has provided the M5M5165P fabricated by this technology. The technical factors resulting in the development of this product are as follows: i) limit of large power consumption and ii) technology of fabricating high resistance of several tens of  $G\Omega$  enabled low standby current which is enough for battery backup applications.

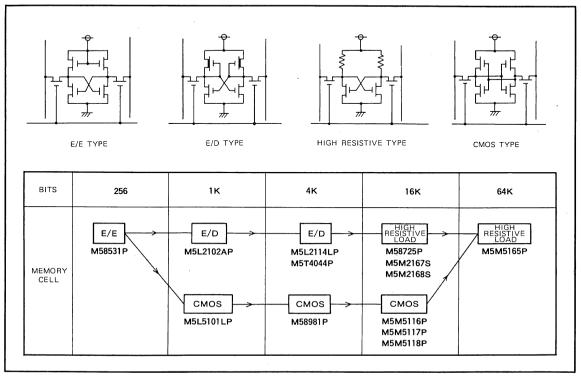


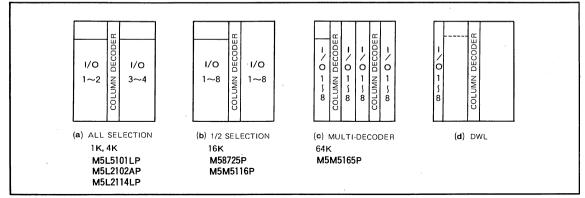

Fig. 2.1 History of Mitsubishi cells

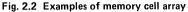


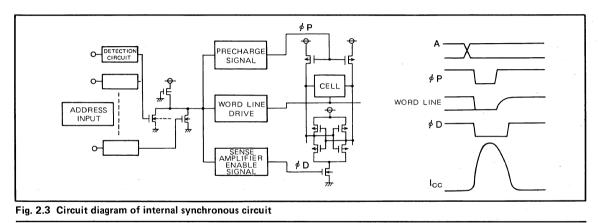
#### 3. Methods of Power Saving

Power consumption has become a major problem as memory capacity has increased. The solution lies in 1) the use of CMOS for peripheral circuits, 2) the division of cell array and 3) the employment of internal synchronous circuits.

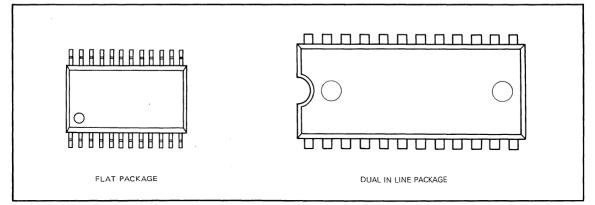
Method (1) has been employed in the 64K CMOS M5M5165P.

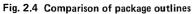

Method (2) is aimed at decreasing the number of memory cells selected by the word decoder in order to decrease the current that flows into cells from the bit line. Fig. 2.2 shows examples of dividing the cell array. With 1K and 4K bit RAM, all the bit lines are activated, while 1/2 of the bit lines are activated with 16K and only 1/4 are designed to be activated with 64K. (d) is called the devided word line method (DWL), dividing the memory cell array into arbitrary lines, which is considered to be an important method to deal with RAMs of greater capacity in the future. The internal synchronous circuit (3), designed to cut DC current, lowers the average current greatly by the employment of a dynamic circuit. In previous asynchronouse circuits, DC current was constantly running while chips were in the active state.


A problem with the internal synchronous circuit is providing a standard clock. Unlike dynamic RAM, static RAM is not given an external clock and must generate the clock by itself. As the memory cycle of static RAM starts with an address change, the internal synchronous circuit makes use of changes in the address signal and generates an internal clock. In this circuit, the charging current of internal mode capacitance runs at the peak rate at the beginning of the cycle and no current runs after the access is finished. As the average current can be decreased to 1/10 of the conventional one (at 1 MHz), this device is most suitable for battery-operated equipment such as hand held computers.


## 4. Package

The more the capacity, the more the number of pins. (4K has 18 pins, 16K, 24 pins and 64K, 28 pins). On the other hand, a smaller package is required for the high density mounting. Available packages which meet these requirements are falt package, chip carrier (LCC), ZIL (zigzag inline), or shrink pack (lead spacing is 2/3 of the normal type).


Mitsubishi provides the 16K CMOS RAM M5M5116FP series using the flat package. Fig. 2.4 shows the outline difference between the DIP and flat package. The flat package is approximately half the size of DIP.
















#### **OPERATION OF STATIC RAM**

The timing of static RAM is simple and operation modes are very easily understood because of its asynchronous operation that does not require strobe signals to take in clock signals or external signals.

In this chapter, basic operation of static RAM and functions of various input signals are illustrated using the M58725P 16K static RAM as an example.

Fig. 2.5., 2.6., 2.7. are the block diagram, pin configuration and function table of M58725P.

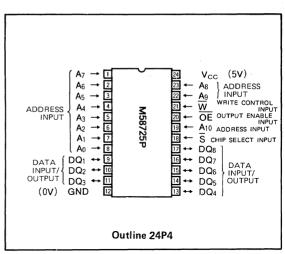



Fig. 2.6 Pin configuration of M58725P

s	OE	w	Modes	DQ ₁ ~DQ ₈	Icc
н	X	х		High impedance	Standby
L	L	н	Read mode	Dout	Active
L	х	L	Write mode	D _{IN}	Active
L	н	н		High impedance	Active

Fig. 2.7 Function table of M58725P

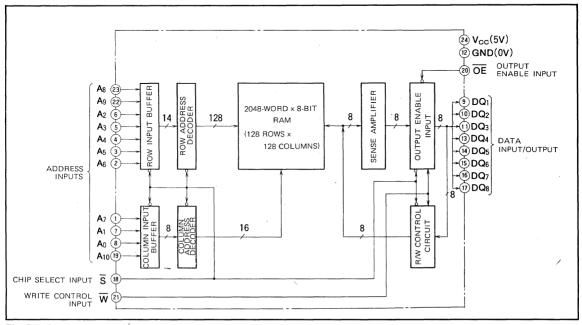



Fig. 2.5 Block diagram of M58725P



#### 1. Functions of input signals

#### (1) Address signals $(A_0 \sim A_{10})$

Address signals select one random bit out of the memory matrix. Read/write memory operation is made to the cell which selected by address signal.

#### (2) Chip select signal (S)

When  $\overline{S} = L$ , RAM is in the active state, enabling read/write memory operation. When  $\overline{S} = H$ , RAM is in the non-selective state, disabling memory operation. In this case, the output is in the high impedance state, easily expanding memory capacity with other memorys by OR connection. In addition the supply current is in standby state and is reduced to one tenth of the normal level which contributes to the power saving of a large memory system. In most cases, like M58725P, the chip select signal is in negative logic (chip is selected when signal is L) but it is noted that S2 of M5M5165P is in positive logic (chip is selected when signal is H).

#### (3) Write control signal $(\overline{W})$

The  $\overline{W}$  signal controls operation modes of read and write. The low level  $\overline{W}$  enables the write mode and the high level  $\overline{W}$  enables the read mode. When the write mode is enabled the data input/output (DQ) terminal is in high impedance state.

#### (4) Output enable signal (OE)

The  $\overline{OE}$  signal controls the output stage directly at high speed. When  $\overline{OE} = L$ , the DQ terminals are in the output mode, and when  $\overline{OE} = H$ , they are in the high impedance state. When write operation is enabled and  $\overline{OE}$  is set to H, the DQ terminals are in high impedance state and, thus, clash of RAM data output and data input, so called data bus contention, is avoided. When read operation is enabled,  $\overline{OE}$  must be L so that DQ terminals may be in the output mode.

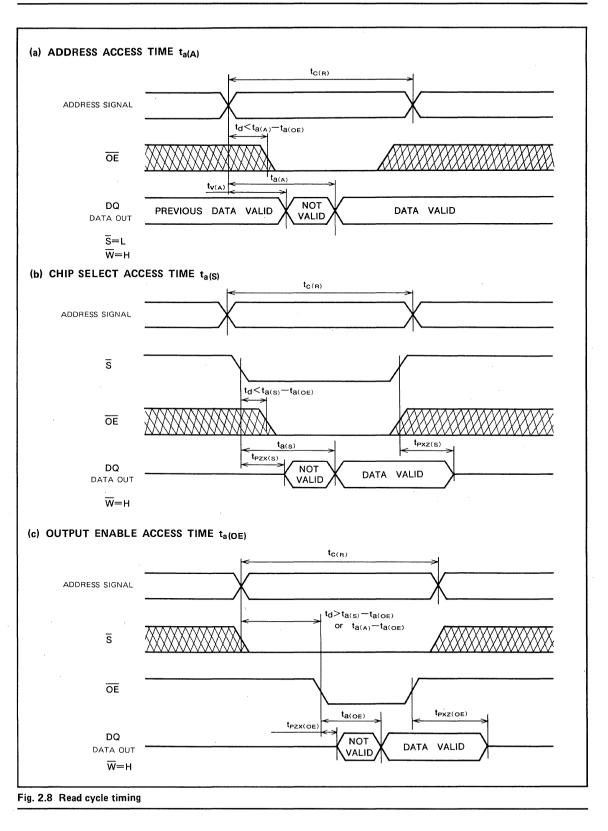
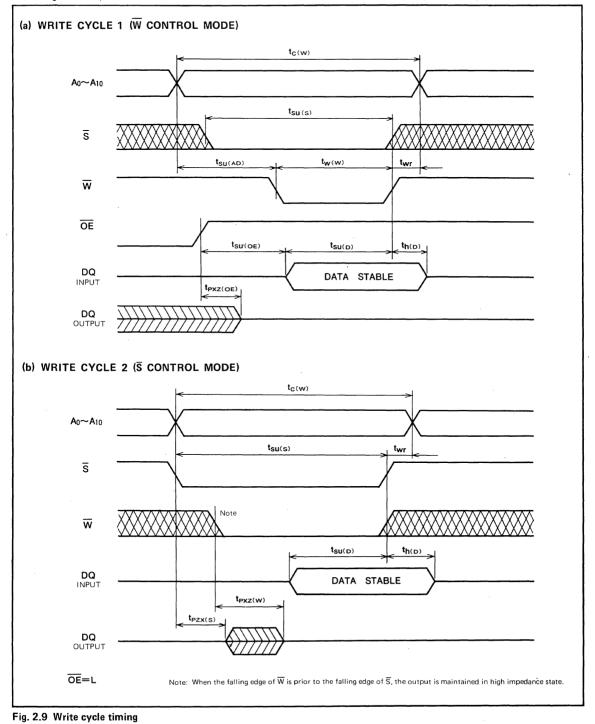

#### 2. Read operation

Fig. 2.8 shows the timing diagram of the read cycle. When  $\overline{S}$  and  $\overline{OE}$  and L and  $\overline{W}$  is H, the read mode is enabled and the memory cell data selected by the address signal is read at the DQ terminal. There are three kinds of read cycle timing, as showen in Fig. 2.8. They are defined as (a) address access time  $t_{a(A)}$ , (b) chip select access time  $t_{a(S)}$ , and (c)  $\overline{OE}$  access time  $t_{a(OE)}$ .

(a) is applied when  $\overline{S}$  and  $\overline{OE}$  have already been set to L long before the address change. (b) is applied, contrary to (a), when  $\overline{S}$  is set to L simultaneously or after the change of the address signal. In this case,  $\overline{OE}$  must be L before the address change, as well as in the case of (a).

(c) is applied when the  $\overline{OE}$  signal has been set to L well after the change of the address signal or the chip select signal. The  $\overline{OE}$  signal controls the output buffer circuit directly at a high speed, so the high speed access time of nealy one-half of that of (a) or (b) is available. When  $\overline{OE}$  is set L faster than the timing of  $t_{a(A)} - t_{a(OE)}$  or  $t_{A(S)} - t_{a(OE)}$ , (a) or (b) is applied.








# 3. Write operation

Fig. 2.9 shows the timing diagram of the write cycle. Write operation is excuted when  $\overline{S}$  and W are both L. When either  $\overline{S}$  or  $\overline{W}$  goes to H, the data of the DQ terminal is written

into the memory cell. Therefore, for the rise of  $\overline{W}$  or  $\overline{S}$ , data setup time  $t_{su(A)}$  and data hold time  $t_{h(D)}$  must be maintained. Address setup time  $t_{su(A)}$  and write recovery





time  $t_{wr}$  are defined in order to avoid writing into a cell designated by previous or following cycles.

At the write cycle, the data bus contention problem is a matter of concern. The subject is discussed in detail in later chapters.

#### 4. Standby Mode

When  $\overline{S}$  is H, the chip becomes non-selective mode and the supply current is in the standby mode. The Supply current decreases to one tenth of the normal operation level, which contributes to power saving in systems that use many memory devices. Fig. 2.10 shows the supply current waveform for M58725P.

In the case of CMOS RAM, the stand by current is as low as the leak current and, the memory cell data can be held at a  $V_{CC}$  of 2V, enabling battery backup applications.

## APPLICATION OF STATIC RAM

To explain the application of static RAMS, two examples are used; M58725P, which has  $\overline{OE}$  input, and M5M5118P, which has no  $\overline{OE}$  inputs.

#### 1. Application of M58725P

Fig. 2.11 is an example of an M58725P application. The 8085A is used for the CPU. The chip select signal is gated by ALE output of 8085A. Therefore, the chip select signal turns to low, synchronously with the fall of ALE.  $\overline{W}$  is

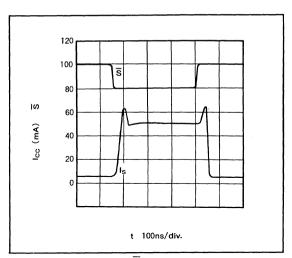



Fig. 2.10 Power saving by  $\overline{S}$ 

connected to  $\overline{WR}$  and  $\overline{OE}$  is connected to the  $\overline{RD}$  output of the CPU. The RAMs which have  $\overline{OE}$  input can avoid the data bus contention problem by use of  $\overline{RD}$  output as an  $\overline{OE}$  signal.

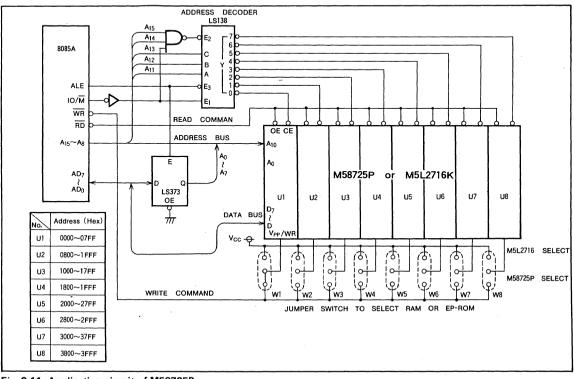



Fig. 2.11 Application circuit of M58725P



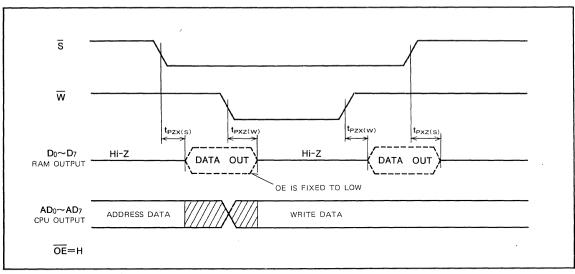



Fig. 2.12 Write cycle timing

# 2. Application of M5M5118P

The M5M5118P offers easy memory expansion or battery backup due to its two chip select signals, but because of the lack of OE input, the data bus contention problem must be taken into consideration during system design. Fig. 2.12 illustrates the timing diagram of the circuit shown in Fig. 2.11. In this system,  $\overline{S}$  is synchronous with ALE and  $\overline{S}$  is set to low before setting to  $\overline{W}$ . Therefore, when a RAM without an OE terminal, like M5M5118P, or a RAM whose OE terminal is fixed to low is used, data input/output terminals are in the output state during the period shown by broken lines, causing contention of RAM and CPU outputs, making a large current flow through each output transistor. Output bus contention should be considered only at the beginning of the write cycle, the period shown by cross hatching but is no longer a concern once write is completed because both outputs have the same phase. But data bus contention can be avoided when  $\overline{S}$  is turned to low simultaneously with  $\overline{W}$  or right after  $\overline{W}$ . This is because, when  $\overline{S}$  and  $\overline{W}$  are turned to low simultaneously, the output buffer circuit remains in high impedance state. This timing can be obtained by adding  $\overline{WR}$  and  $\overline{RD}$  as a condition of generating the chip select signal as shown in the application example in Fig. 2.14.

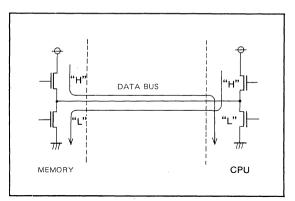



Fig. 2.13 Data bus contention



# MITSUBISHI LSIS

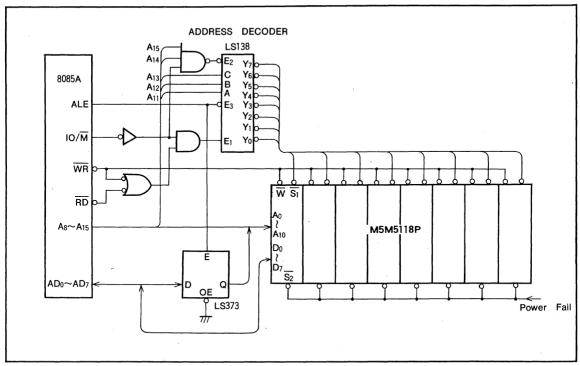



Fig. 2.14 Circuit diagram for preventing data bus contention (Application circuit of M5M5118P)

#### 3. Precaution against Noise

When memories which have power saving function by chip selection shift from standby mode to operation mode, the supply current shows a change of several 10mA. In the read cycle, the discharging and charging currents for the output load capacitance run as peak currents to  $V_{CC}$  and GND. The current increases with the number of output terminals, hence, for a static RAM of x8 structure, the current is considerable. Fig. 2.15 shows the supply current waveform of the M5M5165P. Noises generated by large current changes narrow operating margins or induce faulty operation. Less consideration has been give to SRAM compared to DRAM in the past. Now, due to its considerable improvement on speed, SRAM has become susceptible to noise. Adequate consideration, therefore, must be given to the pattern design of the circuit board. To absorb noise, a  $0.1\mu$ F ceramic capacitor is recommended to be placed between each device.

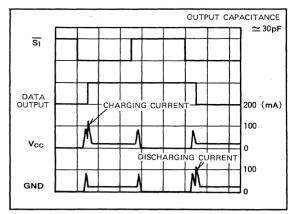



Fig. 2.15 Waveform of supply current (M5M5165P)



#### APPLICATION OF CMOS RAM

#### 1. Power Down Characteristics

The conditions that set supply current in the standby state are different from product to product. Fig. 2.16 shows differences of input circuits. M5M5116P has two chip select inputs with the power saving function which is assigned only to  $\overline{S_2}$ . When  $\overline{S_2}$  is set to V_{CC} level, the minimum standby is obtained. But  $\overline{S_2}$  is not set to V_{CC} level penitrate current runs into the first stage inverter of the  $\overline{S_2}$  input buffer, as shown in Fig. 2.17. Therefore, in the case of system power failure,  $\overline{S_2}$  must quickly be set to the V_{CC} level to prevent the penitrate current and accompanied faulty operation. For the other inputs, there are no limitations on the input level, because all of the other input circuits are controlled by  $\overline{S_2}$ .

M5M5118P has two chip select inputs,  $\overline{S_1}$  and  $\overline{S_2}$ , and when either of them is set to the  $V_{CC}$  level, the device is set in the complete standby state.

The M5M5165P has two chip select inputs,  $\overline{S_1}$  and  $S_2$ . both of which have the power-cut function. As the input circuit of  $\overline{S_1}$  is controlled by  $S_2$ , the circuit is in the complete standby state when  $S_2 = GND$ . But when  $\overline{S_1} = V_{CC}$ , S2 must be set to the GND level to accomplish the complete standby state. The distribution of standby current is shown in Fig. 2.18. The standby current of the full CMOS RAM is so small that it enables a very long battery backup operation. (several 100nA) On the other hand, the current of the mixed CMOS RAM (NMOS cell + CMOS periferal) is fairly large (several  $10\mu A$ ). But, it can support batterv back operation for the short term. The chois is made according to purpose and application.

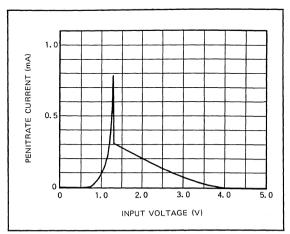



Fig. 2.17 Penitrate current of CMOS inverter

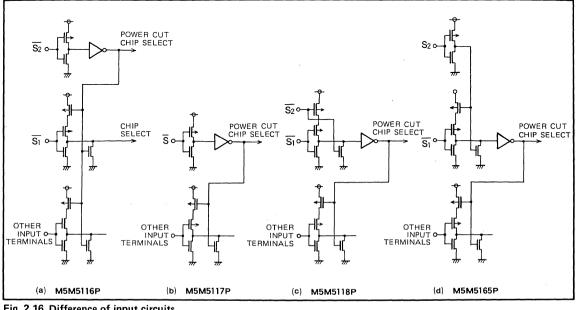
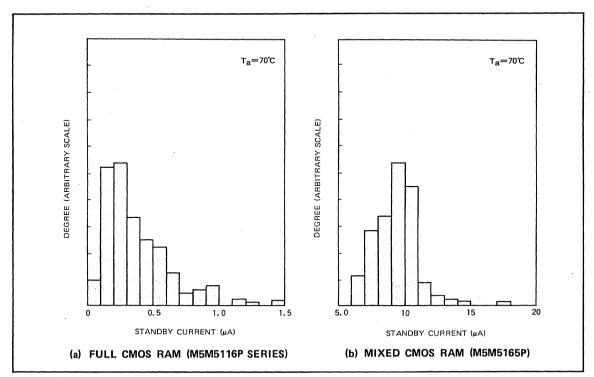




Fig. 2.16 Difference of input circuits



# MITSUBISHI LSIS







## NON-VOLATILE MEMORY SYSTEM

We can relatively easily design a large non-volatile memory system with little additional interface logic by using CMOS RAMs. The block diagram of a basic computer system that uses CMOS RAMs is shown in Fig. 2.19, and the power supply on-off timing of the system are shown in Fig. 2.20. It is usually necessary to have advanced warning that AC power has been lost. This warning signal produced by the power-fail-detect circuit interrupts the processor, which stores the volatile data in the non-volatile area (CMOS RAMs) before the system's DC source drops. And after the RAMs have been protected, their V_{CC} power source is replaced by V_{BAT}, as shown in Fig. 2.20.

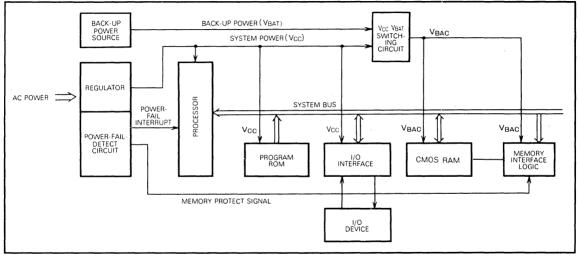



Fig. 2.19 Non-volatile memory system

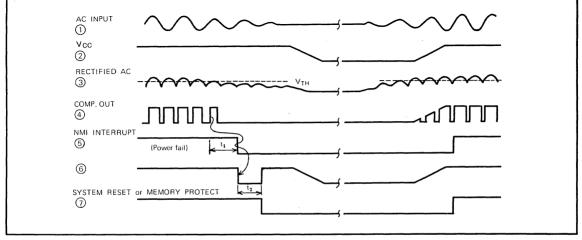



Fig. 2.20 Power on-off timing



# EXAMPLE OF CMOS NON-VOLATILE MEMORY SYSTEM

#### **Power-Failure Detection**

The power-fail-detect circuit watches a separate power supply point to provide an advanced warning of power failure. As described before, this warning signal (power fail) can interrup the processor or merely protect the CMOS RAMs. Fig. 2.23 is a simplified diagram of the power-fail-detect circuit. This shows that the power failure is detected from the secondary transformer output, which is not regulated. The Zener-diode voltage and RC time constant should be well selected to prevent AC power failure from shutting down the memory system.

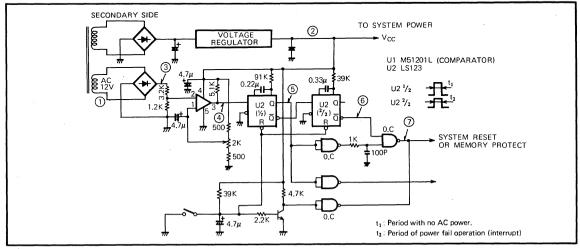



Fig. 2.21 Power-fail-detect circuit

#### **Power-Switching Circuit**

The power-switching circuit replaces the main source  $V_{CC}$  by the back-up power source  $V_{BAT}$  when  $V_{CC}$  drops, and replaces the  $V_{BAT}$  by the  $V_{CC}$  when the  $V_{CC}$  voltage rises enough to enable normal operation.

Two types of power-switching circuit are shown in Fig. 2.22 and Fig. 2.23. The diode-coupled circuit in Fig. 2.22 requires the main DC supply  $V_{CC}$  to be above the required  $V_{BAC}$  voltage by the amount of drop through the diode (about 0.6  $\sim$  0.7V). Fig. 2.23 shows a transistor-coupled circuit, which has better performance than the circuit in Fig. 4. In this case it is recommended to use a transistor with low collector-base saturation for Q1.

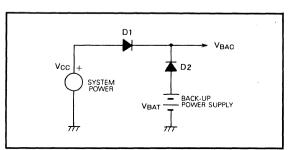



Fig. 2.22 Diode-coupled switching circuit

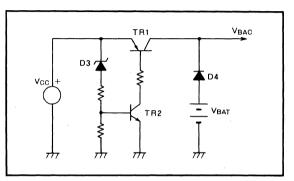
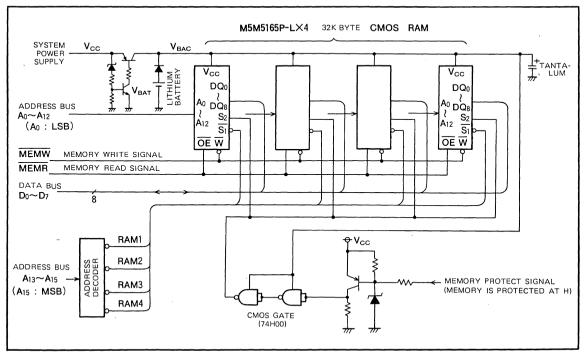
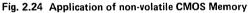



Fig. 2.23 Transistor-coupled switching circuit

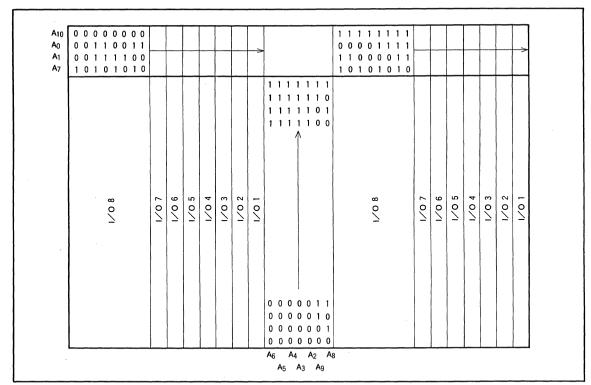



#### 4. Application Circuits


Fig. 2.24 shows an example of a non-volatile memory system using 64K bits CMOS RAM M5M5165P.

In this case, the memory protect signal is detected from the system power supply  $V_{CC}$ . However it is safer to protect the memory by taking the signal out of the nonregulated power supply, as shown in Fig. 2.21. Because protection is excuted before the fall of  $V_{CC}$  and reset after the rise of  $V_{CC}$ .

# [Bit Map]


To make the best use of a test pattern or to do a failure analysis, it is necessary to know the relationship between external address and the actual cell location inside the chips. In such a case, a bit map is used to know the topology of the memory array. Figs.  $2.25 \sim 2.29$  show the bit maps of all static RAMS which are in production.







# MITSUBISHI LSIS



#### Fig. 2.25 M58725P

A10	0	0	0	0	0	0	0	0		1	Τ	Τ				1	Τ						1	1	1	1	1	1	1	Τ	Τ	T	T	Τ	Τ	Τ	
A ₂	0	0	0	0	1	1	1	1															0	0	0	0	1	1	1								
Aı	0	0	1	1	0	0	1	1								-	1						0	0	1	1	0	1	1								7
<b>A</b> 0	0	1	0	0	1	0	0	1															0	0	1	0	1	0	1								
																	1	1	1	1	1	0															
																	1	1	1	1	1	1															1
																	1	1	1	1	0	1															
																	1	1	1	1	0	0															
																	1	1	1	1	) 1	0															
																	1	1	1	1	0 1	1															
														· ·	l		1	1 1	1	1	0 0	1															
	l																·	1 1	1	1	0 0	0															
															Į					A																	
				0	0				2 7	90			04													0	α			10	1/06	05					5
				Ś	2				2	2		5	2	2	2	2											$\leq$			2	12	2			$\leq   \leq$		$\leq$
																						0															
																						1															
																						) 1										1.					
																1						0 (								1							
															1	1						0															
															1	1						1										1					
															1							01								1							
	L															1				_		0 0														1	
																	1					A	3														
																		1	48	Ae	4	۹4															



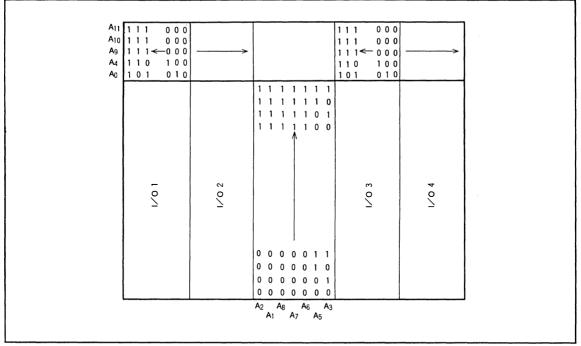



Fig. 2.27 M5M2168S

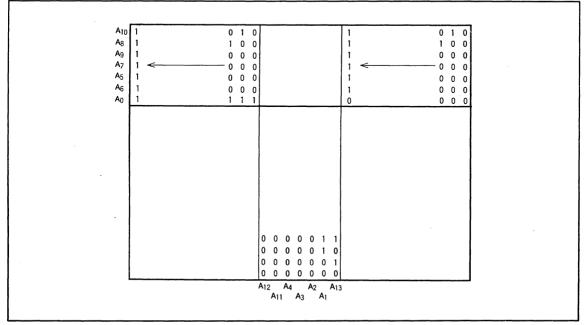



Fig. 2.28 M5M2167S

A2 A1 A0 A10 A11	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	>		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			$\begin{array}{cccc} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & & 0 & 0 & 0 \\ 1 & & 1 & 0 & 0 \\ 1 & & 0 & 1 & 0 \end{array}$	>
	708		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1	8 0 1	7071 ~	8 0 2	² ~ ¹ ~ ²		8 0 /1	1 0/1 ~
L	I		A4 A6 A12 A A3 A5 A7 A8			L	I	A4 A6 A12 A A3 A5 A7 A8		

Fig. 2.29 M5M5165P



ł

#### 3. EPROM

# 3.1 EPROM Technology INTRODUCTION

With their ability to be electrically programmed and erased with ultraviolet light, EPROM (Erasable and Programmable Read Only Memory) devices have achieved high popularity for their ease-of-use and are retaining their position as the target for memory development.

Although the EPROM was originally developed for use as a microprocessor system debugging ROM, the device has undergone significant improvements in density, reliability, and basic process technology as well as cost per bit which have extended its usefulness beyond microprocessors into such equipment as cash registers, point-of-sale equipment, household appliances, entertainment equipment, and a variety of other fields. Since the introduction by Mitsubishi Electric of a p-channel 2K-bit EPROM, the development of n-channel devices has enabled remarkable improvements in access time, and density in the form of an 8K-bit device. The market is now being supplied with easy-to-use, singlepower supply 16K/32K bit devices and high-speed. large capacity 64K/128K bit devices. This section will briefly outline the progress made in EPROM technology including a description of circuit configuration and notes on applications.

The Structure and Basic Operation of a Memory Transistor As shown in Fig. 3.1, increasing EPROM capacity has been accompanied by changes in the memory transistor structure. The 2K-bit device made use of a P-channel MOS transistor to form an insulated single-layer polysilicon floating gate. In contrast to this, devices of 8K-bit capacity and greater make use of n-channel transistors and two-layer gate structure with a control gate to which a voltage may be applied placed over the floating gate. A capacitance between the control gate and the floating gate form an acceleration field for electron injection to the floating gate. Programming is performed in the following manner. For programming operations a high voltage is applied to the drain and control gate. By virtue of the control gate, capacitance between control gate and floating gate a channel is formed between the source and drain through which a current flows. As a result, for high drain voltages current induced breakdown occurs. The hot-electrons produced as a result of this breakdown phenomena exceed the high energy barrier and are injected into the floating gate. By imparting a voltage to these injected electrons the control gate can have higher threshold voltage than before injection (refer to Fig. 3.2), and the read voltage may be applied to the control gate while maintaining an open circuit. This ends the write operation. This applies to the memory transistors used in presently available EPROM devices of 8K-bit capacity and over. Fig. 3.3 shows the programming characteristics (dependency of the threshold value on the write pulse width) for 16K- and 32K-bit memory transistors.

The injected charge is located on the floating gate which is surrounded by a 1,000Å thick silicon oxide layer of good insulating characteristics, and is therefore retained for a long period. It is the retention of this charge which holds the written data. A significant feature of two-layer gate structure is the associated increase in density. As shown in Fig. 3.1, whereas in the single-layer gate an additional row selection transistor is required, the two-layer memory transistor eliminates this necessity by having the control gate serve two functions.

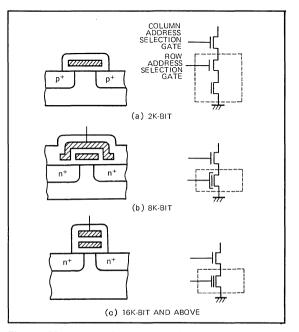



Fig. 3.1 Memory transistor construction

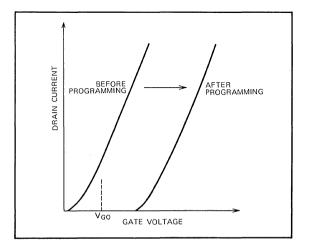



Fig. 3.2 Variation in memory transistor threshold voltage (V_{GO}: Read gate voltage, both vertical and horizontal scales are arbitrary)



The introduction of 8K- and 16K-bit devices and greater was accompanied by improvements of control gate structure. As shown in Fig. 3.1, whereas for the 8K-bit device the side of the folating gate is completely covered by the control gate, this is not true of devices of 16K-bit capacity and greater. It should be noted that while significant improvements in overall capacity has been made, chip size remains essentially unchanged, the 16K-bit chip size being merely 8.2% greater than that for the 8K-bit device. These devices have been improved to the 64K/128K bit devices by decreasing the chip size vertically and horizontally.

Erasing is done by exposing the device to ultraviolet light. The electrons on the floating gate receive the ultraviolet energy, pass through the oxide layer and escape. The transmittivity of ultraviolet radiation from a low pressure mercury lamp through polysilicon is low compared to silicon oxide. For this reason, the ultraviolet energy reaching the floating gate of 16K-bit and greater memory devices using transistors without polysilicon sides is larger than the 8K-bit structure. This results in shorter erase times for 16K-bit devices and over. Fig. 3.4 illustrates the change in threshold value by exposure of ultraviolet energy.

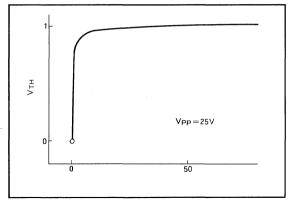



Fig. 3.3 Dependency of  $V_{TH}$  on write pulse width (16K-bit and 32K-bit)

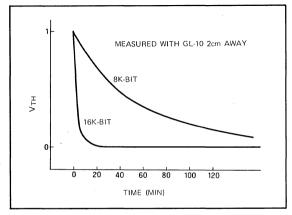



Fig. 3.4 Variation in VTH with erasure time

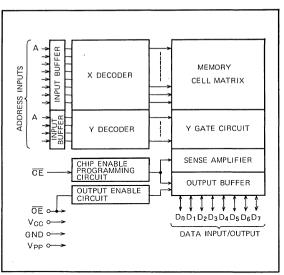



Fig. 3.5 EPROM Block diagram

#### EPROM Circuit Configuration and Characteristics Circuit Configuration

Fig. 3.5 shows the block diagram of an ultraviolet light erasable EPROM. Currently available devices are configured in 8-bit words with the memory cells arranged in eight blocks. Input and output is performed in parallel by means of the signal lines  $D_0 \sim D_7$  connected to these eight blocks. The address signals are divided into column decoder inputs and row decoder inputs. For a 128K-bit EPROM, five address signals are input to the column decoder while nine address signals are input to the row decoder, the memory being arranged as a matrix of 2⁵ (=32) columns by 2⁹ (=512) rows.

After decoding, the column signals are input to the column selection transistor gate which is connected to the memory cell drain. Finally, the decoder row inputs are connected to the memory control gates. Sense amplifiers and data input/output buffers used in read and program operations are connected to the drains (data lines) of the memory cells controlled by the column selector transistors. Almost all of the chip area is taken up by the memory cells, address circuits, decoders, and data circuits, the remaining area being allotted to the important control circuits.

These control circuits consist of the chip enable and output enable circuits. The former controls the power down operation or programming operations. The latter circuit controls the enabling or disabling of the output signal by means of the OEsignal. 16K-bit devices and over are provided with these two select/unselect control circuits. The two line control method is very effective for QRconnecting of multiple devices. If only one signal were allowed to control chip select and unselect, cases could arise where one chip is enabled for output before the previous chip goes into the floating state.



As shown in Fig. 3.6, this results in excessive current flowing and the generation of power supply noise. In addition, data on the bus is unstable before and after address changes. This condition is called "the bus contention problem" and can be eliminated by using the  $\overline{CE}$  as the chip enable and  $\overline{OE}$  as the output enable signal in a two-line control mode.

## EPROM Operation, Characteristics, and Application Notes.

The basic operations possible with an EPROM are programming, read, and erase. These operations will be discussed with respect to 16K- and 32K-bit devices along with some precautions for use. Table 1 summarizes a comparison of the characteristics of EPROM devices currently available.

#### (1) Programming Operations

The normal state of all cells for an EPROM device when shipped or after erasure is "1", programming operations change the memory cell contents to 0. Programming operations are performed in groups of 8 bits (one word). After applying the programming voltage to the programming pin and selecting the program mode, the address data is set up. Next, a programming pulse of the required width is input. The active state of this pulse depends on the device (for instance, for 16K-bit devices the pulse is active high while for 32K, 64K and 128K-bit devices it is active low), so that care should be taken when generating this pulse. Although it is often thought that the higher the programming voltage and the wider the programming pulse. the more effective the programming operation will be, the device characteristics dictate that the best programming will be achieved by setting these values to the central specification values. In perticular, the maximum allowable voltage for programming that may be applied to the Vpp pin is 26V. Care must be taken that the Vpp supply doesn't overshoot the 26-volt maximum specification. Programming for both 16K- and 32K-bit devices can be performed in any arbitrary order, further simplifying the programming operation.

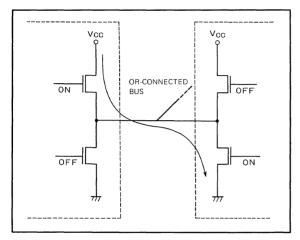



Fig. 3.6 Fighting for an OR-connected bus

#### Table 3.1 Comparison of Available EPROM Devices

MEMORY CAPACITY (BITS)	2K (256×8)	3K (1024×8)	16K (2048×8)	32K (4096×8)
TYPE	M5L1702AS	M5∟2708K	M5∟2716K	M5∟2732K
CHANNEL TYPE	р	n	n	n
CHIP AREA	14.2mm²	17.8mm ²	19.3mm ²	22.5mm²
ADDRESS ACCESS TIME (MAX)	1000ns	450ns	450ns	450ns
POWER DISSIPATION (MAX)	600mW	800mW	525 m W	787 mW
POWER DISSIPATION PER BIT	0.3mW	0.1mW	0.03mW	0.02mW
SUPPLY VOLTAGES	+5, −9V	+5, -5, +12V	+ 5 V	+ 5 V

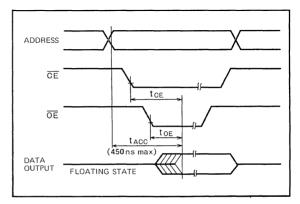



Fig. 3.7 Read timing diagram

#### (2) Read Operation

The read mode is enabled by lowering the program voltage and using the chip enable signal to select the chip, and the output control signal to enable the output of the memory contents at the selected address. The chip enable signal serves also as the power down signal, enabling an extreme limitation on power consumption for the non-selected periods. Access time is specified in terms of chip enable, address, and output enable access times, the power down feature making the chip enable access time generally the longest. Operating conditions and output timing should be carefully considered as high temperatures and excessive output loads have an adverse affect on access time. Fig. 3.7 shows the read timing for 16K-bit and 32K-bit devices with Fig. 3.8 and Fig. 3.9 giving the chip enable access time



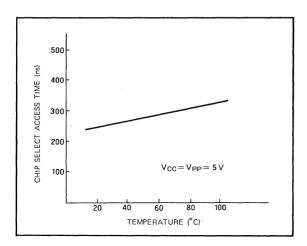



Fig. 3.8 2716 Chip select access time temperature characteristics example

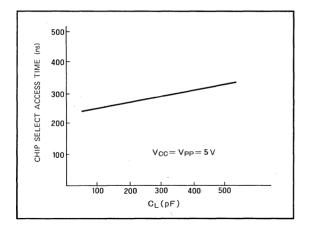



Fig. 3.9 2716 Chip select access time load capacitance dependency

#### (3) Erasure

Erasure is performed by exposing the chip to ultraviolet light. Fig. 3.4 shows the change in memory transistor threshold value with relationship to ultraviolet radiation. The erasure time should be selected to allow for variations in the memory transistor characteristics. Fig. 3.10 shows the relationship between the ultraviolet radiation time and the number of bits erased. Verification of erasure by means of a PROM programmer should not be assumed to indicate that the EPROM is sufficiently erased. While the required erasure time depends upon factors such as the type and condition of the lamp used and the distance to the device being erased, the actual erasure procedure should be continued for a period of five times the time required to erase all cells as verified by a PROM programmer. Generally, for 16K- and 32K-bit EPROMs, the erasure time for a GL-10 lamp 2.5cm away from the device is between 15 and 20 minutes.

The erasure characteristics for 8K-bit EPROMs differs from those for 16K-bit and greater capacity for structural reasons, with the differences extending to the degree of influence of sunlight and fluorescent lighting on the inadvertent erasure of data. To prevent such long term ambient radiation from affecting electrical characteristics, the use of a seal to cut out such radiation for normal use is required.

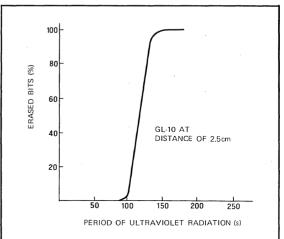



Fig. 3.10 Erasure characteristics example for 2716 and 2732



# 3.2 APPLICATION OF EPROMS

#### **EPROM control functions**

EPROM control functions are provided to simplify interface and allow full utilization of performance. A new generation of dual-control function EPROMs has become popular which has both a chip enable  $(\overline{CE})$  and an output enable  $(\overline{OE})$  control input.

#### CE (Chip Enable, active low)

The falling edge of  $\overline{CE}$  activates the address input buffers and latches the address in preparation for the address decoders and the sense amplifiers to perform their function. This acts also as a power control function, allowing the device to enter a low-power standby mode when the  $\overline{CE}$ input is disabled.

#### OE (Output Enable, active low)

CE controls the device's output buffer, and is used to avoid bus contention since the device's output can be turned on and off directly by the processor. The  $\overline{CE}$  and  $\overline{OE}$  control functions are ANDed inside the device. This means that only the simultaneous application of  $\overline{CE}$  and  $\overline{OE}$  will activate the output of the device. (When either of  $\overline{CE}$  or  $\overline{OE}$  is not active, the output buffer of the device goes into the high-impedence state.)

#### Microprocessor interface

As described above, EPROMs can be interfaced easily to microprocessors using the  $\overline{CE}$  and  $\overline{OE}$  functions. A typical example is shown in Fig. 3.11. The address from the microprocessor is decoded by the bipolar PROM which generates the primary decoded signal  $\overline{CE}$ . Next, read memory command from the microprocessor enables  $\overline{OE}$ . This decoding method makes possible a substantial power saving.

#### EPROM package compatibility and design technique

As the density of EPROMs increase, more address pins will be needed for higher density devices. But the EPROM family has similar pin configurations maintain which keeps the compatibility with each memory size devices. The pinouts of the family are shown in Fig. 3.12 which have different signals at the dotted pinouts only. It may seem as though the 28-pin package is not compatible with the 24pin devices, but the lower 24 pins are indential to the 24pin package of 2716 or 2732 as shown in Fig. 3.12.

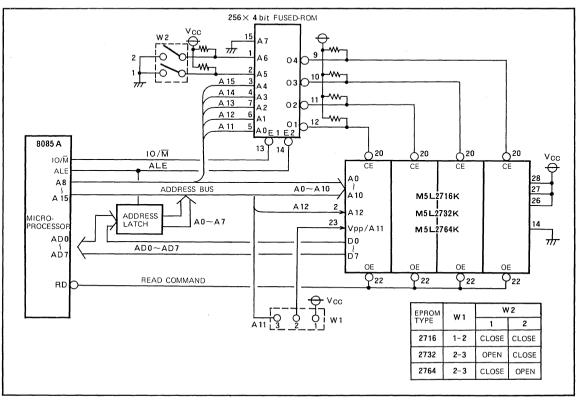



Fig. 3.11 Microprocessor-EPROM interface example



The pinouts of the EPROM family enable the memory design to support 2K-, 4K-, and 8K-byte EPROMs, which require some techniques of address decoding and print circuit board layout. Fig. 3.11 shows now the EPROM family may be connected to the very popular M5L8085A microprocessor. The high-order microprocessor address

bits are fed to a 256x4 bipolar PROM for address spatial decoding. The PROM allows the address space to be redefined at any time so that various EPROMs can be used. The jumpers W1 and W2 are used to define the type of EPROM according to the table in Fig. 3.11. The address map of the PROM is shown in Table 3.2.

2764				/	0740		2764
VPP	2732	2716		28	2716	2732	Vcc
A ₁₂			2	27			PGM
A7	Α7	A ₇	3(1)	(24)26	Vcc	Vcc	NC
A ₆	A ₆	A ₆	4(2)	(23)25	A ₈	A ₈	A ₈
Α ₅	A ₅	A ₅	5(3)	(22)24	Ag	Ag	Ag
A ₄	A4	A ₄	6(4)	(21)23	Vpp	A ₁₁	A 11
A ₃	A ₃	A ₃	7(5)	(20)22	ŌĒ	0E/V _{PP}	ŌĒ
A ₂	A ₂	A ₂	8(6)	(19)21	A 10	A 10	A 10
A ₁	Α1	A ₁	9(7)	(18) 20	ĈĒ	ŌĒ	CE
A ₀	A ₀	A ₀	10(8)	(17) 19	D ₇	D7	D7
D ₀	Do	Do	11(9)	(16) 18	D ₆	D ₆	D ₆
D ₁	D1	D1	12(10)	(15) 17	D ₅	D ₅	D ₅
D ₂	D2	D ₂	13(11)	(14) 16	D4	D4	D4
GND	GND	GND	14(12)	(13)15	D ₃	D ₃	D ₃

#### Fig. 3.12 EPROM Family pinouts

# Table 3.2 PROM Address Map

Input signal	GND	W 2-2	W 2-1		Micro	processor's a	address			Decoder	outputs	
Decoder address	GND	VV 2-2	VV Z- 1	A ₁₅	A 14	A 13	A 12	A11		Decoder		
address	A ₇	A ₆	Α5	A ₄	A ₃	A ₂	A ₁	A ₀	01	02	03	04
	0	0	0	$\bigtriangleup$			0	0	0	1	1	1
							0	1	1	0	1	1
2716 mode							1	0	1	1	0	1
							1	1	1	1	1	0
	0	0	1			0	0	*	0	1	1	1
2732 mode						0	1	*	1	0	1	1
2732 mode						1	0	*	1	1	0	1
						1	1	*	1	1	1	0
	0	1	0	Δ	0	0	*	*	0	1	1	1
2764 mode					0	1	*	*	1	0	1	1
2764 mode					1	0	*	*	1	1	0	1
					1	1	*	*	1	1	1	0
	0	1	1	*	*	*	*	*	1	1	1	1
Not used	Ļ	V		V			↓					
	1	1	1	1	1	1	1	1				



#### Functional description of M5L8041A-006P

#### General

M5L8041A-006P is a slave computer LSI which is designed for EPROM writer control using a mask-programmed M5L8041A-XXXP. The operation mode of the PRPG is defined by the master microprocessor. So it is programmed by the system's software as an I/O peripheral.

#### Command description

There are 7 commands provided for programming the PRPG. These commands are sent on the data bus with the signal  $\overline{CS}$  at low and the signal  $A_0$  at high and are stored in the PRPG at the rising edge of the signal  $\overline{WR}$ .

The summary of PRPG's commands and status is shown in Table 3.3.

#### **PRPG Timing and interfacing**

PRPG's operation timing are triggored by the commands are shown Table 3.3. There are two operation modes, 2716 mode and 2732 mode, whose timing are shown in Fig. 3.13 and Fig. 3.14.

#### Application for EPROM writer

#### Introduction

M5L8041A-006P is one of the applications for EPROM writer controller which can interface to microprocessors (e.g. 8080A, 8085A, 8086). EPROM writer design is simplified by using M5L8041A-006P.

Features of the M5L8041A-006P;

- EPROM write controll for the 2716 or 2732
- Fully compatible with Mitsubishi microprocessors
- Reduces the master microprocessor's program for EPROM writing.

#### PRPG interface and timing

An example of PRPG interfacing is shown in Fig. 3.15. Using the PRPG, the design of the EPROM writer is simplified. M5L8243P is used for the port expander of PRPG.

PRPG's operational timing is managed by the commands shown in Table. 3.3. There are two operation modes (i.e., 2716 and 2732 mode) whose timing is shown in Fig. 3.13 and Fig. 3.14 respectively. If the mode set command is not equal to the hardware switch to select 2716 or 2732 in the Fig. 3.15, the mode will not be set and the FAIL LED will light.

#### Design example of EPROM/RAM board

Fig. 3.16 presents the design example of EPROM/RAM board which is fully compatible with the proposed  $IE^3$ -P796 bus standard. The M5L2716K, M5L2732K or M5L2764K can be used in this board, and also 2Kx8 bit of RAM (M58725 P) can be mixed with M5L2716K.



# Table 3.3 M5L8041A-006P (PRPG) Function Table

	COMMAND/	DESCRIPTION	CODE	LED DI	SPLAY	NOTES
	STATUS	DESCRIPTION		PASS	FAIL	NUTES
	1 Mode set	Defines the operation mode of PRPG	MSB     LSB     A0       M     0     0     0     0     F1F0       M     T     FPROM Selection     {     0     2716 Mode       M     Selection of clock     0     0     3.58 MHz       M     Selection of clock     0     1     4.194303 MHz       No     0     6 MHz	PASS = ON When mode is set correctly. (Mode request LED turns off.)	FAIL = ON When programmed mode is not coincident with hardware switch.	It is necessary to provide mode set command after power on. After mode is set, the operation mode is available until the other mode is set.
	2 Address set	Defines the start address (SPA) and the end address (EPA) of programing EPROM	MSB     LSB     A0     MSB     LSB     A0       1     1     1     1     0     0     0     1     1st byte     (SPA) HIGHER     0       After providing Address set command, it is necessary to provide following 4 bytes of SPA and EPA     3rd byte     (EPA) HIGHER     0       0     0     0     0     0     0     0     0		FAIL = ON 1 SPA > SPB 2 SPA EPA 2716 ≥ 80016 ≥ 80016 2732 ≥ 100016 ≥ 100016	A bytes commands after address set command should provide with A0 input low-level.
	3 Blank check	Checks the programming EPROM if it is erased.	MSB LSB A0 1 0 1 1 0 0 0 0 1 1	PASS = ON If EPROM is erased. (i.e. All data are FF ₁₆ )	FAIL = ON If EPROM is not erased.	
COMMAND	4 EPROM write	Writes the data to the EPROM which are sent from master CPU and rerifies the written data if they are correctly programmed.	MSB     LSB     A g     After providing this command, PRPG generates       1     0     1     0     0     0     1	PASS = ON When programming finishes completely.	FAIL = ON If it is not able to write correctly in the EPROM address. (SPA ~ EPA)	
	5 Verify	Checks the programmed EPROM if it is written correctly.	MSB     LSB     Ao     After providing this command, PRPG compares the programed data with the source data of master CPU.	PASS = ON When the programed data are equal to the source data.	FAIL = ON If the programed data are not equal to the source data	
	6 Automatic write	Executes the commands 3, 4, 5 automatically.	MSB LSB A0 1 1 0 0 0 0 0 1 1	PASS = ON When there is no error in 3 and 5 command.	FAIL = ON When there are any errors in 3 and 5 command.	
	7 Сору	Transfers the EPROM's data where are diffined SCA and ECA to the master CPU.	MSB         LSB         A0         MSB         LSB         A0           1         1         1         0         0         0         0         1         1st byte         (SCA) HIGHER         0           After providing Copy command, it is necessary to provide following         3rd byte         (ECA) HIGHER         0         0           4 bytes of SCA and ECA.         4th byte         (ECA) LOWER         0         0	PASS = ON When data transfer finishes.	FAIL = ON Same condition as command 2	SCA = start address of copy data ECA = start address of copy data
STATUS	8 Write data buffer full	Indicates if write data buffer in the PRPG are full or not.	MSB         LSB         A 0           F         -         1         0         PRPG data buffers: full           1         PRPG data buffers: not full         1         PRPG data buffers: not full			The status is used by 4 or 6 command.

(MSL2716K, MSL2732K, MSL2764K, MSL27128K)

MITSUBISHI LSIS EPROM

8 — 58

# MITSUBISHI LSIS

# (M5L2716K, M5L2732K, M5L2764K, M5L27128K)

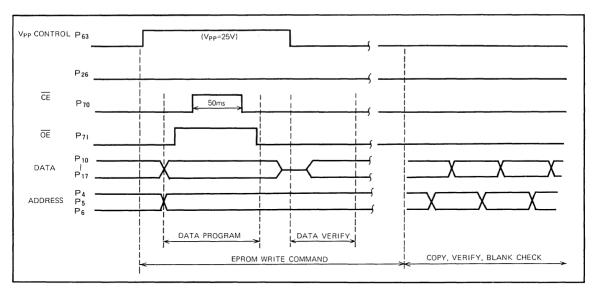



Fig. 3.13 2716 Programming timing

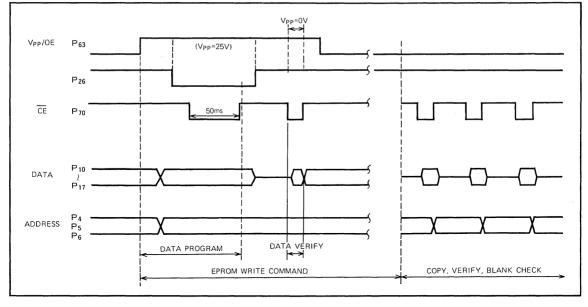
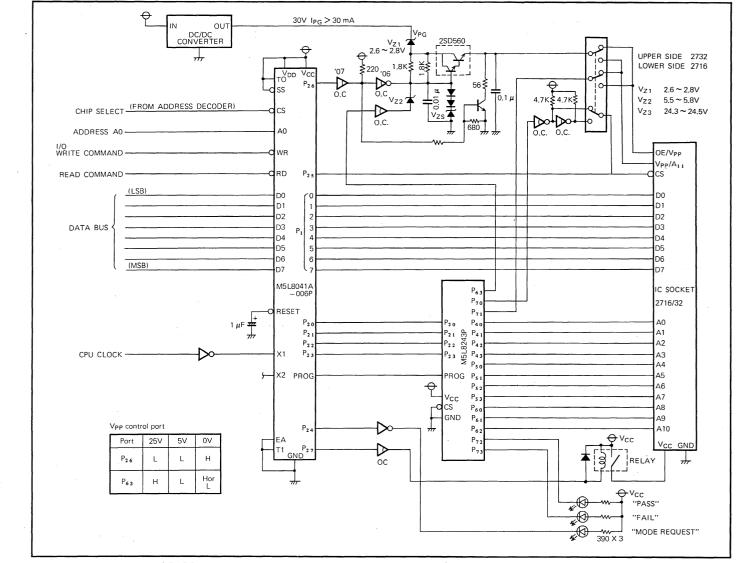




Fig. 3.14 2732 Programming timing





**MITSUBISHI LSIs** 

EPROM

Fig. 3.15 Design example of PRPG.

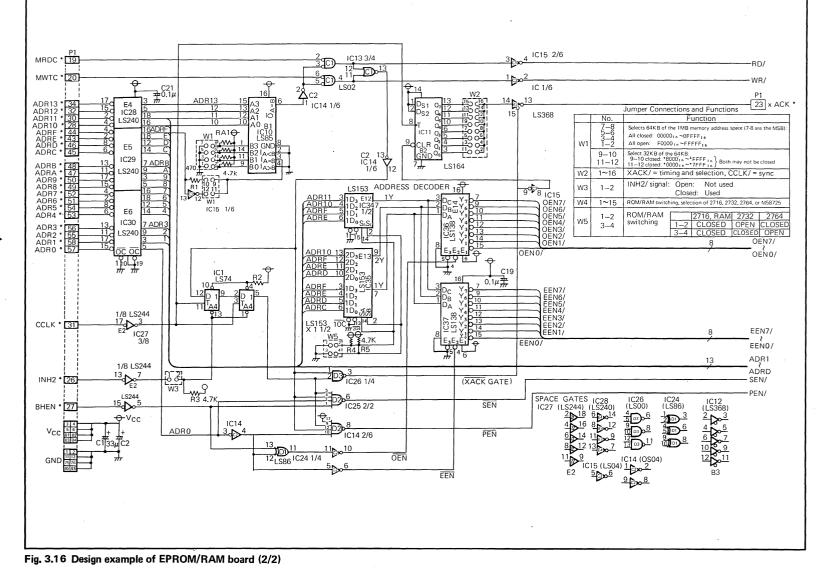
8 — 60

C10 0.1 µ # ٥ ۲ ۲ P Ð -565 16 PEN 1-ADR D ibd P1 ٠., Α,, DAT F 19 DIR OC DATE 60 1 DATE DAT E 18 DATE . 4 DAT F DATD E7 7 DATC1 DATC IC31 ۱<u>5</u>р, DAT B DATB LS640 AT A 1 13 DATA OAT 9 1 DAT9 66 12 11 21 0 DAT 8 11 11 Do A14 DAT8 * 11 21 A10 A8 65 A13 GND Do A6 Α7 A10 A11 A16 A10 ADR A 24 410 410 SEN 1 24 24 24 ROM/RAM Α, DR 9 25 11 C30 10 IC15 1/6 A ARRAY 120 1C5 IC2 1C3 IC4 IC6 IC7 3 A7 4 A6 1C9 A, 1C8 DAT ADB 7 4 9 DATE ADB 6 Aş, 14 DAT D ADR 5 A. 13 16 15 18 17 E8 IC32 DATC ADR A 1 DATE ADR 3 DATA LS640 ADR 2 DAT 9 ADR 1 10 DAT 8 22 POE GND + C19 0,1 μ 23 23 W/VPP/ALL Ŵ/Vpp/A, W/VPP/A1 10 7 V/Vpp/A 24 <del>ب</del>لر 0EN4/ 20 0EN0/ 0EN2/ 0EN3/ 20 0EN5/ 0 0EN6/ 0EN7/ 20 0EN1/ 120 P1 12 DAT 7 11 DAT 6 C17 1077 2 516 # DAT7 68 DIR OC C16 - हेर्स्डीहा <u>_</u> C12 ¥. DAT6 67 14 DAT 5 13 DAT 4 # DAT5 70 E9 DR D DAT4 IC33 16 DAT 3 15 DAT 2 18 DAT 1 19 DAT3 72 LS640 DAT 6 1 18 DAT2 71 17 DAT1 7 DAT 0 16 DATO GND DAT 3 15 15 13 1077 DAT 2 13 DAT 1 12 13 13 OEN 0/ 12 12 DAT 0 11 ADR B 21 ADR A 24 ADR 9 25 ADR 8 11 11 11 DEN 7/ C7 C10 D. C11 C13 D₀ C14 C16 C6 Do C8 21 24 25 Do 21 Do 24 A10 21 24 A10 A10 ROM/RAM RD 1 25 ARRAY IC17 IC19 A- IC16 IC18 IC20 IC21 IC23 7 IC22 ADR 7 4 4 4 ADR 6 ADR 5 F 5 ADRD 6 6 ADR 4 ADR 3 ADR 2 ADR 1 ADR1 ~ ADRB, ADRD 13 ADR : ADRD 8 EEN 0 W/Vpp/A N/Vee/A. 24 /Vpp/A EEN 7/ 13-14 2716, M58725 20 EEN0/ 200 200 EEN2/ EEN3/ 200 20 EEN6/ EEN7/ 20⁴ 200 200 EEN4/ EEN5/ Ð 14-15 2732, 2764 ADRC FOM/RAM ROM/RAM LOOD ROM/RAM 000 ROM/RAM SELECT W4 W4 SELECT W4 SELECT 11-12 ROM 11-10 RAM SELECT W4 W4 WR.

# (M5L2716K, M5L2732K, M5L2764K, M5L27128K)

**MITSUBISHI LSIs** 

EPROM


Fig. 3.16 Design example of EPROM/RAM board (1/2)

÷

8-61

MITSUBISHI LECTRIC





MITSUBISHI LSIS

MITSUBISHI LECTRIC

# **CONTACT ADDRESSES FOR FURTHER INFORMATION**

#### JAPAN=

Semiconductor Marketing Division Mitsubishi Electric Corporation 2-3, Marunouchi 2-chome Chiyoda-ku, Tokyo 100, Japan Telex: 24532 MELCO J Telephone: (03) 218-3473 (03) 218-3499 Facsimile: (03) 214-5570

Overseas Marketing Manager Kita-Itami Works 4-1, Mizuhara, Itami-shi, Hyogo-ken 664, Japan Telex: 526408 KMELCO J Telephone: (0727) 82-5131 Facsimile: (0727) 72-2329

#### HONG KONG=

Ryoden Electric Engineering Co., Ltd. 22nd fl., Leighton Centre 77, Leighton Road Causeway Bay, Hong Kong Telex: 73411 RYODEN HX Telephone: (5) 7907021 Facsimile: (852) 123-4344

#### TAIWAN=

MELCO TAIWAN CO., Ltd. 6th fl., Chung-Ling Bldg., 363, Sec. 2, Fu-Hsing S. Road, Taipei, R.O.C. Telephone: (704) 0247 Facsimile: (704) 4244

# U.S.A.=

NORTHWEST

Mitsubishi Electronics America, Inc. 1050 East Arques Ave. Sunnyvale, CA 94086, U.S.A. Telex: 172296 MELA SUVL Twx: 910-339-9549 Telephone: (408) 730-5900 Facsimile: (408) 730-4972

#### NORTH CENTRAL

Mitsubishi Electronics America, Inc. 799 North Bierman Circle, Mt. Prospect, IL 60056, U.S.A. Telex: 270636 MESA CHI-MPCT Telephone: (312) 298-9223~8 Facsimile: (312) 298-0567

Mitsubishi Electronics America, Inc. 15612 HWY 7 #243 Minnetonka, MN 55345, U.S.A. Telex: 291115 MELA MTKA Telephone: (612) 938-7779 Facsimile: (612) 938-5125

#### NORTHEAST

Mitsubishi Electronics America, Inc. 200 Unicorn Park Drive Woburn, MA 01801, U.S.A. Telex: 951796 MELASB WOBN Twx: 710-348-1229 Telephone: (617) 938-1220 Facsimile: (617) 938-1075

#### MID-ATLANTIC

Mitsubishi Electronics America, Inc. 110 New England Ave. West Piscataway, NJ 08854 U.S.A. Telex: 833244 MESANJPWAY Twx: 710-991-8584 Telephone: (201) 981-9256 Facsimile: (201) 981-9256

#### SOUTHWEST

Mitsubishi Electronics America, Inc. 991 Knox St. Torrance, CA 90502, U.S.A. Telex: 664787 MELA TRNC Telephone: (213) 515-3993 Facsimile: (213) 324-6578

#### SOUTH CENTRAL

Mitsubishi Electronics America, Inc. 3247 West Story Road, Los Colinas Business Park Irving, TX 75062, U.S.A. Telephone: (214) 258-1266 Facsimile: (214) 659-9313

#### SOUTHEAST

Mitsubishi Electronics America, Inc. Town Ex. CTR., 6100 Glades Rd. #210 Boca Raton, FL 33433 U.S.A. Twx: 510-953-7608 Telephone: (305) 487-7747 Facsimile: (305) 487-2046

#### WEST GERMANY=

Mitsubishi Electric Europe GmbH Headquarters: Gothear Str. 6 4030 Ratingen 1, West Germany Telex: 8585070 MED D Telephone: (02102) 4860 Facsimile: (02102) 486-115

Munich Office: Arabellastraße 31 8000 München 81, West Germany Telex: 5214820 Telephone: (089) 919006-09 Facsimile: (089) 9101399

#### FRANCE =

Mitsubishi Electric Europe GmbH 65 Avenue de Colmar Tour Albert 1er F-92507 Rueil Malmaison Cedex, France Telex: 202267 (MELCAM F) Telephone: (01) 7329234 Facsimile: (01) 7080405

#### ITALY =

Mitsubishi Electric Europe GmbH Centro Direzionale Colleoni Palazzo Cassiopea 1 20041 Agrate Brianza I-Milano Telephone: (039) 636011 Facsimile: (039) 6360120

#### SWEDEN =

Mitsubishi Electric Europe GmbH Lastbilsvägen 6B 5-19149 Sollentuna, Sweden Telex: 10877 (meab S) Telephone: (08) 960468 Facsimile: (08) 966877

#### U.K. =

Mitsubishi Electric (U.K.) Ltd. Centre Point, (18th Floor), 103 New Oxford St., London WC1, England, U.K. Telex: 296195 MELCO G Telephone: (01) (379) 7160 Facsimile: (01) (836) 0699

#### AUSTRALIA =

Mitsubishi Electric Australia Pty. Ltd. 73-75, Epping Road, North Ryde, P.O. Box 1567, Macquarie Centre, N.S.W., 2113, Australia Telex: MESYD AA 26614 Telephone: (02) (888) 5777 Facsimile: (02) (887) 3635



# MITSUBISHI SEMICONDUCTORS IC MEMORIES DATA BOOK

March, First Edition 1985

Editioned by

Committee of editing of Mitsubishi Semiconductor Data Book

Published by

Mitsubishi Electric Corp., Semiconductor Marketing Division

This book, or parts thereof, may not be reproduced in any form without permission of Mitsubishi Electric Corporation.



Revised publication, effective Aug. 1985, superseding publication H-C5867-B of May 1985. Specifications subject to change without notice.